首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
In yeast, DNA polymerase zeta (Rev3 and Rev7) and Rev1, involved in the error-prone translesion synthesis during replication of nuclear DNA, localize also in mitochondria. We show that overexpression of Rev3 reduced the mtDNA extended mutability caused by a subclass of pathological mutations in Mip1, the yeast mitochondrial DNA polymerase orthologous to human Pol gamma. This beneficial effect was synergistic with the effect achieved by increasing the dNTPs pools. Since overexpression of Rev3 is detrimental for nuclear DNA mutability, we constructed a mutant Rev3 isoform unable to migrate into the nucleus: its overexpression reduced mtDNA mutability without increasing the nuclear one.  相似文献   

2.
Leigh syndrome (LS) is a progressive neurodegenerative disease caused by either mitochondrial or nuclear DNA mutations resulting in dysfunctional mitochondrial energy metabolism. Mutations in genes encoding for subunits of the respiratory chain or assembly factors of respiratory chain complexes are often documented in LS cases. Nicotinamide adenine dinucleotide (NADH):ubiquinone oxidoreductase (complex I) enzyme deficiencies account for a significant proportion of mitochondrial disorders, including LS. In an attempt to expand the repertoire of known mutations accounting for LS, we describe the clinical, radiological, biochemical and molecular data of six patients with LS found to have novel mutations in two complex I subunits (NDUFV1 and NDUFS2). Two siblings were homozygous for the previously undescribed R386C mutation in NDUFV1, one patient was a compound heterozygote for the R386C mutation in NDUFV1 and a frameshift mutation in the same gene, one patient was a compound heterozygote for the R88G and R199P mutations in NDUFV1, and two siblings were compound heterozygotes for an undescribed E104A mutation in NDUFS2. After the novel mutations were identified, we employed prediction models using protein conservation analysis (SIFT, PolyPhen and UCSC genome browser) to determine pathogenicity. The R386C, R88G, R199P, and E104A mutations were found to be likely pathogenic, and thus presumably account for the LS phenotype. This case series broadens our understanding of the etiology of LS by identifying new molecular defects that can result in complex I deficiency and may assist in targeted diagnostics and/or prenatal diagnosis of LS in the future.  相似文献   

3.
The molecular diagnostics of 27 from 26 Ukrainian families has been performed. The common mutations in GBA gene (N370S, L444P and 84GG) accounted for up to 58% of all cases: mutation N370S was detected in 42.3% alleles, mutation L444P was observed in 15.4% alleles and mutation 84GG was not found at all. The other mutations were: P178S, W184R and Rec Nci I (in compounds with N370S) in the patients with nonneuronopathic form of Gaucher disease, and the genotypes G377S/c 999G --> A and D409H/R120W/G202R were detected in patients with chronic neuronopathic form of Gaucher disease. The data analysis of the genotype and disease progression in the patients allows confirming the known genotype-phenotype correlation.  相似文献   

4.
Mutations in the human mitochondrial polymerase (polymerase-γ (Pol-γ)) are associated with various mitochondrial disorders, including mitochondrial DNA (mtDNA) depletion syndrome, Alpers syndrome, and progressive external opthamalplegia. To correlate biochemically quantifiable defects resulting from point mutations in Pol-γ with their physiological consequences, we created “humanized” yeast, replacing the yeast mtDNA polymerase (MIP1) with human Pol-γ. Despite differences in the replication and repair mechanism, we show that the human polymerase efficiently complements the yeast mip1 knockouts, suggesting common fundamental mechanisms of replication and conserved interactions between the human polymerase and other components of the replisome. We also examined the effects of four disease-related point mutations (S305R, H932Y, Y951N, and Y955C) and an exonuclease-deficient mutant (D198A/E200A). In haploid cells, each mutant results in rapid mtDNA depletion, increased mutation frequency, and mitochondrial dysfunction. Mutation frequencies measured in vivo equal those measured with purified enzyme in vitro. In heterozygous diploid cells, wild-type Pol-γ suppresses mutation-associated growth defects, but continuous growth eventually leads to aerobic respiration defects, reduced mtDNA content, and depolarized mitochondrial membranes. The severity of the Pol-γ mutant phenotype in heterozygous diploid humanized yeast correlates with the approximate age of disease onset and the severity of symptoms observed in humans.  相似文献   

5.
Nuclear mutations in yeast were obtained that reduced rates of spontaneous mutations in the mitochondrial genome. The symbol mmg (mutability of mitochondrial genome) is used to designate these mutations. 2 types of mmg mutation are described: semidominant and recessive ones. Each of the 4 mutations studied is located in a separate mmg locus suggesting that there are probably more than 4 mmg loci in the nuclear genome of a yeast cell.  相似文献   

6.
In the present study, 1000 patients with clinical suspicion of FMF were retrospectively reviewed to determine the spectrum of MEFV gene mutations by using DNA sequence analysis between September, 2008 and April, 2012. Sixteen different mutations and 55 different genotypes were detected in 618 of 1000 patients. Among 16 different mutations, R202Q (21.35%) was the most frequently observed mutation; followed by E148Q (8.85%), M694V (7.95%), M680I (2.40%), V726A (1.85%), M694I (0.95%), A744S (0.80%), R761H (0.55%), P283L (0.35%), K695R (0.20%), E230K (0.15%), L110P (0.10%), I247V (0.05%), G196W (0.05%) and G304R (0.05%). In the present study, a novel missense mutation (I247V) and a silent variant (G150G) were identified in the MEFV gene. On the other hand, P238L, G632A and G304R mutations are the first cases reported from Turkey. Our results indicated that MEFV mutations are highly heterogeneous in our study population as in other regions of Turkey and mutation screening techniques such as PCR-RFLP, amplification refractory mutation system or reverse hybridization do not adequately detect uncommon or novel mutations. Therefore, it was proven that sequence analysis of the MEFV gene could be useful for detection of rare or unknown mutations.  相似文献   

7.
The yeast mitochondrial DNA (mtDNA) replicase Mip1 has been used as a model to generate five mutations equivalent to POLG mutations associated with a broad spectrum of diseases in human. All mip1 mutations, alone or in combination in cis or in trans, increase mtDNA instability as measured by petite frequency and Ery(R) mutant accumulation. This phenotype is associated with decreased Mip1 levels in mitochondrial extracts and/or decreased polymerase activity. We have demonstrated that (1) in the mip1(G651S) (hG848S) mutant the high mtDNA instability and increased frequency of point Ery(R) mutations is associated with low Mip1 levels and polymerase activity; (2) in the mip1(A692T-E900G) (hA889T-hE1143G) mutant, A692T is the major contributor to mtDNA instability by decreasing polymerase activity, and E900G acts synergistically by decreasing Mip1 levels; (3) in the mip1(H734Y)/mip1(G807R) (hH932Y/hG1051R) mutant, H734Y is the most deleterious mutation and acts synergistically with G807R as a result of its dominant character; (4) the mip1(E900G) (h1143G) mutation is not neutral but results in a temperature-sensitive phenotype associated with decreased Mip1 levels, a property explaining its synergistic effect with mutations impairing the polymerase activity. Thus, the human E1143G mutation is not a true polymorphism.  相似文献   

8.
We have solved the crystal structures of three oncogenic mutants of the core domain of the human tumor suppressor p53. The mutations were introduced into a stabilized variant. The cancer hot spot mutation R273H simply removes an arginine involved in DNA binding without causing structural distortions in neighboring residues. In contrast, the "structural" oncogenic mutations H168R and R249S induce substantial structural perturbation around the mutation site in the L2 and L3 loops, respectively. H168R is a specific intragenic suppressor mutation for R249S. When both cancer mutations are combined in the same molecule, Arg(168) mimics the role of Arg(249) in wild type, and the wild type conformation is largely restored in both loops. Our structural and biophysical data provide compelling evidence for the mechanism of rescue of mutant p53 by intragenic suppressor mutations and reveal features by which proteins can adapt to deleterious mutations.  相似文献   

9.
A molecular-genetics investigation is conducted on 27 patients from 26 families. Common mutations in the GBA gene (N370S, L444P, and 84GG) are studied. The overall frequency of the common mutations is nearly 58%, with the percentage of alleles that carry the N370S mutation close to 42.3% and the proportion that carry the L444P mutation, 15.4%. No allele containing the 84GG mutation was found. Besides other mutations, the rare mutations P178S, W184R, and Rec Nci I (together with N370S) were also found in the GBA gene in patients with the nonneuronopathic form of the disease, along with the genotypes G377S/c 999GA and D409H/R 120W/G202R in patients with the chronic neuronopathic form. An analysis of the correlation between the genotype and the course of the disease in the patients showed that the genotype-phenotype correlations were close to that described for European populations.  相似文献   

10.
BACKGROUND: Fabry disease, an X-linked inborn error of glycosphingolipid catabolism, results from mutations in the alpha-galactosidase A (alpha-Gal A) gene located at Xq22.1. To determine the nature and frequency of the molecular lesions causing the classical and milder variant Fabry phenotypes and for precise carrier detection, the alpha-Gal A lesions in 42 unrelated Fabry hemizygotes were determined. MATERIALS AND METHODS: Genomic DNA was isolated from affected probands and their family members. The seven alpha-galactosidase A exons and flanking intronic sequences were PCR amplified and the nucleotide sequence was determined by solid-phase direct sequencing. RESULTS: Two patients with the mild cardiac phenotype had missense mutations, I9IT and F113L, respectively. In 38 classically affected patients, 33 new mutations were identified including 20 missense (MIT, A31V, H46R, Y86C, L89P, D92Y, C94Y, A97V, R100T, Y134S, G138R, A143T, S148R, G163V, D170V, C202Y, Y216D, N263S, W287C, and N298S), two nonsense (Q386X, W399X), one splice site mutation (IVS4 + 2T-->C), and eight small exonic insertions or deletions (304del1, 613del9, 777del1, 1057del2, 1074del2, 1077del1, 1212del3, and 1094ins1), which identified exon 7 as a region prone to gene rearrangements. In addition, two unique complex rearrangements consisting of contiguous small insertions and deletions were found in exons 1 and 2 causing L45R/H46S and L120X, respectively. CONCLUSIONS: These studies further define the heterogeneity of mutations causing Fabry disease, permit precise carrier identification and prenatal diagnosis in these families, and facilitate the identification of candidates for enzyme replacement therapy.  相似文献   

11.
The human mitochondrial 12 S rRNA A1555G mutation has been found to be associated with aminoglycoside-induced and non-syndromic deafness. However, putative nuclear modifier gene(s) have been proposed to regulate the phenotypic expression of this mutation. In yeast, the mutant alleles of MTO1, encoding a mitochondrial protein, manifest respiratory-deficient phenotype only when coupled with the mitochondrial 15 S rRNA P(R)454 mutation corresponding to human A1555G mutation. This suggests that the MTO1-like modifier gene may influence the phenotypic expression of human A1555G mutation. Here we report the identification of full-length cDNA and elucidation of genomic organization of the human MTO1 homolog. Human Mto1 is an evolutionarily conserved protein that implicates a role in the mitochondrial tRNA modification. Functional conservation of this protein is supported by the observation that isolated human MTO1 cDNA can complement the respiratory deficient phenotype of yeast mto1 cells carrying P(R)454 mutation. MTO1 is ubiquitously expressed in various tissues, but with a markedly elevated expression in tissues of high metabolic rates including cochlea. These observations suggest that human MTO1 is a structural and functional homolog of yeast MTO1. Thus, it may play an important role in the pathogenesis of deafness-associated A1555G mutation in 12 S rRNA gene or mutations in tRNA genes.  相似文献   

12.
N A Koltovaia  A B Devin 《Genetika》1983,19(6):933-939
The sensitivity of the yeast Saccharomyces cerevisiae to nitrous acid (NA) is significantly influenced by various spontaneous mutations of the mitochondrial (mt) genome as well as by the nuclear mutation mmg 1 leading to a decrease in the spontaneous mutability of the mt genome. The mmg 1 locus and the mt genome most probably interact and this nucleo-cytoplasmic interaction plays a role in determining the NA sensitivity of yeast cells. A significant subclonal variation of the NA sensitivity has already been reported for the strains under study. Here we show this variability to decrease significantly when the cells are devoid of the mt DNA or carry the mmg 1 mutation. These data suggest a direct relation between the unstable NA sensitivity and the variability of the mt genome.  相似文献   

13.
X-linked nephrogenic diabetes insipidus (NDI) is a rare disease with defective renal and extrarenal arginine-vasopressin V2 receptor responses due to mutations in the AVPR2 gene in Xq28. We analyzed 31 independent NDI families to determine the nature and recurrence of AVPR2 mutations. Twenty-one new putative disease-causing mutations were identified: 113delCT, 253del35, 255del9, 274insG, V88M, R106C, 402delCT, C112R, Y124X, S126F, W164S, S167L, 684delTA, 804insG, W284X, A285P, W293X, R337X, and three large deletions or gene rearrangements. Five other mutations—R113W, Y128S, R137H, R181C, and R202C—that previously had been reported in other families were detected. There was evidence for recurrent mutation for four mutations (R113W, R137H, S167L, and R337X). Eight de novo mutation events were detected (274insG, R106C, Y128S, 167L [twice], R202C, 684delTA, and R337X). The origins were maternal (one), grandmaternal (one), and grandpaternal (six). In the 31 NDI families and 6 families previously reported by us, there is evidence both for mutation hot spots for nucleotide substitutions and for small deletions and insertions. More than half (58%) of the nucleotide substitutions in 26 families could be a consequence of 5-methylcytosine deamination at a CpG dinucleotide. Most of the small deletions and insertions could be attributed to slipped mispairing during DNA replication.  相似文献   

14.
    
Summary Alterations in the physical characteristics of mitochondrial DNA accompanied increased spontaneous mutability to cytoplasmic respiratory-deficiency in yeast. Two systems were used to modify mutation rates, one physiological, the other genetic. Cells in log phase were shown to be more mutable than cells in stationary phase, and glucose-repressed cells were shown to be more mutable than unrepressed cells. A nuclear gene which acts as a mitochondrial mutator was found to increase spontaneous mutation rate by a factor of ten. An increase in endogenous formation of G+C-rich fragments of mt-DNA accompanied a physiological state conducive to higher mutability, and it is proposed that increasedin vivo digestion of A+T-rich regions is involved in these alterations. Greater nuclease(s) activity accompanied the presence of the mutator gene, and it is proposed that this gene is concerned with the regulation of nuclease activity or with repair mechanisms. N.R.C.C. Publication No. 15211  相似文献   

15.
Mitochondrial cytochrome c oxidase is a key protonmotive component of the respiratory chain. Mutations in the mitochondrially-encoded subunits of the complex have been reported in association with a range of diseases. In this work we used yeast and bacterial mutants to assess the effect of human mutations in subunit 1 (L196I) and subunit 3 (G78S, A200T, Delta F94-F98, F251L and W249Stop). While the stop mutation at the C-terminus of subunit 3 and the short deletion were highly deleterious and abolished the assembly of the mitochondrial enzyme, the four missense mutations caused little or no effect on the respiratory function. Detailed analysis of G78S, A200T and Delta F94-F98 in Rhodobacter sphaeroides confirmed and extended these observations. We show in this study that the combination of yeast and bacterial models is a useful tool to elucidate the effect of mutations in the catalytic core of cytochrome oxidase. The yeast enzyme is highly similar to the human enzyme and provides a good model to assess the deleterious effect of reported mutations. The bacterial system allows detailed biochemical analysis of the effect of the mutations on the function and assembly of the catalytic core of the enzyme.  相似文献   

16.
17.
Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive lysosomal storage disorder caused by the deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS). Molecular mutational analysis was performed by PCR product sequencing for fourteen exons and exon–intron boundaries of GALNS gene in 21 patients from 19 unrelated families with severe MPS IVA in South China. We identified fifteen different mutations, including 10 reported mutations (p.P125L, p.G290S, p.M318R, p.G340D, p.L366P, p.R386C, p.A392V, c.1243-1G>C, p.L440RfsX54 and p.X523E) and five novel mutations (p.N177S, p.G290R, p.F306S, p.W403_T404delinsCS, p.W520X). All five novel mutations were inherited from parents of the patients and not found in 100 normal control alleles. Three mutations, p.M318R, p.L366P and p.R386C were common, accounting for 36.8% of mutant alleles investigated. One patient homozygous of p.A392V and the other two unrelated patients homozygous of p.L366P presented classical disease course. The results show that the GALNS gene has a different mutational spectrum in South China as compared to other regions. The p.A392V and p.L366P mutations were associated with severe phenotype of MPS IVA.  相似文献   

18.
Four missense mutations have been reported to be associated with the typical, adult form of carnitine palmitoyltransferase II (CPT II) deficiency: Three amino acid substitutions (R631C, P50H and D553N) appear to be rare, while the S113L mutation was found to be common in a group of European patients with CPT II deficiency.We analyzed genomic DNA from 20 American patients with recurrent episodes of myoglobinuria as well as DNA from 10 normal controls in order to determine the frequency of the reported missense mutations in our patient population.The three previously described rare mutations were not found in our group of patients. The S113L mutation was found in 19 of our patients: 5 patients were homozygous, 14 patients were heterozygous.Given the high frequency of this mutation in our series of patients we concluded that the clinical diagnosis of CPT II deficiency can be confirmed by a 'blood test' without resorting to a muscle biopsy.  相似文献   

19.
By comparing published and experimental data on spontaneous mutability of early genes controlling biosynthesis of purine nucleotides (BPN) in different yeast species in the system "from red to white," it was shown that the PUR4 gene encoding 5'-phosphoribosylformyl glycinamidine synthetase (FGAM-synthetase) (EC 6.3.5.3) is the most mutable gene in yeast Saccharomyces cerevisiae (the ADE6 gene), Schizosaccharomyces pombe (the ade3 gene), and Pichia methanolica (the ADE5 gene). This correlates with a considerably large size of the FGAM-synthetase polypeptide, as compared to the products of other genes belonging to this group. Study of characteristics of spontaneous mutations in early BPN genes of P. methanolica demonstrated that the vast majority of unstable ade5sU alleles (mutations with a high reversion frequency ranging from 0.2 x 10(-6) to 2 x 10(-6)) appeared solely among mutants for the ADE5 gene. Based on these results, it was assumed that there are two independent mechanisms responsible for reversions of spontaneous mutations in this gene. The DNA sequence that can compensate for the P. methanolica ade5 mutation and probably is the structural P-ADE5 gene, was cloned from a genomic library of P. methanolica by the ade6 mutation complementation in the recipient S. cerevisiae strain.  相似文献   

20.
Mutations were studied in phenylalanine hydroxylase gene of phenylketonuria patients from Kemerovo oblast and Altaiskii krai (15 and 2 families, respectively). The following mutations were identified in exons of this gene: R408W, R261Q, R243Q, Y414C, Y386C, P281L, Y168H, R68S (lead to amino acid substitutions), R243X (leads to stop codon formation), and three splice site mutations (IVS12nt 1g-->a, IVS2nt-13t-->g, IVS7nt 1g-->a).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号