首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
W Koek  F C Colpaert 《Life sciences》1991,49(9):PL37-PL42
Because of its apparent effectiveness in detecting non-benzodiazepine anxiolytic agents, a recently introduced conflict procedure in pigeons was used to evaluate possible anti-punishment activity of various N-methyl-d-aspartate (NMDA) antagonists. Punished responding was significantly increased by competitive NMDA antagonists (CPP, CGS 19755), but not by noncompetitive NMDA antagonists acting at either the ion channel (PCP, ketamine, MK-801), the glycine site (kynurenic acid, 7-chlorokynurenic acid, ACPC), or the polyamine site (ifenprodil) of the NMDA receptor complex; the proposed glutamate antagonist, riluzole, was also ineffective.  相似文献   

2.
Experimental febrile seizures can be evoked in epileptic chicks by elevation of their body temperature. Both competitive N-methyl-D-aspartate (NMDA) receptor antagonists [(3-(+/- )2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP), DL-2-amino-7-phosphosphonoheptanoic acid (APH), DL-2-amino-5-phosphonovaleric acid (APV), D-alpha-aminoadipic acid (AAA), and DL-alpha, epsilon-diaminopimelic acid (DAP)] and the noncompetitive NMDA antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5, 10-imine maleate (MK-801) produced dose-dependent increases in latency to the onset of seizures. Of the drugs tested, MK-801 had the highest potency followed in order by CPP = APH greater than APV much greater than AAA greater than DAP. There was a high correlation (r = 0.995) between the dose capable of doubling seizure latency and the affinity of the competitive NMDA antagonists for the NMDA receptor as determined by in vitro binding assays. These data suggest that NMDA receptor mediated mechanisms may be involved in the production of seizures in response to hyperthermia.  相似文献   

3.
Wiley JL  Balster RL 《Life sciences》2004,75(2):141-151
N-methyl-D-aspartate (NMDA) antagonists share a number of pharmacological effects with GABA(A) agonists, including anxiolytic and anticonvulsant effects. This study evaluated the effects of site-selective NMDA antagonists in rats trained to discriminate the benzodiazepine diazepam from vehicle. As expected, diazepam produced robust discriminative stimulus effects and dose-dependently substituted for the training dose. Mixed results were obtained with competitive NMDA antagonists: whereas NPC 17742 partially substituted for diazepam, SDZ EAA 494 did not elicit responding on the diazepam-associated lever. Other site-selective NMDA antagonists, including the open channel blocker phencyclidine, the glycine-site antagonists ACEA 1021 and MDL 102,288, the polyamine-site antagonist arcaine, and the glutamate release inhibitor riluzole, failed to substitute for diazepam. Agonists at nonbenzodiazepine sites of the GABA(A) receptor complex were also tested for comparison purposes. The barbiturate pentobarbital and the neurosteroid Co 2-1068 partially substituted for diazepam. In contrast, the anticonvulsant carbamazepine failed to substitute even at a dose that substantially reduced response rates. These results suggest that substitution of NMDA antagonists for GABA(A) agonists is dependent upon the site at which the NMDA antagonist binds. Further, they suggest that similarities between the stimulus properties of GABA(A) agonists and NMDA antagonists are at least as strong as similarities among agonists acting at different sites on GABA(A) receptors.  相似文献   

4.
In order to elucidate the possible roles of the glutamate system in the mechanisms underlying behavioral sensitization, which is used as an animal model for human psychosis, we investigated the effects of 3-((+/-)-2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) and MK-801 ((+)-dizocilpine), a competitive and noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, respectively, on methamphetamine-induced behavioral sensitization in rats. Administration of 0.5 mg/kg MK-801 enhanced 2 mg/kg methamphetamine-induced hyperactivity, whereas it reduced 6 mg/kg methamphetamine-induced stereotyped behavior markedly. CPP (10 mg/kg) reduced 2 mg/kg methamphetamine-induced stereotypy slightly. Repeated treatment with 2 and 6 mg/kg methamphetamine alone induced progressive augmentation of stereotypy, whereas combining either MK-801 or CPP with methamphetamine treatment abolished or attenuated this augmentation. However, when rats were challenged with methamphetamine after a 7-day period of abstinence, the intensity of stereotypy among the rats pretreated with repeated doses of methamphetamine alone or in combination with MK-801 or CPP did not differ significantly. These results indicate that competitive and non-competitive NMDA receptor antagonists modulate acute methamphetamine-induced abnormal behavior and sensitization expression, but they failed to prevent the induction of the neural mechanisms underlying behavioral sensitization.  相似文献   

5.
Akira Takashima  Yumino Maeda  Shinji Itoh   《Peptides》1990,11(6):1263-1267
The effect of subcutaneous injection of caerulein on memory impairment induced by intracerebroventricular administration of NMDA receptor antagonists was examined in the passive avoidance response of the rat. When rats were treated with AP5, AP7, CPP or MK-801, the retention latencies decreased markedly. However, in rats that received caerulein immediately after the training trials, the latency increased to some extent. Pretreatment with caerulein and subsequent injection of the competitive NMDA receptor antagonists AP5, AP7 and CPP caused a more apparent increase in the latency. The noncompetitive NMDA receptor antagonist MK-801 was not affected by pretreatment with caerulein. The difference might be, at least in part, due to the sites of action of these NMDA receptor antagonists.  相似文献   

6.
Multiple studies demonstrate that coadministration of N-methyl-D-aspartate (NMDA) receptor antagonists with the opioid agonist morphine attenuates the development of analgesic tolerance. Sex differences in the effects of noncompetitive, but not competitive NMDA receptor antagonists on acute morphine analgesia, have been reported in mice, yet the role of sex in modulation of morphine tolerance by NMDA receptor antagonists has yet to be addressed. Therefore, we tested whether there is a sex difference in the effect of NMDA receptor antagonists on the development of morphine analgesic tolerance in C57BL/6J mice. Acutely, at a dose required to affect morphine tolerance in male mice, the noncompetitive NMDA receptor antagonist dizocilpine (MK-801) prolonged morphine analgesia similarly in both sexes in the hot plate and tail withdrawal assays. In the hot plate assay, coadministration of MK-801 or the competitive antagonist 3-(2-carboxpiperazin-4-yl)propyl-1-phosphanoic acid (CPP) with morphine attenuated the development of tolerance in male mice, while having no effect in females. Like normal and sham females, ovariectomized mice were similarly insensitive to the attenuation of morphine tolerance by MK-801 in the hot plate assay. Surprisingly, in the tail withdrawal assay, MK-801 facilitated the development of morphine-induced hyperalgesia and tolerance in males but not females. The results demonstrate that male mice are more sensitive to modulation of nociception and morphine analgesia after repeated coadministration of NMDA receptor antagonists. Furthermore, the underlying mechanisms are likely to be different from those mediating the sex difference in the modulation of acute morphine analgesia that has previously been reported.  相似文献   

7.
The effects of phencyclidine (PCP) and NPC 12626 on punished responding were examined using a modified Geller-Seifter procedure in rats. Both drugs are known to antagonize N-methyl-D-aspartate (NMDA) receptor mediated neurotransmission, albeit at different sites on the NMDA receptor complex. Rats were trained to lever press for food reinforcement under a multiple schedule, with responding in one component reinforced under a fixed-interval 60-sec schedule, while each response in the other component resulted in both food and brief electric shock. Both PCP and NPC 12626 produced selective increases in punished responding, although the effects were not as large as those produced by chlordiazepoxide. Repeated daily administration of each of these drugs for 6 days resulted in increases in punished responding during different portions of the treatment. A 5 mg/kg dose of chlordiazepoxide produced increases over the last 2 days of administration. PCP (2 mg/kg) produced an increase only during the second session, whereas NPC 12626 (30 mg/kg) produced increases for all but the first and fifth days of the 6-day regimen. Both competitive and noncompetitive NMDA antagonists can have antipunishment effects in this model.  相似文献   

8.
The abuse of volatile solvents may be due to their ability to produce an intoxication similar to that produced by classical central nervous system depressants such as the barbiturates and ethanol. To evaluate this hypothesis, mice were trained to discriminate pentobarbital from saline injections in a two-lever operant task. Stimulus generalization was examined following 20-min inhalation exposures to toluene (300-5400 ppm). In 8 of 10 subjects, pentobarbital-lever responding occurred following toluene exposure indicating an overlap in the discriminative stimulus properties of toluene and pentobarbital.  相似文献   

9.
10.
J M Witkin  F C Tortella 《Life sciences》1991,48(11):PL51-PL56
The anticonvulsants diazepam (1-10 mg/kg) and phenobarbital (30-100 mg/kg) protected against lethality without altering clonic convulsions induced by 75 mg/kg cocaine (CD100) in male Swiss Webster mice. In contrast, the non-competitive N-methyl-D-aspartate (NMDA) antagonists, MK-801 (dizocilpine) and phencyclidine, produced dose-dependent protection against cocaine convulsions. The competitive NMDA antagonists, CPP and NPC 12626, were also anti-convulsant, without producing the behavioral disturbances associated with non-competitive antagonists. Diazepam and phenobarbital protected against convulsions induced by 60 mg/kg cocaine (90% convulsions alone). Compounds that act at the strychnine-insensitive glycine receptor of the NMDA receptor complex, ACPC and 7-chlorokynurinic acid, also protected against convulsions induced by 60 mg/kg cocaine. In contrast, the non-opioid antitussive anticonvulsants (dextromethorphan, caramiphen, and carbetapentane) were not active against either dose of cocaine. The efficacy of compounds as antagonists of the convulsant effects of cocaine and NMDA appear related. These results suggest a potential role for the NMDA receptor complex in the convulsant actions of cocaine and new molecular targets for drug discovery in treating cocaine toxicity.  相似文献   

11.
Direct intrastriatal injection of N-methyl-D-aspartate (NMDA; 100 micrograms/rat) increased striatal dopamine (DA) release in vivo. However, parenteral administration of (+/-)-3-(2-carboxypiperizin-4-yl)propyl-1-phosphonic acid (CPP) and cis-4-phosphonomethyl-2-piperidine carboxylic acid (CGS-19755) did not alter DA metabolism and release in several brain regions in the rat and mouse. Intracerebroventricular administration of the competitive NMDA antagonists CPP, CGS-19755, 2-amino-5-phosphonopentanoate, and 2-amino-7-phosphonoheptanoate did not alter rat striatal DA metabolism and release but profoundly reduced cerebellar cyclic GMP (cGMP) levels in the same animals. CPP and CGS-19755 decreased basal cerebellar cGMP levels in the mouse with ED50 values of 6 and 1 mg/kg, i.p., respectively. CPP antagonized the harmaline-induced increases in cGMP levels with an ED50 value of 5.0 mg/kg, i.p. CPP (25 mg/kg, i.p.) also decreased basal cGMP levels in mouse cerebellum for up to 3 h, a result suggesting brain bioavailability and a long duration of NMDA receptor antagonism in vivo. These contrasting patterns suggest that NMDA receptors exert a tonic excitatory tone on the guanine nucleotide signal transduction pathway in the cerebellum while exerting a phasic control over nigrostriatal dopaminergic neurotransmission. These results also indicate that competitive NMDA antagonists, unlike phencyclidine receptor agonists, may not mediate biochemical and behavioral effects via dopaminergic mechanisms.  相似文献   

12.
NMDA受体拮抗剂对阿片类药物耐受和依赖的阻断作用   总被引:4,自引:0,他引:4  
Zang MW  Liu JS 《生理科学进展》1999,30(3):207-213
本文综述阻断NMDA受体离子通道复合药物对阿惩耐受和成瘾发生的影响。行为药理学研究显示,非竞争性NMDA受体拮抗剂、竞争性NMDA受体拮抗剂和甘氨酸受占拮抗剂能抑制阿片耐受和戒断反应,其药理学特性明显不同于其他类型抗阿片耐受和成瘾的药物,阐述了NMDA受体拮抗剂治疗阿片类芗耐受和领事的系列化机制。并指出NMDA受体拮抗剂具有神经毒性。  相似文献   

13.
J M Witkin  J E Barrett 《Life sciences》1985,37(17):1587-1595
The selective benzodiazepine receptor antagonist, Ro 15-1788, produced behavioral effects in pigeons at doses at least 100 times lower than those previously reported to possess intrinsic pharmacological activity in mammals. In contrast to its effects in mammalian species, in pigeons, Ro 15-1788 does not exhibit partial agonist activity. Key-peck responses of pigeons were studied under a multiple fixed-interval 3-min, fixed-interval 3-min schedule in which the first response after 3-min produced food in the presence of red or white keylights. In addition, every 30th response during the red keylight produced a brief electric shock (punishment). Under control conditions, punished responding was suppressed to 30% of unpunished response levels. Ro 15-1788 (0.01 mg/kg, i.m.) increased unpunished response rates by 33% without affecting rates of punished responding. Doses of 0.1 to 1.0 mg/kg Ro 15-1788 produced dose-related decreases in both punished and unpunished responding. As is characteristic of other benzodiazepines, midazolam (0.1 and 0.3 mg/kg, i.m.) markedly increased punished responding but had little effect on rates of unpunished responding. Ro 15-1788 antagonized the increases in punished responding and also reversed the rate-decreasing effects of higher doses of midazolam. However, the effectiveness of Ro 15-1788 as a benzodiazepine antagonist was limited by its intrinsic activity: rate-decreasing doses of Ro 15-1788 were unable to completely reverse behavioral effects of midazolam. Midazolam was an effective antagonist of the behavioral effects of Ro 15-1788 (up to 0.1 mg/kg) but midazolam did not influence the rate-decreasing effects of 1.0 mg/kg Ro 15-1788 across a 100-fold dose range. In the pigeon, the behavioral effects of relatively low doses of Ro 15-1788 (0.01-0.1 mg/kg) appear to be related to benzodiazepine receptor mechanisms, whereas other systems appear to be involved in the effects of higher doses.  相似文献   

14.
The benzodiazepine antagonist properties of Ro 15-1788 were evaluated in rats trained to discriminate between saline and either 1.0 mg/kg of diazepam or 10 mg/kg of pentobarbital in a two-choice discrete-trial shock avoidance procedure. When administered alone, 1.0 mg/kg of diazepam and 10 mg/kg of pentobarbital produced comparable amounts of drug-appropriate responding (> 84%), whether rats were trained to discriminate between diazepam or pentobarbital and saline. Ro 15-1788 (3–32 mg/kg, p.o.), administered 10 min before diazepam or pentobarbital, produced a dose-related blockade of the discriminative effects of diazepam in both groups of rats, but was completely ineffective in blocking the discriminative effects of pentobarbital. The dose-effect curve for the discriminative effects of diazepam was shifted to the right in a parallel fashion 3- and 13-fold by 10 and 32 mg/kg of Ro 15-1788, respectively, indicating that Ro 15-1788 acts as a surmountable, competitive antagonist of diazepam. When administered alone, Ro 15-1788 (32–100 mg/kg, p.o.) produced primarily saline-appropriate responding, although 100 mg/kg of Ro 15-1788 produced drug-appropriate responding in one out of eight rats. When administered orally 30 min after diazepam, Ro 15-1788 (32 mg/kg) completely reversed within 10 min the discriminative effects of diazepam. The blockade of diazepam's discriminative effects by 32 mg/kg of Ro 15-1788 appeared to last at least as long (approximately 2 hr) as the effects of diazepam alone.  相似文献   

15.
《Life sciences》1986,39(25):2455-2461
The N-methyl-D-aspartate (NMDA) receptor antagonist, AP7, was evaluated in two animal test procedures known to be sensitive to the effects of diazepam. In rats trained to discriminate diazepam from vehicle, AP7 produced dose-dependent generalization to the diazepam interoceptive stimuli. This NMDA antagonist also increased the rates of conflict responding in a chronic test procedure used to identify compounds with potential anxiolytic effects. A comparison of AP7 with diazepam and two muscle relaxants (methocarbamol and baclofen) showed that excitatory amino acid antagonists (of the receptor site stimulated by NMDA) produce a muscle relaxant effect (drug discrimination) and may represent a new class of compounds for the treatment of anxiety-related disorders (conflict test).  相似文献   

16.
To evaluate the possibility of pharmacologically distinct N-methyl-D-aspartate (NMDA) receptor subtypes, quantitative autoradiography was used to determine the potency of several compounds as inhibitors of L-[3H]glutamate or [3H]MK-801 binding to rat brain NMDA receptors in 10 brain regions. Competitive NMDA receptor antagonists displayed differing pharmacological profiles in the forebrain, cerebellum, and medial regions of the thalamus (midline nuclei). For example, compared with other competitive antagonists, 3-[(+/-)-2-carboxypiperazin-4-yl]propyl-1-phosphonate (CPP) and LY-233536 were especially weak displacers of L-[3H]glutamate binding in the cerebellum. In the the medial thalamus, CPP and D-2-amino-5-phosphonopentanoate displayed relatively low affinities, whereas LY-233536 was relatively potent. The noncompetitive NMDA receptor antagonists also displayed regional variations in their pharmacological profiles. Relative to other regions, [3H]MK-801 binding in the cerebellum was weakly displaced by MK-801 and potently displaced by dextromethorphan and SKF-10047. In the medial thalamus, 1-[1-(2-thienyl)-cyclohexyl]piperidine was relatively potent and SKF-10047 was relatively weak. These results confirm previous suggestions that the cerebellum contains a distinct NMDA receptor subtype and indicate that nuclei of the medial thalamus contain a novel NMDA receptor subtype that is distinct from both those found in the cerebellum and in the forebrain.  相似文献   

17.
Gao C  Che LW  Chen J  Xu XJ  Chi ZQ 《Cell research》2003,13(1):29-34
The present study was designed to determine the changes of phosphorylation of cAMP-response element binding protein(CREB)in hippocampus induced by ohmefentanyl stereoisomers(F9202 and F9204) in conditioned place preference(CPP)paradigm.The results showed that mice receiving F9202 and F9204 displayed obvious CPP.They could all significantly stimulate CREB phosphorylation and maintained for a long time without affecting total CREB protein levels.The effect of F9204 was similar to morphine which effect was more potent and longer than F9202.We also examined the effects of ketamine,a noncompetitive N-mthyl-D-asartate receptor(NR)antagonist,on morphine-,F9202-and F9204-induced CPP and phosphorylation of CREB in hippocampus.Ketamine could suppress not only the place preference but also the phosphorylation of CREB produced by morphine,F9202 and F9204.These findings suggest that alterations in the phosphorylation of CREB be relevant to opiates signaling and the development of opiates dependence.NR antagonists may interfere with opiates dependence and may have potential therapeutic implications.  相似文献   

18.
The studies examined the effects of three antagonists (CPP, CGS 19755, and CGP 37849) that act competitively at the glutamate recognition site of the NMDA receptor complex on cortical neuronal morphology and cerebral limbic glucose metabolism. Responses were compared to the effects of dizocilpine, an uncompetitive NMDA receptor ion channel antagonist as a positive control. CGS 19755 and CGP 37849 (100 mg kg–1i.p.) caused vacuolation in cortical pyramidal neurons in the posterior cingulate cortex four hours after dosing and this dose of CGP 37849 caused a pattern of limbic glucose metabolism activation similar to that seen after dizocilpine. CPP was without effect at 100 mg/kg i.p. probably due to poor brain penetration. The data indicates that the functional consequences (structural and metabolic) of NMDA receptor blockade with NMDA antagonists acting competitively at the glutamate recognition site and uncompetitively in the receptor ion channel are ultimately the same. Comparisons of the potential therapeutic window for CGS 19755 and CGP 37849 with dizocilpine (neuroprotection versus vacuolation) suggests that the window for the competitive antagonists is greater. This indicates that the potential therapeutic window for the different classes of NMDA antagonists may vary with the site in the receptor complex at which they interact.  相似文献   

19.
S Halpain  P Greengard 《Neuron》1990,5(3):237-246
Hippocampal slices were preincubated with 32P-orthophosphate and used to study the effect of glutamate analogs on protein phosphorylation. NMDA induced a rapid, 70% decrease in the phosphorylation of the microtubule-associated protein MAP2, with no change in the total amount of MAP2. Both competitive and noncompetitive NMDA antagonists blocked the effect of NMDA, but a glutamate antagonist acting at non-NMDA receptors did not. Kainate and quisqualate were less potent than NMDA in stimulating dephosphorylation of MAP2. Other forebrain regions (necortex, striatum, and olfactory bulb) also showed dephosphorylation of MAP2 in response to NMDA. These and other results suggest that NMDA receptor activation induces the dephosphorylation of MAP2 by stimulating a protein phosphatase, possibly the calcium/calmodulin-dependent protein phosphatase calcineurin. Moreover, they indicate that alteration in the properties of a microtubule-associated protein may account for some of the effects of glutamate on postsynaptic neurons.  相似文献   

20.
Abstract: Intrastriatally infused ouabain (200 or 1,000 μ M ) markedly increased the extracellular levels of striatal spermidine and spermine in dialysis experiments in halothane-anesthetized rats. The effects of ouabain (1 m M ) on sper- midine release were rapid and unaffected by local infusion of the competitive N -methyl- d -aspartate (NMDA) antagonist 3-(2-carboxypiperazin-4-yl)propyl-1 -phosphonic acid (CPP; 100 μ M ) or by systemically administered MK-801 (0.3 mg/kg i.p.), both of which treatments markedly inhibit the effects of intrastriatally administered NMDA. The peak effects of ouabain (1 m M ) on spermine release were delayed with respect to those on spermidine release, or to the effects of NMDA, and were also insensitive to locally administered CPP (100 μ M ). However, systemically administered MK-801 (0.3 mg/kg i.p., 30 min before the striatal infusion of drugs), which totally inhibits the effects of NMDA, or CPP (10 mg/kg i.p.; 30 min before the striatal infusion of drugs) partially inhibited the effects of ouabain on spermine release, suggesting partial mediation of the delayed effects of ouabain on spermine release by indirect NMDA-receptor activation. Despite partial sensitivity of ouabain-induced spermine release to systemically administered NMDA antagonists, both spermidine and spermine can be released in vivo by sodium-pump inhibition, independently of NMDA-receptor activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号