共查询到20条相似文献,搜索用时 0 毫秒
1.
Hirose T Nakano Y Nagamatsu Y Misumi T Ohta H Ohshima Y 《Development (Cambridge, England)》2003,130(6):1089-1099
We designed an automatic system to measure body length, diameters and volume of a C. elegans worm. By using this system, mutants with an increased body volume exceeding 50% were isolated. Four of them are grossly normal in morphology and development, grow longer to be almost twice as big, and have weak egg-laying defects and extended lifespan. All the four mutants have a mutation in the egl-4 gene. We show that the egl-4 gene encodes cGMP-dependent protein kinases. egl-4 promoter::gfp fusion genes are mainly expressed in head neurons, hypodermis, intestine and body wall muscles. Procedures to analyze morphology and volume of major organs were developed. The results indicate that volumes of intestine, hypodermis and muscle and cell volumes in intestine and muscle are increased in the egl-4 mutants, whereas cell numbers are not. Experiments on genetic interaction suggest that the cGMP-EGL-4 signaling pathway represses body size and lifespan through DBL-1/TGF-beta and insulin pathways, respectively. 相似文献
2.
Thomas M. Lincoln Stanley L. Keely 《Biochimica et Biophysica Acta (BBA)/General Subjects》1981,676(2):230-244
An assay method based on the ability of high concentrations of Mg2+ to stimulate phosphorylation of histone in the presence of low concentrations of ATP was developed for the measurement of cyclic GMP-dependent protein kinase activity ratios (activity -cyclic GMP/activity + cyclic GMP). In tissues which contain only trace amounts of cyclic GMP-dependent protein kinase, the basal activity ratios were high due to interference from a cyclic nucleotide-independent protein kinase. In order to study the regulation of the cardica cyclic GMP-dependent protein kinase, factors affecting the equilibrium between the active and inactive forms of the enzyme were determined. Since the rate of dissociation of cyclic GMP from its binding site(s) was relatively slow at 0–4°C at pH 7.0, the amount of time required to process tissue samples was the major limiting factor for preserving the equilibrium between active and inactive forms of the enzyme. Dilution of heart tissue extracts at 0–4°C did not significantly alter the activity ratio of the enzyme under conditions of basal or elevated cyclic GMP levels. Experiments using charcoal or exogenous cyclic GMP-dependent protein kinase in the homogenizing medium demonstrated that the release of sequestered cyclic GMP was not responsible for the elevation of the cyclic GMP-dependent protein kinase activity ratios by agents like acetylcholine. Therefore, the assay reflected in part, at least, the retention of kinase-bound cyclic GMP in the tissue extracts. The effects of acetylcholine and sodium nitroprusside on cyclic GMP levels, the cyclic GMP-dependent protein kinase activity ratios, and force of contraction were studied in the perfused rat heart. Both agents produced rapid, dose-dependent increases in cardiac cyclic GMP. Optimal concentrations of acetylcholine produced a 2–3-fold increase in the levels of cyclic GMP and an increase in the cyclic GMP-dependent protein kinase activity ratio. No significant effect of acetylcholine on cyclic nucleotide-independent protein kinase activity was observed. Associated witth the acetylcholine-induced protein kinase, factors affecting the equilibrium between the active and inactive forms of the enzyme were determined. Since the rate of dissociation of cyclic GMP from its binding site(s) was relatively slow at 0–4°C at pH 7.0, the amount of time required to process tissue samples was the major limiting factor for preserving the equilibrium between active and inactive forms of the enzyme. Dilution of heart tissue extracts at 0–4°C did not significantly alter the activity ratio of the enzyme under conditions of basal elevated cyclic GMP levels. Experiments using charcoal or exogenous cyclic GMP-dependent protein kinase in the homogenizing medium demonstrated that the release of sequestered cyclic GMP was not responsible for the elevation of the cyclic GMP-dependent protein kinase activity ratios by agents like acetylcholine. Therefore, the assay reflected in part, at least, the retention of kinase-bound cyclic GMP in the tissue extracts. The effects of acetylcholine and sodium nitroprusside on cyclic GMP levels, the cyclic GMP-dependent protein kinase activity ratios, and force of contraction were studied in the perfused rat heart. Both agents produced rapid, dose-dependent increases in cardiac cyclic GMP. Optimal concentrations of acetylcholine produced a 2–3-fold increase in the levels of cyclic GMP and an increase in the cyclic GMP-dependent protein kinase activity ratio. No significant effect of acetylcholine on cyclic nucleotide-independent protein kinase activity was observed. Associated with the acetylcholine-induced increase in cyclic GMP and the cyclic GMP-dependent protein kinase activity ratio was a reduction in the force of contraction. In contrast, nitroprusside produced little or no increase in the cyclic GMP-dependent protein kinase activity ratio despite increasing the level of cyclic GMP 8–10-fold. Nitroprusside also had no effect on contractile force. In combination, nitroprusside and acetylcholine produced additive effects on cyclic GMP levels, but protein kinase activation and force of contraction were similar to those seen with acetylcholine alone. The results suggest that the cyclic GMP produced by acetylcholine in the rat heart is coupled to activation of the cyclic GMP-dependent protein kinase, while that produced by nitroprusside is not. 相似文献
3.
A novel gain-of-function mutant of the cyclic GMP-dependent protein kinase egl-4 affects multiple physiological processes in Caenorhabditis elegans 总被引:4,自引:0,他引:4 下载免费PDF全文
cGMP-dependent protein kinases are key intracellular transducers of cell signaling. We identified a novel dominant mutation in the C. elegans egl-4 cGMP-dependent protein kinase (PKG) and show that this mutation causes increased normal gene activity although it is associated with a reduced EGL-4 protein level. Prior phenotypic analyses of this gain-of-function mutant demonstrated a reduced longevity and a reduced feeding behavior when the animals were left unperturbed. We characterize several additional phenotypes caused by increased gene activity of egl-4. These phenotypes include a small body size, reduced locomotion in the presence of food, a pale intestine, increased intestinal fat storage, and a decreased propensity to form dauer larvae. The multiple phenotypes of egl-4 dominant mutants are consistent with an instructive signaling role of PKG to control many aspects of animal physiology. This is among the first reported gain-of-function mutations in this enzyme of central physiological importance. In a genetic screen we have identified extragenic suppressors of this gain-of-function mutant. Thus, this mutant promises to be a useful tool for identifying downstream targets of PKG. 相似文献
4.
Michelle C. Krzyzanowski Chantal Brueggemann Meredith J. Ezak Jordan F. Wood Kerry L. Michaels Christopher A. Jackson Bi-Tzen Juang Kimberly D. Collins Michael C. Yu Noelle D. L'Etoile Denise M. Ferkey 《PLoS genetics》2013,9(7)
Signaling levels within sensory neurons must be tightly regulated to allow cells to integrate information from multiple signaling inputs and to respond to new stimuli. Herein we report a new role for the cGMP-dependent protein kinase EGL-4 in the negative regulation of G protein-coupled nociceptive chemosensory signaling. C. elegans lacking EGL-4 function are hypersensitive in their behavioral response to low concentrations of the bitter tastant quinine and exhibit an elevated calcium flux in the ASH sensory neurons in response to quinine. We provide the first direct evidence for cGMP/PKG function in ASH and propose that ODR-1, GCY-27, GCY-33 and GCY-34 act in a non-cell-autonomous manner to provide cGMP for EGL-4 function in ASH. Our data suggest that activated EGL-4 dampens quinine sensitivity via phosphorylation and activation of the regulator of G protein signaling (RGS) proteins RGS-2 and RGS-3, which in turn downregulate Gα signaling and behavioral sensitivity. 相似文献
5.
Caenorhabditus elegans arrestin regulates neural G protein signaling and olfactory adaptation and recovery 总被引:2,自引:0,他引:2
Palmitessa A Hess HA Bany IA Kim YM Koelle MR Benovic JL 《The Journal of biological chemistry》2005,280(26):24649-24662
Although regulation of G protein-coupled receptor signaling by receptor kinases and arrestins is a well established biochemical process, the physiological significance of such regulation remains poorly understood. To better understand the in vivo consequences of arrestin function, we have examined the function of the sole arrestin in Caenorhabditis elegans (ARR-1). ARR-1 is primarily expressed in the nervous system, including the HSN neuron and various chemosensory neurons involved in detecting soluble and volatile odorants. arr-1 null mutants exhibit normal chemotaxis but have significant defects in olfactory adaptation and recovery to volatile odorants. In contrast, adaptation is enhanced in animals overexpressing ARR-1. Both the adaptation and recovery defects of arr-1 mutants are rescued by transgenic expression of wild-type ARR-1, whereas expression of a C-terminally truncated ARR-1 effectively rescues only the adaptation defect. A potential mechanistic basis for these findings is revealed by in vitro studies demonstrating that wild-type ARR-1 binds proteins of the endocytic machinery and promotes receptor endocytosis, whereas C-terminally truncated ARR-1 does not. These results demonstrate that ARR-1 functions to regulate chemosensory signaling, enabling organisms to adapt to a variety of environmental cues, and provide an in vivo link between arrestin, receptor endocytosis, and temporal recovery from adaptation. 相似文献
6.
The growth and behavior of higher organisms depend on the accurate perception and integration of sensory stimuli by the nervous system. We show that defects in sensory perception in C. elegans result in abnormalities in the growth of the animal and in the expression of alternative behavioral states. Our analysis suggests that sensory neurons modulate neural or neuroendocrine functions, regulating both bodily growth and behavioral state. We identify genes likely to be required for these functions downstream of sensory inputs. Here, we characterize one of these genes as egl-4, which we show encodes a cGMP-dependent protein kinase. We demonstrate that this cGMP-dependent kinase functions in neurons of C. elegans to regulate multiple developmental and behavioral processes including the orchestrated growth of the animal and the expression of particular behavioral states. 相似文献
7.
The autophosphorylation reaction of purified cGMP-dependent protein kinase has been studied. Apparent initial rates of autophosphorylation in the absence of cyclic nucleotides and in the presence of cGMP and cAMP are 0.006, 0.04, 0.4 mol Pi incorp./min-1. mol cGMP-kinase subunit-1. In the presence of cGMP and cAMP approximately 1 and 2 mol Pi are incorporated/mol enzyme subunit. These values are independent of the enzyme concentration. Stimulation of autophosphorylation by cAMP is not due to activation of a contaminating cAMP-dependent protein kinase since: (a) addition of the heatstable inhibitor protein of cAMP-kinase does not inhibit autophosphorylation; and (b) catalytic subunit of cAMP-kinase added at a 10-fold excess over cGMP-kinase does not phosphorylate cGMP-kinase. 相似文献
8.
In intact rat adipocytes hormone-sensitive lipase has been shown to be phosphorylated on serine residues in two different phosphorylation sites: a regulatory site phosphorylated by cyclic AMP-dependent protein kinase and a basal site, which does not directly affect the enzyme activity, phosphorylated by cyclic AMP-independent protein kinase(s) [(1984) Proc. Natl. Acad. Sci USA 81, 3317-3321]. Cyclic GMP-dependent protein kinase catalyzed the phosphorylation of the same two phosphorylation sites on the isolated enzyme, at serine residues. Both sites were phosphorylated at about the same rate, with the hormone-sensitive lipase activity concomitantly enhanced. 相似文献
9.
The level of cyclic GMP-dependent protein kinase in the nucleus of rat liver was shown to increase 80% at 3 hr following partial hepatectomy while cyclic AMP-binding activity decreased 28%. Subnuclear fractionation demonstrated that the increase in cyclic GMP-dependent protein kinase was localized to the nucleolus and nucleoplasm, with no change in the extranucleolar particulate material. Cyclic AMP-binding activity was decreased in all subnuclear fractions under these conditions. At 16 hr following partial hepatectomy, the level of cyclic GMP-dependent protein kinase was not changed in the nucleolus but was significantly increased in the nucleoplasm, while cyclic AMP-binding activity was slightly increased in the nucleolus and decreased in the nucleoplasm. 相似文献
10.
Wei Li Leah R. DeBella Tugba Guven-Ozkan Rueyling Lin Lesilee S. Rose 《The Journal of cell biology》2009,187(1):33-42
In Caenorhabditis elegans, the MEI-1–katanin microtubule-severing complex is required for meiosis, but must be down-regulated during the transition to embryogenesis to prevent defects in mitosis. A cullin-dependent degradation pathway for MEI-1 protein has been well documented. In this paper, we report that translational repression may also play a role in MEI-1 down-regulation. Reduction of spn-2 function results in spindle orientation defects due to ectopic MEI-1 expression during embryonic mitosis. MEL-26, which is both required for MEI-1 degradation and is itself a target of the cullin degradation pathway, is present at normal levels in spn-2 mutant embryos, suggesting that the degradation pathway is functional. Cloning of spn-2 reveals that it encodes an eIF4E-binding protein that localizes to the cytoplasm and to ribonucleoprotein particles called P granules. SPN-2 binds to the RNA-binding protein OMA-1, which in turn binds to the mei-1 3′ untranslated region. Thus, our results suggest that SPN-2 functions as an eIF4E-binding protein to negatively regulate translation of mei-1. 相似文献
11.
Cyclic GMP-dependent protein kinase prepared from calf lung was studied for its binding properties with blue dextran-Sepharose affinity column chromatography. Blue dextran competitively inhibited [3H]cGMP binding to the enzyme. ATP + Mg++ did not prevent cGMP-kinase binding to blue dextran, nor did it facilitate the liberation of blue dextranbound enzyme. Substrate proteins such as histone and protamine dissociated the native enzyme into subunits. Considering all these results, cGMP-kinase seemed to conform with the “dissociation model” proposed for cAMP-kinase but with peculiarities of binding to blue dextran. 相似文献
12.
13.
Characterization of cyclic GMP-binding sites of cyclic GMP-dependent protein kinase by rapid filtration assay. 下载免费PDF全文
The kinetics of cyclic [3H]GMP binding to the purified cyclic GMP-dependent protein kinase (cG kinase) were studied by using the rapid filtration assay method with polyethyleneimine-treated glass filters (method A), and the data were compared with those of the (NH4)2SO4 precipitation procedure (method B), which has been used for many previous studies on cyclic GMP binding to cG kinase. Each method gave a similar stoichiometry of approx. 2 mol of cyclic GMP/mol of cG kinase subunit; however, other binding kinetics obtained with these two methods were different. The dissociation of bound cyclic [3H]GMP from the kinase showed a single slow component when method A was used, whereas rapid and slow dissociation components were observed with method B. The Scatchard plot of cyclic [3H]GMP binding with method A was linear with a Kd value of 11 +/- 2 nM, suggesting that the two intrachain binding sites have similar high affinity for cyclic GMP. Results obtained on cyclic nucleotide analogue specificity of the two intrachain cyclic GMP-binding sites were also different between these two methods. These findings suggest that cG kinase has two high-affinity cyclic GMP-binding sites per subunit in the native state, and that when (NH4)2SO4 is added, ostensibly to stop the binding reaction, one low-affinity site is created from one high-affinity site. 相似文献
14.
Cyclic GMP-dependent protein kinase from bovine lung and cyclic AMP-dependent protein kinase from bovine heart are inactivated by Nα-tosyl-L-lysine chloromethylketone (TLCK) in the presence of cyclic GMP and cyclic AMP, respectively. The inactivation of both protein kinases is pseudo-first order, suggesting the rate limiting step is beyond the binding of TLCK. Cyclic GMP-dependent protein kinase is inactivated less than as rapidly as cyclic AMP-dependent protein kinase, although it shows a higher apparent affinity for TLCK. Cyclic AMP stimulated the rate of inactivation of cyclic AMP-dependent protein kinase 10-fold but cyclic GMP stimulated the rate of inactivation of cyclic GMP-dependent protein kinase only 1.5-fold. The rate of inactivation of cyclic GMP-dependent protein kinase by TLCK is sufficiently rapid (half-time of about 30 min at 37°C with 2 mM TLCK) to account for the effects of TLCK on cell growth observed by others. 相似文献
15.
M Nakamura K Ichikawa M Ito B Yamamori T Okinaka N Isaka Y Yoshida S Fujita T Nakano 《Cellular signalling》1999,11(9):671-676
Cyclic GMP-dependent protein kinase (PKG) phosphorylated, in vitro, the large (MYPT1) and small (M20) regulatory subunits of myosin phosphatase (MP) with maximum stoichiometries of 1.8 and 0.6 mol of phosphate/mol subunit, respectively. The phosphorylation of these subunits by PKG did not affect the phosphatase activity towards the 20 kDa myosin light chain. However, phosphorylation of the MP holoenzyme decreased the binding of MP to phospholipid. The phosphorylation of the serine residue of the C-terminal part of MYPT1 was crucial for these interactions. These results suggest that the phosphorylation of MP by PKG is not a direct mechanism in activating MP activity, and that other indirect mechanisms, including the interaction between MP and phospholipids, might be candidates for Ca2+ desensitization via cGMP in smooth muscle. 相似文献
16.
In screens for Caenorhabditis elegans mutants defective in vulval morphogenesis, we isolated multiple mutants in which the uterus and the vulva fail to make a functional connection, resulting in an egg-laying defective phenotype. Two of these connection of gonad defective (Cog) mutants carry alleles of the egl-26 gene. We demonstrate that vulval lineages in egl-26 mutant animals are normal, but one vulval cell, vulF, adopts an abnormal morphology. This results in formation of an abnormally thick layer of vulval tissue at the apex of the vulva and a physical blockage of the exit to the vulva from the uterus. egl-26 was cloned and is predicted to encode a novel protein. Mosaic analysis indicates that egl-26 activity is required in the primary vulval lineage for vulF morphogenesis. Expression of a functional translational fusion of EGL-26 to GFP was observed within the primary vulval lineage only in vulE, which neighbors vulF. EGL-26 is localized at the apical edge of the vulE cell. It is thus possible that vulE acts to instruct morphological changes in the neighboring cell, vulF, in an interaction mediated by EGL-26. 相似文献
17.
Munhoz CD Kawamoto EM de Sá Lima L Lepsch LB Glezer I Marcourakis T Scavone C 《Cell biochemistry and function》2005,23(2):115-123
Excessive excitatory action of glutamate and nitric oxide (NO) has been implicated in degeneration of striatal neurons. Evidence had been provided that Na+K+-ATPase might be involved in this process. Here we investigated whether glutamate-regulated messengers, such as NO and cyclic GMP, could modulate the activity of membrane Na+K+-ATPase. Our results demonstrated that NO donors sodium nitroprusside (SNP at 30 and 300 microM) and S-nitroso-N-acetylpenicillamine (SNAP at 200 microM) increased alpha2,3Na+K+-ATPase activity which was blocked by the NO chelator, haemoglobin and was independent of [Na+]. This regulation was associated with cGMP synthesis and mimicked by glutamate (300 microM) and 8-Br-cyclic GMP (4 mM). 8-Br-cGMP-induced stimulation of Na+K+-ATPase activity could be blocked by KT5823 (an inhibitor of cGMP-dependent protein kinase, PKG), but not by KT5720 (an inhibitor of cAMP-dependent protein kinase, PKA). N-Methyl-D-aspartate (NMDA) receptors appeared to be involved in the effect of glutamate, since MK-801 (NMDA receptor antagonist) produced a partial reduction in glutamate-induced activation of the enzyme. MK-801 was not synergistic to L-NAME (NOS inhibitor), suggesting that glutamate stimulates the NMDA-NOS pathway to activate alpha2,3 Na+K+-ATPase in rat striatum. This regulation was associated with cyclic GMP (but not cyclic AMP) synthesis. These data indicate the existence, in vitro, of a regulatory pathway by which glutamate, acting through NO and cGMP, can cause alterations in striatal alpha2,3 Na+K+-ATPase activity. 相似文献
18.
The biology of cyclic GMP-dependent protein kinases 总被引:1,自引:0,他引:1
Hofmann F 《The Journal of biological chemistry》2005,280(1):1-4
19.
The vasodilator-stimulated phosphoprotein is regulated by cyclic GMP-dependent protein kinase during neutrophil spreading 总被引:5,自引:0,他引:5
The expression and phosphorylation state of the vasodilator-stimulated phosphoprotein (VASP), a membrane-associated focal adhesion protein, was investigated in human neutrophils. Adhesion and spreading of neutrophils induced the rapid phosphorylation of VASP. The phosphorylation of VASP was dependent on cell spreading, as VASP was expressed as a dephosphorylated protein in round adherent cells and was phosphorylated at the onset of changes in cell shape from round to spread cells. Immunofluorescence microscopy demonstrated that VASP was localized at the cell cortex in round cells and redistributed to focal adhesions at the ventral surface of the cell body during cell spreading. Dual labeling of spread cells indicated that VASP was colocalized with F-actin in filopodia and in focal adhesions, suggesting that the phosphorylation of VASP during cell spreading may be involved in focal adhesion complex organization and actin dynamics. VASP is a prominent substrate for both cGMP-dependent protein kinase (cGK) and cAMP-dependent protein kinase. Evidence suggested that cGK regulated neutrophil spreading, as both VASP phosphorylation and neutrophil spreading were inhibited by Rp-8-pCPT-cGMPS (cGK inhibitor), but not KT5720 (cAMP-dependent protein kinase inhibitor). In contrast, neutrophil spreading was accelerated when cGMP levels were elevated with 8-Br-cGMP, a direct activator of cGK. Furthermore, the same conditions that lead to VASP phosphorylation during neutrophil adherence and spreading induced significant elevations of cGMP in neutrophils. These results indicate that cGMP/cGK signal transduction is required for neutrophil spreading, and that VASP is a target for cGK regulation. 相似文献
20.
Vascular smooth muscle cells (VSMC) exist in either a contractile or a synthetic phenotype in vitro and in vivo. The molecular mechanisms regulating phenotypic modulation are unknown. Previous studies have suggested that the serine/threonine protein kinase mediator of nitric oxide (NO) and cyclic GMP (cGMP) signaling, the cGMP-dependent protein kinase (PKG) promotes modulation to the contractile phenotype in cultured rat aortic smooth muscle cells (RASMC). Because of the potential importance of the mitogen-activated protein kinase (MAP kinase) pathways in VSMC proliferation and phenotypic modulation, the effects of PKG expression in PKG-deficient and PKG-expressing adult RASMC on MAP kinases were examined. In PKG-expressing adult RASMC, 8-para-chlorophenylthio-cGMP activated extracellular signal- regulated kinases (ERK1/2) and c-Jun N-terminal kinase (JNK). The major effect of PKG activation was increased activation by MAP kinase kinase (MEK). The cAMP analog, 8-Br-cAMP inhibited ERK1/2 activation in PKG-deficient and PKG-expressing RASMC but had no effect on JNK activity. The effects of PKG on ERK and JNK activity were additive with those of platelet-derived growth factor (PDGF), suggesting that PKG activates MEK through a pathway not used by PDGF. The stimulatory effects of cGMP on ERK and JNK activation were also observed in low-passaged, contractile RASMC still expressing endogenous PKG, suggesting that the effects of PKG expression were not artifacts of cell transfections. These results suggest that in contractile adult RASMC, NO-cGMP signaling increases MAP kinase activity. Increased activation of these MAP kinase pathways may be one mechanism by which cGMP and PKG activation mediate c-fos induction and increased proliferation of contractile adult RASMC. 相似文献