首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objectives of this study were to characterize the pattern of pulsatile urea excretion in the gulf toadfish in the wake of exogenous cortisol loading and to determine the receptors involved in the regulation of this mechanism. Toadfish were fitted with indwelling arterial catheters and were infused with isosmotic NaCl for 48 h after which fish were treated with cortisol alone, cortisol+peanut oil, cortisol+RU486 (a glucocorticoid receptor antagonist) or cortisol+spironolactone (a mineralocorticoid receptor antagonist). Upon cortisol loading, fish treated with cortisol alone, cortisol+oil or cortisol+spironolactone experienced a two- to threefold reduction in pulsatile urea excretion. This reduction was due to a decrease in urea pulse size with no effect on pulse frequency compared to values measured during the control NaCl infusion period. In addition, these fish showed an increase in plasma urea concentrations upon treatment. These apparent effects of cortisol treatment were abolished in fish treated with cortisol+RU486. In contrast, these fish showed an increase in pulsatile urea excretion mediated by a twofold increase in pulse size with no change in frequency. Likewise, fish treated with cortisol+RU486 showed a significant decrease in plasma urea concentrations over the course of the experiment. The findings of this study indicate that high levels of cortisol reduce pulsatile urea excretion by decreasing pulse size. In addition, it appears that glucocorticoid receptors and not mineralocorticoid receptors are involved in the regulation of the toadfish pulsatile urea excretion mechanism.Communicated by G. Heldmaier  相似文献   

2.
The objective of this study was to determine whether the pulsatile facilitated diffusion transport mechanism (tUT) found in the gills of the gulf toadfish (Opsanus beta) and the active secretion transporter thought to be present in its kidney could be saturated when faced with elevated plasma urea concentrations. Toadfish were infused with four consecutive exogenous urea loads at a rate of 0, 150, 300 and 600 micromol kg(-1) h(-1). Initial plasma and urine urea concentrations were 8.1+/-0.9 and 12.4+/-1.5 mmol l(-1), respectively, and steadily increased with increasing infused loads of urea to a maximum of 36.8+/-2.8 mmol l(-1) in the plasma and 39.8+/-6.5 mmol l(-1) in the urine. There was only a very weak relationship (r=0.17) between pulse size (measured as branchial excretion during pulsatile excretion of urea) and plasma urea concentration (slope=9.79 micromol-N kg(-1) per mmol-N l(-1); P<0.05) suggesting that the branchial excretion mechanism was already saturated at normal plasma urea concentrations. Urine flow rate (0.15+/-0.03 ml kg(-1) h(-1)) and glomerular filtration rate (0.025+/-0.004 ml kg(-1) h(-1)) remained constant throughout the experiment despite the increased volume load. Renal urea secretion rate maintained a strong linear relationship (r=0.84) to plasma urea levels (slope=0.391 micromol-N kg(-1) h(-1) per mmol-N l(-1); P<0.001) with no observable transport maximum, suggesting that the renal secretory transport mechanism was not saturated even at plasma urea levels well above normal, in contrast to the branchial excretion mechanism.  相似文献   

3.
Sphingolipids are essential components of eukaryotic cell membranes. We recently showed that the function of the serotonin1A receptor is impaired upon metabolic depletion of sphingolipids using fumonisin B1 (FB1), a specific inhibitor of ceramide synthase. Serotonin1A receptors belong to the family of G-protein coupled receptors and are implicated in the generation and modulation of various cognitive, behavioral and developmental functions. Since function and dynamics of membrane receptors are often coupled, we monitored the lateral dynamics of the serotonin1A receptor utilizing fluorescence recovery after photobleaching (FRAP) under these conditions. Our results show an increase in mobile fraction of the receptor upon sphingolipid depletion, while the diffusion coefficient of the receptor did not exhibit any significant change. These novel results constitute the first report on the effect of sphingolipid depletion on the mobility of the serotonin1A receptor. Our results assume greater relevance in the broader context of the emerging role of receptor mobility in understanding cellular signaling.  相似文献   

4.
Considerable variability in the activity of the hypothalamus-pituitary-adrenal (HPA) axis in response to stress has been found in quantitative genetic studies investigating healthy individuals suggesting that at least part of this variance is due to genetic factors. Since the HPA axis is regulated by a neuronal network including amygdala, hippocampus, prefrontal cortex as well as brainstem circuits, the investigation of candidate genes that impact neurotransmitter systems related to these brain regions might further elucidate the genetic underpinnings of the stress response. However, aside from genetic risk factors, past stressful life events might also result in long-term adjustments of HPA axis reactivity. Here, we investigated the effects of the − 1019 G/C polymorphism in the HTR1A gene encoding the serotonin (5-HT) receptor 1A (5-HT1A) and stressful life events experienced during childhood and adolescence on changes in cortisol levels in response to the Trier Social Stress Test (TSST) in a sample of healthy older adults (N = 97). Regression analyses revealed a significant effect of HTR1A genotype with the G allele being associated with a less pronounced stress response. In addition, an inverse relationship between past stressful life events and cortisol release but no gene × environment interaction was detected. The results further underscore the crucial role of functional serotonergic genetic variation as well as stressful events during critical stages of development on the acute stress response later in life.  相似文献   

5.
We found that Tyr-Leu (YL) dose-dependently exhibits potent anxiolytic-like activity (0.1-1 mg/kg, i.p.) comparable to diazepam in the elevated plus-maze test in mice. YL was orally active (0.3-3 mg/kg). A retro-sequence peptide or a mixture of Tyr and Leu was inactive. The anxiolytic-like activity of YL was inhibited by antagonists for serotonin 5-HT1A, dopamine D1 and GABAA receptors; however, YL had no affinity for them. We also determined the order of their activation is 5-HT1A, D1 and GABAA receptors using selective agonists and antagonists. Taken together, YL may exhibit anxiolytic-like activity via activation of 5-HT1A, D1 and GABAA receptors.  相似文献   

6.
We have monitored the ligand binding of the bovine hippocampal 5-HT1A receptor following treatment with the sterol-binding antifungal antibiotic nystatin. Nystatin considerably inhibits the specific binding of the antagonist to 5-HT1A receptors in a concentration-dependent manner. However, the specific agonist binding does not show significant changes. Fluorescence polarization measurements of membrane probes incorporated at different locations in the membrane revealed a substantial decrease in the membrane order in the interior of the bilayer. Experiments with cholesterol-depleted membranes indicate that the action of nystatin is mediated through membrane cholesterol. These results represent the first report on the effect of a cholesterol-perturbing agent on the ligand-binding activity of this important neurotransmitter receptor.  相似文献   

7.
The serotonin1A (5-HT1A) receptor is an important member of the superfamily of seven transmembrane domain G-protein coupled receptors (GPCRs). We report here that guanine nucleotide sensitivity of agonist binding to hippocampal 5-HT1A receptors is dependent on the concentration of Mg2+. Our results show that agonist binding to 5-HT1A receptors is relatively insensitive to guanine nucleotides in the absence of Mg2+. In contrast to this, the specific antagonist binding is insensitive to guanine nucleotides, even in the presence of Mg2+. These results point out the requirement of an optimal concentration of Mg2+ which could be used in assays toward determining guanine nucleotide sensitivity of ligand binding to GPCRs such as the 5-HT1A receptor. Our results provide novel insight into the requirement and concentration dependence of Mg2+ in relation to guanine nucleotide sensitivity for the 5-HT1A receptor in particular, and GPCRs in general.  相似文献   

8.
Dopamine receptor agonists play an important role in the treatment of Parkinson's disease and hyperprolactinemic conditions. Proterguride (n-propyldihydrolisuride) was already reported to be a highly potent dopamine receptor agonist, thus its action at different non-dopaminergic monoamine receptors, alpha(1A/1B/1D), 5-HT(2A/2B)- and histamine H(1), was investigated using different functional in vitro assays. The drug behaved as an antagonist at alpha(1)-adrenoceptors without the ability to discriminate between the subtypes (pA(2) values: alpha(1A) 7.31; alpha(1B) 7.37; alpha(1D) 7.35) and showed antagonistic properties at the histamine H(1) receptor. In contrast, at serotonergic receptors (5-HT(2A), 5-HT(2B)) proterguride acted as a partial agonist. The drug stimulated 5-HT(2A) receptors of rat tail artery in lower concentrations than 5-HT itself but failed to evoke comparable efficacy (proterguride: pEC(50) 8.34, E(max) 53% related to the maximum response to 5-HT; 5-HT: pEC(50) 7.03). Agonism at 5-HT(2B) receptors is presently considered to be involved in drug-induced valvular heart disease. Activation of 5-HT(2B) receptors in porcine pulmonary arteries by proterguride (pEC(50) 7.13, E(max) 49%; E(max) (5-HT) 69%), however, occurred at concentrations much higher than plasma concentrations achieving dopaminergic efficacy in humans. The results are discussed focussing on the relevance of action at 5-HT(2B) receptors as well as their significance for a transdermal administration of proterguride. Since it is well accepted that pulsatile dopaminergic stimulation is associated with treatment-related motor complications in the dopaminergic therapy of Parkinson's disease, the transdermal route of administration is of great clinical interest due to the possibility to achieve constant plasma concentrations.  相似文献   

9.
Serotonin (5-HT) is an indirect modulator of the electric organ discharge (EOD) in the weakly electric gymnotiform fish, Brachyhypopomus pinnicaudatus. Injections of 5-HT enhance EOD waveform "masculinity", increasing both waveform amplitude and the duration of the second phase. This study investigated the pharmacological identity of 5-HT receptors that regulate the electric waveform and their effects on EOD amplitude and duration. We present evidence that two sets of serotonin receptors modulate the EOD in opposite directions. We found that the 5HT1AR agonist 8-OH-DPAT diminishes EOD duration and amplitude while the 5HT1AR antagonist WAY100635 increases these parameters. In contrast, the 5HT2R agonist alpha-Me-5-HT increases EOD amplitude but not duration, yet 5-HT-induced increases in EOD duration can be inhibited by blocking 5HT2A/2C-like receptors with ketanserin. These results show that 5-HT exerts bi-directional control of EOD modulations in B. pinnicaudatus via action at receptors similar to mammalian 5HT1A and 5HT2 receptors. The discordant amplitude and duration response suggests separate mechanisms for modulating these waveform parameters.  相似文献   

10.
Serotonin modulates agonistic and reproductive behavior across vertebrate species. 5HT1A and 5HT1B receptors mediate many serotonergic effects on social behavior, but other receptors, including 5HT2 receptors, may also contribute. We investigated serotonergic regulation of electrocommunication signals in the weakly electric fish Apteronotus leptorhynchus. During social interactions, these fish modulate their electric organ discharges (EODs) to produce signals known as chirps. Males chirp more than females and produce two chirp types. Males produce high-frequency chirps as courtship signals; whereas both sexes produce low-frequency chirps during same-sex interactions. Serotonergic innervation of the prepacemaker nucleus, which controls chirping, is more robust in females than males. Serotonin inhibits chirping and may contribute to sexual dimorphism and individual variation in chirping. We elicited chirps with EOD playbacks and pharmacologically manipulated serotonin receptors to determine which receptors regulated chirping. We also asked whether serotonin receptor activation generally modulated chirping or more specifically targeted particular chirp types. Agonists and antagonists of 5HT1B/1D receptors (CP-94253 and GR-125743) did not affect chirping. The 5HT1A receptor agonist 8OH-DPAT specifically increased production of high-frequency chirps. The 5HT2 receptor agonist DOI decreased chirping. Receptor antagonists (WAY-100635 and MDL-11939) opposed the effects of their corresponding agonists. These results suggest that serotonergic inhibition of chirping may be mediated by 5HT2 receptors, but that serotonergic activation of 5HT1A receptors specifically increases the production of high-frequency chirps. The enhancement of chirping by 5HT1A receptors may result from interactions with cortisol and/or arginine vasotocin, which similarly enhance chirping and are influenced by 5HT1A activity in other systems.  相似文献   

11.
Atypical antipsychotic properties of 4-(4-fluorobenzylidene)-1-[2-[5-(4-fluorophenyl)-1H-pyrazol-4-yl]ethyl] piperidine (NRA0161) were investigated by in vitro receptor affinities, in vivo receptor occupancies and findings were compared with those of risperidone and haloperidol in rodent behavioral studies. In in vitro receptor binding studies, NRA0161 has a high affinity for human cloned dopamine D(4) and 5-HT(2A) receptor with Ki values of 1.00 and 2.52 nM, respectively. NRA0161 had a relatively high affinity for the alpha(1) adrenoceptor (Ki; 10.44 nM) and a low affinity for the dopamine D(2) receptor (Ki; 95.80 nM). In in vivo receptor binding studies, NRA0161 highly occupied the 5-HT(2A) receptor in rat frontal cortex. In contrast, NRA0161 did not occupy the striatal D(2) receptor. In behavioral studies, NRA0161, risperidone and haloperidol antagonized the locomotor hyperactivity in mice, as induced by methamphetamine (MAP). At a higher dosage, NRA0161, risperidone and haloperidol dose-dependently antagonized the MAP-induced stereotyped behavior in mice and NRA0161 dose-dependently and significantly induced catalepsy in rats. The ED(50) value in inhibiting the MAP-induced locomotor hyperactivity was 30 times lower than that inhibiting the MAP-induced stereotyped behavior and 50 times lower than that which induced catalepsy.These findings suggest that NRA0161 may have atypical antipsychotic activities yet without producing extrapyramidal side effects.  相似文献   

12.
3,4-Methylenedioxymethamphetamine (MDMA; ecstasy) toxicity may cause region-specific changes in serotonergic mRNA expression due to acute serotonin (5-hydroxytryptamine; 5-HT) syndrome. This hypothesis can be tested using in situ hybridization to detect the serotonin 5-HT2A receptor gene htr2a. In the past, such procedures, utilizing radioactive riboprobe, were difficult because of the complicated workflow that needs several days to perform and the added difficulty that the technique required the use of fresh frozen tissues maintained in an RNase-free environment. Recently, the development of short oligonucleotide probes has simplified in situ hybridization procedures and allowed the use of paraformaldehyde-prefixed brain sections, which are more widely available in laboratories. Here, we describe a detailed protocol using non-radioactive oligonucleotide probes on the prefixed brain tissues. Hybridization probes used for this study include dapB (a bacterial gene coding for dihydrodipicolinate reductase), ppiB (a housekeeping gene coding for peptidylprolyl isomerase B), and htr2a (a serotonin gene coding for 5-HT2A receptors). This method is relatively simply, cheap, reproducible and requires less than two days to complete.  相似文献   

13.
This study examined the firing rate and pattern of electrophysiologically and chemically identified GABA interneurons in the dorsal raphe nucleus (DRN), and role of 5-HT1A receptor agonist 8-OH-DPAT and the medial prefrontal cortex (mPFC) in the firing activity in rats with 6-hydroxydopamine lesions of the substantia nigra pars compacta (SNc). The interneurons in rats with lesions of the SNc showed a more burst-firing, while having no change in the firing rate; the mPFC and combined mPFC and SNc lesions in rats decreased the firing rate of the interneurons and firing pattern shifted towards a more burst-firing compared to rats with sham lesions of the SNc, respectively. In rats with sham lesions of the SNc, administration of 8-OH-DPAT (1–243 μg/kg, i.v.) produced excitatory–inhibitory, excitatory and inhibitory effects in the firing rate of individual interneurons. However, when these effects were averaged over the group, 8-OH-DPAT had no significant effect on firing rate. In rats with lesions of the SNc, mPFC and the paired lesions, 8-OH-DPAT, at the same doses, inhibited all interneurons tested, respectively. Cumulative doses producing inhibition in rats with the paired lesions were higher than that of rats with lesions of the mPFC. In contrast to rats with sham lesions of the SNc, SNc lesion reduced expression of 5-HT1A receptor on parvalbumin positive neurons in the DRN, a subpopulation of GABA interneurons. Our results indicate that the SNc and mPFC regulate the firing activity of GABA interneurons in the DRN. Furthermore, response of likely GABA interneurons to systemic administration of 8-OH-DPAT is altered by lesion of the SNc and mPFC.  相似文献   

14.
We prepared slices from midbrain containing the raphe nuclei and from hippocampus of rats. The brain slices were loaded with [3H]serotonin and superfused in order to measure the release of radioactivity at rest and in response to electrical stimulation. No difference was observed in the resting and stimulated fractional release of tritium in the somatodendritic and axon terminal parts of serotonergic neurons. The selective 5-HT1A receptor agonist 8-OH-DPAT decreased the electrically induced tritium effux from raphe nuclei slices preloaded with [3H]serotonin, and this inhibition was reversed by 5-HT1A receptor antagonist (+)WAY-100135. The 5-HT1B receptor agonist CGS-12066B but not 8-OH-DPAT, inhibited the stimulation-evoked tritium efflux from hippocampal slices after labeling with [3H]serotonin. The electrical stimulation-evoked tritium efflux in raphe nuclei slices incubate with [3H]serotonin was completely external Ca2+-dependent, and omega-conotoxin GVIA and Cd2+, but not diltiazem, inhibited the tritium overflow. In raphe nuclei slices 4-aminopyridine enhanced the electrical stimulation-induced trititum release in a concentration-dependent manner. The inhibition of tritium efflux by 8-OH-DPAT was abolished with 4-aminopyridine. Glibenclamide or tolbutamide proved to be ineffective. These data indicate that (1) different 5-HT receptor subtypes (5-HT1A and 5-HT1B) regulate dendritic and axon terminal 5-HT release; (2) serotonin release from the dendrites may be regulated by the voltage-sensitive N-type Ca2+ channels; (3) the 5-HT1A receptor-mediated inhibition of serotonin release may be due to opening of voltage-sensitive K+ channels.  相似文献   

15.
Serotonin 5-HT4 receptor isoforms are G protein-coupled receptors (GPCRs) with distinct pharmacological properties and may represent a valuable target for the treatment of many human disorders. Here, we have explored the process of dimerization of human 5-HT4 receptor (h5-HT4R) by means of co-immunoprecipitation and bioluminescence resonance energy transfer (BRET). Constitutive h5-HT4(d)R dimer was observed in living cells and membrane preparation of CHO and HEK293 cells. 5-HT4R ligands did not influence the constitutive energy transfer of the h5-HT4(d)R splice variant in intact cells and isolated plasma membranes. In addition, we found that h5-HT4(d)R and h5-HT4(g)R which structurally differ in the length of their C-terminal tails were able to form constitutive heterodimers independently of their activation state. Finally, we found that coexpression of h5-HT4R and beta2-adrenergic receptor (beta2AR) led to their heterodimerization. Given the large number of h5-HT4R isoforms which are coexpressed in a same tissue, our results points out the complexity by which this 5-HTR sub-type mediates its biological effects.  相似文献   

16.
Analyzing the dynamics of membrane proteins in the context of cellular signaling represents a challenging problem in contemporary cell biology. Lateral diffusion of lipids and proteins in the cell membrane is known to be influenced by the cytoskeleton. In this work, we explored the role of the actin cytoskeleton on the mobility of the serotonin1A (5-HT1A) receptor, stably expressed in CHO cells, and its implications in signaling. FRAP analysis of 5-HT1AR-EYFP shows that destabilization of the actin cytoskeleton induced by either CD or elevation of cAMP levels mediated by forskolin results in an increase in the mobile fraction of the receptor. The increase in the mobile fraction is accompanied by a corresponding increase in the signaling efficiency of the receptor. Interestingly, with increasing concentrations of CD used, the increase in the mobile fraction exhibited a correlation of ∼0.95 with the efficiency in ligand-mediated signaling of the receptor. Radioligand binding and G-protein coupling of the receptor were found to be unaffected upon treatment with CD. Our results suggest that signaling by the serotonin1A receptor is correlated with receptor mobility, implying thereby that the actin cytoskeleton could play a regulatory role in receptor signaling. These results may have potential significance in the context of signaling by GPCRs in general and in the understanding of GPCR-cytoskeleton interactions with respect to receptor signaling in particular.  相似文献   

17.
The requirement of membrane cholesterol in maintaining ligand binding activity of the hippocampal serotonin(1A) receptor has previously been demonstrated. In order to test the stringency of the requirement of cholesterol, we depleted cholesterol from native hippocampal membranes followed by replenishment with 7-dehydrocholesterol. The latter sterol is an immediate biosynthetic precursor of cholesterol differing only in a double bond at the 7th position in the sterol ring. Our results show, for the first time, that replenishment with 7-dehydrocholesterol does not restore ligand binding activity of the serotonin(1A) receptor, in spite of recovery of the overall membrane order. The requirement for restoration of ligand binding activity therefore is more stringent than the requirement for the recovery of overall membrane order. These novel results have potential implications in understanding the interaction of membrane lipids with this important neuronal receptor under pathogenic conditions such as the Smith-Lemli-Opitz syndrome.  相似文献   

18.
Li S  Li X  Li J  Deng X  Li Y 《Steroids》2007,72(13):875-880
BACKGROUND: Platelets play a crucial role in the development of arterial thrombosis and other pathophysiologies leading to clinical ischemic events. Defective regulation of platelet activation/aggregation is a predominant cause for arterial thrombosis. The purposes of our study are to assess the effect of androgen at physiological concentration via its receptor on oxidative-stress-induced platelet aggregation and to further elucidate the possible mechanism. METHODS AND RESULTS: Plasma dihydrotestosterone (DHT) was determined by ELISA using a commercially available kit. Platelet aggregometer was used to measure platelet aggregation. The contents of thromboxane B(2) (TXB(2)) were assayed with radio-immunoassay. Our results showed that addition of DHT (2 nM) significantly inhibited platelet aggregation induced by hydrogen peroxide (H(2)O(2)) (10 mM, 25 mM) in PRP diluted with Tyrode's buffer. Moreover, H(2)O(2)-induced platelet aggregation decreased in sham-operated rats. However, H(2)O(2)-induced platelet aggregation significantly increased in castrated rats. Replacement of DHT inhibited H(2)O(2)-induced platelet aggregation in castrated rats. After PRP was pretreated with flutamide, H(2)O(2)-induced platelet aggregation increased in castrated rats again. Presence of DHT (2 nM) obviously inhibited H(2)O(2)-induced thromboxane A(2) (TXA(2)) release in castrated rats. Pretreatment of DHT and flutamide increased H(2)O(2)-stimulated TXA(2) release from platelet in castrated rats again. Castration caused a significant reduction in plasma testosterone and DHT levels, whereas DHT replaced at a dose of 0.25 mg/rat restored the circulating DHT to physiological levels, without being altered by treatment with flutamide. The plasma TXB(2) increased in castrated rats as compared with that in sham-operated rats. Replacement with DHT reduced plasma TXB(2) contents in castrated rats. However, flutamide supplementation increased plasma contents of TXB(2) in castrated rats again. CONCLUSION: Androgen at physiological doses via its receptor inhibits oxidative-stress-induced platelet aggregation, which is associated with the reduction of TXA(2) release from platelets.  相似文献   

19.
Nitric oxide (NO), derived from catalysis of inducible NO synthase (iNOS), limits malaria parasite growth in mammals. Transforming growth factor (TGF)-beta1 suppresses iNOS in cells in vitro as well as in vivo in mice, but paradoxically severe malaria in humans is associated with low levels of TGF-beta1. We hypothesized that this paradox is a universal feature of infection and occurs in the mosquito Anopheles stephensi, an invertebrate host for Plasmodium that also regulates parasite development with inducible NO synthase (AsNOS). We show that exogenous human TGF-beta1 dose-dependently regulates mosquito AsNOS expression and that parasite killing by low dose TGF-beta1 depends on AsNOS catalysis. Furthermore, induction of AsNOS expression by TGF-beta1 is regulated by NO synthesis. These results suggest that TGF-beta1 plays similar roles during parasite infection in mammals and mosquitoes and that this role is linked to the effects of TGF-beta1 on inducible NO synthesis.  相似文献   

20.
The serotonin1A receptor is an important member of the G-protein coupled receptor family, and is involved in the generation and modulation of a variety of cognitive, behavioral, and developmental functions. Solubilization of the hippocampal serotonin1A receptor by 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS) is accompanied by loss of membrane cholesterol which results in a reduction in specific agonist binding activity. Replenishment of cholesterol to solubilized membranes restores the cholesterol content of the membrane and significantly enhances specific agonist binding activity. In order to test the stringency of the requirement of cholesterol in this process, we solubilized native hippocampal membranes followed by replenishment with 7-dehydrocholesterol (7-DHC). 7-DHC is an immediate biosynthetic precursor of cholesterol differing only in a double bond at the 7th position in its sterol ring. Our results show, for the first time, that replenishment of solubilized hippocampal membranes with 7-DHC does not restore ligand binding activity of the serotonin1A receptor, in spite of recovery of the overall membrane order. This observation shows that the requirement for restoration of ligand binding activity is more stringent than the requirement for the recovery of overall membrane order. These novel results have potential implications in understanding the interaction of membrane sterols with this important neuronal receptor under pathogenic conditions such as the Smith-Lemli-Opitz syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号