首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

While spouse correlations have been documented for numerous traits, no prior studies have assessed assortative mating for genetic ancestry in admixed populations.

Results

Using 104 ancestry informative markers, we examined spouse correlations in genetic ancestry for Mexican spouse pairs recruited from Mexico City and the San Francisco Bay Area, and Puerto Rican spouse pairs recruited from Puerto Rico and New York City. In the Mexican pairs, we found strong spouse correlations for European and Native American ancestry, but no correlation in African ancestry. In the Puerto Rican pairs, we found significant spouse correlations for African ancestry and European ancestry but not Native American ancestry. Correlations were not attributable to variation in socioeconomic status or geographic heterogeneity. Past evidence of spouse correlation was also seen in the strong evidence of linkage disequilibrium between unlinked markers, which was accounted for in regression analysis by ancestral allele frequency difference at the pair of markers (European versus Native American for Mexicans, European versus African for Puerto Ricans). We also observed an excess of homozygosity at individual markers within the spouses, but this provided weaker evidence, as expected, of spouse correlation. Ancestry variance is predicted to decline in each generation, but less so under assortative mating. We used the current observed variances of ancestry to infer even stronger patterns of spouse ancestry correlation in previous generations.

Conclusions

Assortative mating related to genetic ancestry persists in Latino populations to the current day, and has impacted on the genomic structure in these populations.  相似文献   

2.
Two-trait selection response with marker-based assortative mating   总被引:1,自引:1,他引:0  
 Marker-based assortative mating (MAM) – the mating of individuals that have similar genotypes at random marker loci – can increase selection response for a single trait by 3–8% over random mating (RM). Genetic gain is usually desired for multiple traits rather than for a single trait. My objectives in this study were to (1) compare MAM, phenotypic assortative mating (PAM), and RM of selected individuals for improving two traits and (2) determine when MAM will be most useful for improving two traits. I simulated 20 generations of selecting 32 out of 200 individuals in an F2 population. The individuals were selected based on an index (SI) of two traits and were intermated by MAM, PAM, or RM. I studied eight genetic models that differed in three contrasts: (1) weight, number of quantitative trait loci (QTL), and heritability (h 2) for each trait; (2) linkage of QTL for each trait; and (3) trait means of the inbred parents of the F2. For SI and the two component traits, MAM increased short-term selection response by 5–8% in six out of the eight genetic models. The MAM procedure was least effective in two genetic models, wherein the QTL for one trait were unlinked to the QTL for the other trait and the parents of the F2 had divergent means for each trait. The loss of QTL heterozygosity was much greater with MAM than with PAM or RM. Consequently, the advantage of MAM over RM dissipated after 5–7 generations. Differences were small between selection responses with PAM and RM. The MAM procedure can enhance short-term selection response for two traits when selection is not stringent, h 2 is low, and the means of the parents of the F2 are equal for each trait. Received: 10 June 1998 / Accepted: 5 August 1998  相似文献   

3.
The dynamics of allele frequencies changing under migration and heterogeneous selection in a subdivided population are investigated. Using perturbation techniques, a stationary state is obtained when migration and selection are both small. Heterogeneous selection leads to a positive correlation between values of F-statistics and heterozygosities when these are compared among sets of subdivided populations. This contrasts with a negative value of the correlation obtained under Wright's classical model of homogeneous selection, and with the absence of correlation in the completely neutral situation.Research supported in part by NIH grants GM 28016 and GM 10452 and a grant from the John D. and Catherine T. MacArthur Foundation  相似文献   

4.
Niche construction is a process through which organisms modify their environment and, as a result, alter the selection pressures on themselves and other species. In cultural niche construction, one or more cultural traits can influence the evolution of other cultural or biological traits by affecting the social environment in which the latter traits may evolve. Cultural niche construction may include either gene-culture or culture-culture interactions. Here we develop a model of this process and suggest some applications of this model. We examine the interactions between cultural transmission, selection, and assorting, paying particular attention to the complexities that arise when selection and assorting are both present, in which case stable polymorphisms of all cultural phenotypes are possible. We compare our model to a recent model for the joint evolution of religion and fertility and discuss other potential applications of cultural niche construction theory, including the evolution and maintenance of large-scale human conflict and the relationship between sex ratio bias and marriage customs. The evolutionary framework we introduce begins to address complexities that arise in the quantitative analysis of multiple interacting cultural traits.  相似文献   

5.
Otto SP  Servedio MR  Nuismer SL 《Genetics》2008,179(4):2091-2112
A long-standing goal in evolutionary biology is to identify the conditions that promote the evolution of reproductive isolation and speciation. The factors promoting sympatric speciation have been of particular interest, both because it is notoriously difficult to prove empirically and because theoretical models have generated conflicting results, depending on the assumptions made. Here, we analyze the conditions under which selection favors the evolution of assortative mating, thereby reducing gene flow between sympatric groups, using a general model of selection, which allows fitness to be frequency dependent. Our analytical results are based on a two-locus diploid model, with one locus altering the trait under selection and the other locus controlling the strength of assortment (a "one-allele" model). Examining both equilibrium and nonequilibrium scenarios, we demonstrate that whenever heterozygotes are less fit, on average, than homozygotes at the trait locus, indirect selection for assortative mating is generated. While costs of assortative mating hinder the evolution of reproductive isolation, they do not prevent it unless they are sufficiently great. Assortative mating that arises because individuals mate within groups (formed in time or space) is most conducive to the evolution of complete assortative mating from random mating. Assortative mating based on female preferences is more restrictive, because the resulting sexual selection can lead to loss of the trait polymorphism and cause the relative fitness of heterozygotes to rise above homozygotes, eliminating the force favoring assortment. When assortative mating is already prevalent, however, sexual selection can itself cause low heterozygous fitness, promoting the evolution of complete reproductive isolation (akin to "reinforcement") regardless of the form of natural selection.  相似文献   

6.

Background

Analytical methods have been proposed to determine whether there are evolutionarily stable strategies (ESS) for a trait of ecological significance, or whether there is disruptive selection in a population approaching a candidate ESS. These criteria do not take into account all consequences of small patch size in populations with limited dispersal.

Results

We derive local stability conditions which account for the consequences of small and constant patch size. All results are derived from considering Rm, the overall production of successful emigrants from a patch initially colonized by a single mutant immigrant. Further, the results are interpreted in term of concepts of inclusive fitness theory. The condition for convergence to an evolutionarily stable strategy is proportional to some previous expressions for inclusive fitness. The condition for evolutionary stability stricto sensu takes into account effects of selection on relatedness, which cannot be neglected. It is function of the relatedness between pairs of genes in a neutral model and also of a three-genes relationship. Based on these results, I analyze basic models of dispersal and of competition for resources. In the latter scenario there are cases of global instability despite local stability. The results are developed for haploid island models with constant patch size, but the techniques demonstrated here would apply to more general scenarios with an island mode of dispersal.

Conclusions

The results allow to identity and to analyze the relative importance of the different selective pressures involved. They bridge the gap between the modelling frameworks that have led to the Rm concept and to inclusive fitness.
  相似文献   

7.
The structure of multiloci random mating populations is examined. Sufficient conditions for the existence of stable local Hardy-Weinberg equilibria for n loci and an arbitrary number of alleles per locus, are then derived for specified situations under the assumption of multiplicative gene action between loci. It is shown that a stable Hardy-Weinberg equilibrium can not be a local maximum of the mean fitness function with multiplicative gene action between loci. The stability of Hardy-Weinberg type border points and the condition for the increase of newly introduced genes are topics on which some n-loci results are also obtained for an arbitrary number of alleles per locus in systems that allow Hardy-Weinberg equilibria.  相似文献   

8.
9.
A series of theoretical models of positive assortative mating and sexual selection are contrasted. It is established that for a dominant trait partial positive assortative mating generally implies some fixation, whereas sexual selection exhibits a unique globally stable polymorphism exhibiting Hardy-Weinberg proportions. The effects of monogamy against polygamy do not qualitatively alter the equilibrium outcomes, although the rate of evolutionary change is generally slowed with monogamy vis-à-vis polygamy. For sexual selection the influence of timing of random mating as against preferential mating causes no change in the equilibrium states, although the rates of convergence can be slowed if sexual selection occurs late in the breeding season. Under assortative mating the timing can alter the equilibrium outcomes. The amount of heterozygosity is always deficient in cases of assortative mating, but always exhibits Hardy-Weinberg ratios under a sexual selection mechanism. This suggests that observations consistent with Hardy-Weinberg equilibrium states cannot preclude ipso facto certain forms of selection forces, including mating patterns and some natural selection structures.  相似文献   

10.
Mate choice and mate competition can both influence the evolution of sexual isolation between populations. Assortative mating may arise if traits and preferences diverge in step, and, alternatively, mate competition may counteract mating preferences and decrease assortative mating. Here, we examine potential assortative mating between populations of Drosophila pseudoobscura that have experimentally evolved under either increased (‘polyandry’) or decreased (‘monogamy’) sexual selection intensity for 100 generations. These populations have evolved differences in numerous traits, including a male signal and female preference traits. We use a two males: one female design, allowing both mate choice and competition to influence mating outcomes, to test for assortative mating between our populations. Mating latency shows subtle effects of male and female interactions, with females from the monogamous populations appearing reluctant to mate with males from the polyandrous populations. However, males from the polyandrous populations have a significantly higher probability of mating regardless of the female's population. Our results suggest that if populations differ in the intensity of sexual selection, effects on mate competition may overcome mate choice.  相似文献   

11.
In precopula pairs of amphipod and isopod Crustacea in which males carry females, the males are larger than their mates and mating is size-assortative. Mate-guarding is a product of sexual selection. Size dimorphism and assortative mating have also been attributed to sexual selection but the supporting evidence for amphipods is equivocal. We describe a series of experiments confirming that relatively large male Gammarus pulex L. have an advantage because they can swim against stronger currents when carrying a mate. At higher current speeds, the male/female size ratio which forms is significantly greater, and in field collections size ratios of pairs are higher in streams than in lakes for a number of species. In a simulation we show that a size-assortative pattern inevitably develops if the observed size restriction is used as a rule for pairing. The results are discussed with respect to size-assortative mating, which has been attributed to male selectivity and male-male competition for access to large, fecund females.  相似文献   

12.
The combined effects of positive assortative mating and selection   总被引:1,自引:0,他引:1  
C T Falk 《Heredity》1971,27(1):125-136
  相似文献   

13.
We reject the published proposition that assortative mating for size in Gammarus is brought about purely as a result of spatial heterogeneity in substrate particle size. We confirm that, in general, large Gammarus prefer substrates with larger particle size than small Gammarus. However, in artificial streams in the laboratory, in choice experiments Gammarus males and females showed positive assortative mating for size in each of three substrates differing in mean particle size. We propose an explanation for assortative mating based on sexual selection.  相似文献   

14.
A study of two different populations reveals that in both the choice of a spouse is non-random not only in respect of broad ethnic group but also in regard to specific ancestries within that group. The cause of this surprising bias remains unclear.  相似文献   

15.
16.
The genetic mating structure of a subdivided population can describe how parental genotypes gave rise to zygotes. When parents of the same genotype are considered together as one class (“open-mating”), three independent parameters of inbreeding and mating structure are needed to describe this structure at a diallelic locus. One is Wright's fixation index F. The other two are mating structure parameters, derived herein and termed the “effective selfing” rate E and the “inbreeding assortative selfing” rate D. E is the genetically equivalent proportion of self-fertilization at a single locus, and is given by standardized second and third central moments of gene frequencies of mates. E is a summary measure of inbreeding that includes effects due to self-fertilization and mating to relatives, as well as correlations between mates induced by Wahlund effects and/or selective diversification among neighborhoods. The second parameter D measures the tendency of inbred or more homozygous individuals to effectively self more (or less) than outbred or more heterozygous individuals. D is related to the maintenance of variation of inbreeding among individuals and/or to the prevalence of spatial variation of selection. D is independent of E, but together with E controls the generational change of inbreeding, ΔF. Extensions of the model to unequal allele frequencies in male vs female mates, and to multi-allelic loci, are also examined.  相似文献   

17.
Summary Two mathematical models (A and B) were used to study joint effects of selection and assortative mating on genetic change. Computer simulation was used to verify and extend the results. In each model, the genotype was additive with equal effects at each of N loci and the environmental distribution was N(0, 2). In Model A, each locus had two alleles; in Model B, allelic effects at each locus followed a normal distribution. Using Model A, genetic change with assortative or random mating of selected parents was evaluated for combinations of number of loci (N = 1, 2, 3), heritability in base population (H[0] = 0.2, 0.5, 0.8), allelic frequency in base population (p = 0.1, 0.5), and proportion selected ( = 0.20, 0.85). Using Model B, genetic change with or without assortative mating was calculated for combinations of N (1, 2, 3, 5, 10, 100, H[0] (0.2, 0.5, 0.8) and (0.20, 0.85). Response to selection under both mating systems in a finite population was estimated using Model A from 200 replications of a computer simulation; this was done for all combinations of N (1,2, 3, 5, 10) and (0.20, 0.85), with H[0] = 0.5 and p = 0.1. Results obtained with both models indicate that the effect of assortative mating on genetic change increases with H[0] and , and decreases with p. With Model A, the relationship between N and the effect of assortative mating on genetic change was not clear; with Model B, however, the advantage of assortative over random mating increased with N, as expected. Simulation results were in agreement with theory of Model A. This study indicates that selection with assortative mating can have a sizable (10 to 20%) long-term advantage over selection with random mating of parents when H[0] is high, p is low and is large.  相似文献   

18.
Assortative mating is thought to play a key role in reproductive isolation. However, most experimental studies of assortative mating do not take place in multiple natural environments, and hence, they ignore its potential context dependence. We implemented an experiment in which two populations of brown trout (Salmo trutta) with different natural flow regimes were placed into semi‐natural stream channels under two different artificial flow regimes. Natural reproduction was allowed, and reproductive isolation was measured by means of parentage assignment to compare within‐population vs. between‐population male–female mating and relative offspring production. For both metrics, reproductive isolation was highly context dependent: no isolation was evident under one flow regime, but strong isolation was evident under the other flow regime. These patterns were fully driven by variance in the mating success of males from one of the two populations. Our results highlight how reproductive isolation through assortative mating can be strongly context dependent, which could have dramatic consequences for patterns of gene flow and speciation under environmental change.  相似文献   

19.
Although there have many studies of the population genetical consequences of environmental variation, little is known about the combined effects of genetic drift and fluctuating selection in structured populations. Here we use diffusion theory to investigate the effects of temporally and spatially varying selection on a population of haploid individuals subdivided into a large number of demes. Using a perturbation method for processes with multiple time scales, we show that as the number of demes tends to infinity, the overall frequency converges to a diffusion process that is also the diffusion approximation for a finite, panmictic population subject to temporally fluctuating selection. We find that the coefficients of this process have a complicated dependence on deme size and migration rate, and that changes in these demographic parameters can determine both the balance between the dispersive and stabilizing effects of environmental variation and whether selection favors alleles with lower or higher fitness variance.  相似文献   

20.
Erlandsson  J.  Rolán-Alvarez  E. 《Hydrobiologia》1998,378(1-3):59-69
Two independent components of mating behaviour, sexual selection and assortative mating, were studied in two allopatric morphs, one sheltered boulder shore form (S-morph) and one exposed cliff shore form (E-morph), of Littorina saxatilis from the west coast of Sweden. Sexual selection was studied by comparing the sizes of copulating and non-copulating snails in the field. Size assortative mating was studied by collecting copulating pairs in the field, while assortative mating between morphs was investigated by bringing the pure morphs together in intermediary habitats and then noting the matings. The S-morph mated randomly in relation to size in two of the studied populations and exhibited a trend towards size assortative mating in a third, while the E-morph showed size assortative mating in both studied populations. The microdistribution of sizes of snails on the shores could not explain all the size assortative mating found, and instead it is argued that a size-based mate rejection behaviour also contributes to the assortative mating in at least some of these populations. There was sexual selection on size in both males and females in the S-morph, with large individuals being favoured as mates. In contrast, copulating snails of the E-morph were smaller than non-copulating ones. The significantly different sexual selection intensities between the two morphs may help to explain the size differences between them. There was random mating between the E- and the S-morphs of L. saxatilis, which suggests no incipient reproductive isolation between morphs on Swedish rocky shores. This is in agreement with earlier studies of Swedish populations, but is in contrast to the situation found in other geographical areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号