首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fermentable sugar obtained from lignocellulosic material exhibits great potential as a renewable feedstock for the production of bio-ethanol. One potentially viable source of fermentable sugars is pyrolysis oil, commonly called bio-oil. Depending on the type of lignocellulosic material and the operating conditions used for pyrolysis, bio-oil can contain upwards of 10 wt% of 1,6-anhydro-β-d-glucopyranose (levoglucosan, LG), an anhydrosugar that can be hydrolyzed to glucose. This research investigated the extraction of levoglucosan from pyrolysis oil via phase separation, the acid-hydrolysis of the levoglucosan into glucose, and the subsequent fermentation of this hydrolysate into ethanol.Optimal selection of water-to-oil ratio, temperature and contact time yielded an aqueous phase containing a levoglucosan concentration of up to 87 g/L, a yield of 7.8 wt% of the bio-oil. Hydrolysis conditions of 125 °C, 44 min and 0.5 M H2SO4 resulted in a maximum glucose yield of 216% (when based on original levoglucosan), inferring other precursors of glucose were present in the aqueous phase. The aqueous phase contained solutes which inhibited fermentation, however, up to 20% hydrolysate solutions were efficiently fermented (yield = 0.46 g EtOH/g glucose; productivity = 0.55 g/L h) using high yeast inoculums (1 g/L in flask) and micro-aerophilic conditions.  相似文献   

2.
Laabe于1987年提出了生物催化剂工程(Biocatalyst engineering)和介质工程(Medium engineering)的概念[1]。有机相生物催化中溶剂的选择也是介质工程的内容之一。纯酶在有机相中的催化作用已有大量报道[2],但对完整细胞研究甚步。本文以甲基单胞菌(Methylomonas Z201)完整细胞为生物催化剂.丙烯环氧化为指标反应.研究有机溶剂对活性的影响并对催化活性——溶剂疏水性进行了相关性分析。研究了水一十六烷两相体系中十六烷含量和搅拌速度对丙烯环氧化速度的影响和细胞的操作稳定性。  相似文献   

3.
Lanne于1987年提出了生物催化剂工程(Biocatalyst engimeering)和介质工程(Medium enineering)的概念[1].有机相生物催化中溶剂的选择也是介质工程的内容之一。纯酶在有机相中的催化作用已有大量报道[2],但对完整细胞研究甚少。本文以甲基单胞菌(Methylomonos)Z201完整细胞为生物催化剂,丙烯环氧化为指标反应,研究有机溶剂对活性的影响并对催化活性-溶剂疏水性进行了相关性分析。研究了水-十六烷两相体系中十六烷含量和搅拦速度对丙烯环氧化速度的影响和细胞的操作稳定性。  相似文献   

4.
A method for the simultaneous extraction of oil and proteins from vegetable meals is presented. The method uses hydrocarbon reverse micelles, so that the oil is extracted directly into the hydrocarbon phase and the proteins are solubilized in the water pools of the reverse micelles. The surfactant used is bis (2-ethylhexyl) sodium sulfosuccinate (AOT) in isooctane at variable w(0) values (w(0) measures the amount of water in the system, where w(0) = [H(2)O]/[AOT]). A comparison with the usual extraction methods is offered. It is shown that with the micelle system the extraction of oil is as large as with the usual methods, and it is independent of w(0). However the amount and type of proteins extracted depends strongly on w(0). At w(0) values below 6, no protein and only low molecular weight compounds (i.e. chlorogenic acid) are extracted, at larger water content (i.e. by increasing the dimension of the micelle water pool), also proteins are solubilized in a significant amount and with a molecular weight which increases by increasing W(0). The protein solubilized in the microemulsion system can be recovered into an aqueous phase with a back-transfer step.  相似文献   

5.
beta-Carotene has many applications in the food, cosmetic, and pharmaceutical industries; Dunaliella salina is currently the main source for natural beta-carotene. We have investigated the effect of mixing rate and whether it leads to the facilitated release of beta-carotene from the cells of Dunaliella salina in two-phase bioreactors. Three pairs of bioreactors were inoculated at the same time, operated at 100, 150, and 170 rounds per minute, respectively, and illuminated with a light intensity of 700 micromol m(-2) s(-1). Each pair consisted of one bioreactor containing only aqueous phase for the blank and one containing the water phase together with dodecane, which is biocompatible with the cells. Comparison of the viability and growth of the cells grown under different agitation rates shows that 170 rpm and 150 rpm are just as good as 100 rpm. The presence and absence of the organic phase also has no influence on the viability and growth of the cells. In contrast to the growth rate, the extraction rate of beta-carotene is influenced by the stirrer speed. The extraction rate increases at a higher stirring rate. The effectiveness of extraction with respect to power input is comparable for all the applied mixing rates, even though it is slightly lower for 100 rpm than the others. The chlorophyll concentration in the organic phase remained very low during the experiment, although at higher mixing rates, chlorophyll impurity increased up to 3% (w/w) of the total extracted pigments. At 170 rpm carotenoid and chlorophyll undergo the highest extraction rate for both pigments-0.5% of the chlorophyll and 6% of the carotenoid is extracted.  相似文献   

6.
This paper focuses on the classified separation of flash pyrolysis oil by united extraction and distillation. Flash pyrolysis oil was effectively separated into four types of substances, including water-soluble fraction (low-boiling organic acids, alcohols, ketones, etc.), crude saccharide (mainly levoglucosan), phenolic compounds (guaiacol, 2-methoxy-4-methylphenol, etc.), and residue. The separation process was discussed in detail. The optimal separation condition was temperature 50 °C, 1:1 of water-to-oil ratio, and 20 min of contacting time. At this optimal separation condition, external standard method was employed to quantify levoglucosan, 4.1 wt% of levoglucosan accounted for the bio-oil could be obtained. Moreover, the potential applications of these four types of separated substances were discussed and proposed. Considering it is a kind of simple and effective process for the bio-oil, as well as the promising application prospects of the classified separation substances, this separation method will bring a new and highly efficient application of the bio-oil.  相似文献   

7.
In the present work, the applicability of hollow fiber-based liquid phase microextraction (HF-LPME) was evaluated for the extraction and preconcentration of valerenic acid prior to its determination by reversed-phase HPLC/UV. The target drug was extracted from 5.0 mL of aqueous solution with pH 3.5 into an organic extracting solvent (dihexyl ether) impregnated in the pores of a hollow fiber and finally back extracted into 10 μ L of aqueous solution with pH 9.5 located inside the lumen of the hollow fiber. In order to obtain high extraction efficiency, the parameters affecting the HF-LPME, including pH of the donor and acceptor phases, type of organic phase, ionic strength, the volume ratio of donor to acceptor phase, stirring rate and extraction time were studied and optimized. Under the optimized conditions, enrichment factor up to 446 was achieved and the relative standard deviation (RSD) of the method was 4.36% (n = 9). The linear range was 7.5-850 μg L?1 with correlation coefficient (r2=0.999), detection limits was 2.5 μg L?1 and the LOQ was 7.5 μg L?1. The proposed method was evaluated by extraction and determination of valerenic acid in some Iranian wild species of Valerianaceae.  相似文献   

8.
The degradation by a consortium of slightly-halophile marine bacteria of styrene initially dissolved in silicone oil was monitored in batch reactors stirred at 75, 125 and 500 rpm, respectively. In the 75 and 125 rpm cases, the styrene biodegradation rate was higher than the rate of spontaneous partitioning of styrene from the oil to the water, determined under abiotic conditions. Abiotic transfer tests carried out after biodegradation runs revealed that bacterial activity had resulted in a significant increase in the rate of styrene partitioning between the two liquid phases. Even though bacterial adsorption was noticeable at the oil-water interface, this effect appeared to be due to the release by the bacteria of chemicals in the aqueous phase. Similarity with observations made with Triton X-100 suggested that the chemicals released may have been biosurfactants or solubilizing agents.  相似文献   

9.
Solubilizing water involved in protein extraction using reversed micelles   总被引:4,自引:0,他引:4  
The extraction of protein using reversed micelles was investigated in relation to the amount of solubilizing water in the reversed micellar organic phase. The minimal concentration of amphiphilic molecule di-2-ethylhexyl sodium sulfosuccinate (C(20)H(37)O(7)Na) (AOT) required for 100% cytochrome c extraction was recognized. This critical AOT concentration increased with protein concentration in the aqueous phase. On this minimal AOT condition, the molar ratio of solubilizing water to extracted protein was found to be a constant of 3500 under C(KCI) = 1.0 x 10(2) mol . m(-3) in this system. This ratio means the hydrophillic surroundings required for extracting one protein molecule into the micellar organic phase under the suitable pH and salt concentration for the forward extraction. In this regard, AOT molecules seemed to take the part of water solubilizing agent in the reversed micellar extraction. This role of AOT is important to extract protein under the suitable pH and salt concentration. The amount of solubilizing water in the protein-containing system was larger than in the protein-free system. This difference shows that the water molecules accompany the extracted protein into the reversed micellar organic phase at constant ratio 2200 under C(KCI) = 1.0 x 10(2) mol . m(-3), i.e., accompanying water molecules per one extracted protein. The minimal AOT concentration increased with ionic strength. On this minimal AOT condition, the molar ratio of solubilizing water to extracted protein also increased with ionic strength, so that in higher ionic strength, more solubilizing water was required. Then more AOT was required to provide the hydrophillic surroundings for protein. The pH affected the minimal AOT concentration required for 100% protein extraction.  相似文献   

10.
采用中心组合设计(CCD)-响应面(RSM)优化紫苏籽油脂的水酶法提取工艺。在单因素试验的基础上采用中心组合设计方法,研究了酶的种类、酶解温度、pH、液(mL)固(g)比、加酶量、以及时间相互作用对紫苏油脂提取率的影响。结果显示,拟合得到方程显著,确定的紫苏油脂提取最优条件为:碱性蛋白酶在pH9.5条件下液(mL)固(g)比9.97∶1、加酶量2.75%、温度56.1℃、时间5.25h,该条件下紫苏油脂的提取率可达到37.65%,与理论值38.3%十分接近,建立的模型真实可靠,确定了紫苏油脂的最佳提取工艺。经气相色谱检测紫苏籽油中含有棕榈酸、硬脂酸、油酸、亚油酸、α-亚麻酸等脂肪酸,水酶法提取紫苏油脂的α-亚麻酸相对含量最高67.9%,且相对溶剂法及冷榨法理化指标最好。  相似文献   

11.
Introduction – Superheated water extraction (SHWE) potentially provides an environmentally friendly and clean extraction technique which uses a minimum or no organic solvent. The scope and limitations of the technique have still to be fully explored. Objective – To investigate the application of SHWE to cinnamon (Cinnamomum zeylanicum L.) bark and leaves as typical plant materials to determine if this extraction method can yield a higher quality oil. Methodology – Samples of cinnamon bark or leaves were extracted at 200°C with water under pressure. The essential oils were obtained from the aqueous solution using a solid phase extraction cartridge and were then examined by GC‐MS. Results – Using superheated water extraction, cinnamon bark oil with over 80% cinnamaldehyde and cinnamon leaf oil containing up to 98% eugenol were obtained. Alternative solvent extraction methods were also studied but led to emulsion formation apparently because of the presence of cellulose breakdown products. Conclusion – Superheated water extraction offers a cheap, environmentally friendly technique with a shorter extraction time than hydrodistillation and yielded a higher quality oil with a higher proportion of eugenol than hydrodistillation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Our earlier work for the first time demonstrated that liquid emulsion membrane (LEM) containing reverse micelles could be successfully used for the downstream processing of lipase from Aspergillus niger. In the present work, we have attempted to increase the extraction and purification fold of lipase by using mixed reverse micelles (MRM) consisting of cationic and nonionic surfactants in LEM. It was basically prepared by addition of the internal aqueous phase solution to the organic phase followed by the redispersion of the emulsion in the feed phase containing enzyme, which resulted in globules of water‐oil‐water (WOW) emulsion for the extraction of lipase. The optimum conditions for maximum lipase recovery (100%) and purification fold (17.0‐fold) were CTAB concentration 0.075 M, Tween 80 concentration 0.012 M, at stirring speed of 500 rpm, contact time 15 min, internal aqueous phase pH 7, feed pH 9, KCl concentration 1 M, NaCl concentration 0.1 M, and ratio of membrane emulsion to feed volume 1:1. Incorporation of the nonionic surfactant (e.g., Tween 80) resulted in remarkable improvement in the purification fold (3.1–17.0) of the lipase. LEM containing a mixture of nonionic and cationic surfactants can be successfully used for the enhancement in the activity recovery and purification fold during downstream processing of enzymes/proteins. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1084–1092, 2014  相似文献   

13.
Non-dispersive reactive extraction of cephalosporin antibiotics has been studied using hollow fiber membrane modules. Extraction as well as stripping has been studied using a pH swing procedure. Cephalosporin was extracted from an aqueous solution of cephalosporin having a pH above the pKa2 value to an organic phase containing Aliquat-336 as the extractant and n-heptane as the diluent. The solute was stripped from the loaded organic phase to another aqueous phase of pH maintained well below the pKa2 value of the cephalosporin. The extraction cum stripping relies on pH dependance of the distribution coefficient of cephalosporin in aqueous phase. Reasonably high solute recovery and mass transfer rate have been achieved in the hollow fiber module. Mass transfer performance of a single module has been evaluated and experimentally observed low value of height of transfer unit (HTU) indicates good prospect of hollow fiber membrane for the extraction duty.  相似文献   

14.
A pilot study on the extraction of three steroidal glucosiduronic acids from water into organic solutions of liquid ion-exchangers is reported. A single extraction of a 0.5mm aqueous solution of either 11-deoxycorticosterone 21-glucosiduronic acid or cortisone 21-glucosiduronic acid with 0.1m-tetraheptylammonium chloride in chloroform took more than 99% of the conjugate into the organic phase; under the same conditions, the very polar conjugate, beta-cortol 3-glucosiduronic acid, was extracted to the extent of 43%. The presence of a small amount of chloride, acetate, or sulphate ion in the aqueous phase inhibited extraction, but making the aqueous phase 4.0m with ammonium sulphate promoted extraction strongly. An increase in the concentration of ion-exchanger in the organic phase also promoted extraction. The amount of cortisone 21-glucosiduronic acid extracted by tetraheptylammonium chloride over the pH range of 3.9 to 10.7 was essentially constant. Chloroform solutions of a tertiary, a secondary, or a primary amine hydrochloride also will extract cortisone 21-glucosiduronic acid from water. The various liquid ion exchangers will extract steroidal glucosiduronic acid methyl esters from water into chloroform, although less completely than the corresponding free acids. The extraction of the glucosiduronic acids from water by tetraheptylammonium chloride occurs by an ion-exchange process; extraction of the esters does not involve ion exchange.  相似文献   

15.
为了提取和利用辣木籽蛋白质,本文通过水酶法优化其提取条件,并探讨其功能性质。以辣木籽为原材料,以蛋白质提取率为指标,首先确定了最佳使用酶为Alcalase碱性蛋白酶,再通过单因素试验考察料液比、时间、温度、酶添加量和pH等因素对蛋白质提取率的影响,在此基础上,利用响应面试验设计优化水酶法提取辣木籽蛋白质的工艺。结果表明,最佳工艺条件为:使用Alcalase碱性蛋白酶,在料液比为1∶10,酶添加量为4.5%,pH为9.0,温度为60℃,时间为4.5 h,此时辣木籽蛋白质的提取率最高为68.23%。在pH为10、温度为55℃时辣木籽蛋白质的氮溶解指数最高;辣木籽蛋白质持水性随着pH的增加而增加,在温度为40℃时持水性最好;在温度为55℃时,辣木籽分离蛋白的吸油效果最明显。  相似文献   

16.
Chymotrypsin is easily extracted from an aqueous solution into isooctane containing the anionic surfactant aerosol OT (AOT). The concentration of AOT needed to efficiently extract 0.5 mg/mL CMT is as low as 1 mM and as low as 0.2 mM AOT was sufficient to extract the protein into isooctane. The extraction process was unaffected by 10% (v/v) ethyl acetate in the isooctane phase. Moreover, spectroscopic analysis by electron paramagnetic resonance indicated that CMT did not exist inside a discreet water pool of a reversed micelle. Calculations of the number of AOT molecules associated per extracted CMT molecule indicate that only ca. 30 surfactant molecules interact with the protein, a value too low for reversed micellar incorporation of the protein in isooctane. These studies suggested that reversed micelles do not need to be involved in the actual transfer of the protein from the aqueous to the organic phase and protein solubilization in the organic phase is possible in the absence of reversed micelles. Based on these findings, a new mechanism has been proposed herein for protein extraction via the phase transfer method involving ionic surfactants. The central theme of this mechanism is the formation of an electrostatic complex between CMT and AOT at the aqueous/organic interface between AOT and CMT, thereby leading to the formation of a hydrophobic species that partitions into the organic phase. Consistent with this mechanism, the efficiency of extraction is dependent on the interfacial mass transfer, the concentrations of CMT and AOT in the aqueous and organic phases, respectively; the ionic strength of the aqueous phase; and the presence of various cosolvents. (c) 1994 John Wiley & Sons, Inc.  相似文献   

17.
Liquid phase microextraction by back extraction (LPME-BE) combined with high performance liquid chromatography (HPLC)-fluorescence detection was developed for the determination of tramadol in human plasma. Tramadol was extracted from 2 mL of basic sample solution (donor phase) with pH 11.5 through a micro liter-size organic solvent phase (100 microL n-octane) for 25 min and finally into a 3.5 microL acidic aqueous acceptor microdrop with pH 2.5 suspended in the organic phase from the tip of a HPLC microsyringe needle for 15 min with the stirring rate of 1250 rpm. After extraction for a period of time, the microdrop was taken back into the syringe and injected into HPLC. Effected the experimental parameters such as the nature of the extracting solvent and its volume, sample temperature, stirring rate, volume of the acceptor phase, pH and extraction time on LPME-BE efficiency was investigated. At the optimized condition, enrichment factor of 366 and detection limit (LOD) of 0.12 microg L(-1) were obtained. The calibration curve was linear (r=0.999) in the concentration range of 0.3-130 microg L(-1). Within-day relative standard deviation RSD (S/N=3) and between-day RSD were 3.16% and 6.29%, respectively. The method was successfully applied to determine the concentration of tramadol in the plasma and urine samples and satisfactory results were obtained.  相似文献   

18.
The reactive extraction of succinic acid was carried out by mixed tertiary amine which consisted of tripropylamine (TPA) and trioctylamine (TOA) as the extraction agent in 1-octanol/n-heptane diluent. Maximum distribution coefficient was obtained at 8:2 weight ratio of TPA/TOA. At this ratio, its extraction efficiency is above 90% at the 3.9 wt.% of succinic acid in aqueous solution. Furthermore, the prevention of the third phase formation made the phase separation between organic phase and aqueous phase easy.  相似文献   

19.
This work deals with the downstream processing of lipase (EC 3.1.1.3, from Aspergillus niger) using liquid emulsion membrane (LEM) containing reverse micelles for the first time. The membrane phase consisted of surfactants [cetyltrimethylammonium bromide (CTAB) and Span 80] and cosolvents (isooctane and paraffin light oil). The various process parameters for the extraction of lipase from aqueous feed were optimized to maximize activity recovery and purification fold. The mechanism of lipase transport through LEM consisted of three steps namely solubilization of lipase in reverse micelles, transportation of reverse micelles loaded with lipase through the liquid membrane, and release of the lipase into internal aqueous phase. The results showed that the optimum conditions for activity recovery (78.6%) and purification (3.14‐fold) were feed phase ionic strength 0.10 M NaCl and pH 9.0, surfactants concentration (Span 80 0.18 M and CTAB 0.1 M), volume ratio of organic phase to internal aqueous phase 0.9, ratio of membrane emulsion to feed volume 1.0, internal aqueous phase concentration 1.0 M KCl and pH 7.0, stirring speed 450 rpm, and contact time 15 min. This work indicated the feasibility of LEM for the downstream processing of lipase. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

20.
《Process Biochemistry》2010,45(5):815-819
The use of commercial proteases, bromelain and Protex 30L for oil extraction/recovery of polyunsaturated fatty acids (PUFA) from Nile perch and salmon heads was evaluated. Four phases were obtained after hydrolysis, oily phase, emulsion, aqueous phase and sludge. An increase in water content during the hydrolysis resulted in a decrease in oil yield. Maximum oil yield was obtained when hydrolysis was performed with Protex 30L at 55 °C, without pH adjustment or water addition. An oil yield of 11.2% and 15.7% of wet weight was obtained from Nile perch and salmon heads, respectively, compared to 13.8% and 17.6%, respectively obtained using solvent extraction. Fatty acid distribution analysis showed 50% of palmitic acid was in sn-2 position in Nile perch triglycerides (TAG), while only 16% of this fatty acid was in sn-2 position in salmon oil TAG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号