首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
In addition to chemical synaptic transmission, neurons that are connected by gap junctions can also communicate rapidly via electrical synaptic transmission. Increasing evidence indicates that gap junctions not only permit electrical current flow and synchronous activity between interconnected or coupled cells, but that the strength or effectiveness of electrical communication between coupled cells can be modulated to a great extent1,2. In addition, the large internal diameter (~1.2 nm) of many gap junction channels permits not only electric current flow, but also the diffusion of intracellular signaling molecules and small metabolites between interconnected cells, so that gap junctions may also mediate metabolic and chemical communication. The strength of gap junctional communication between neurons and its modulation by neurotransmitters and other factors can be studied by simultaneously electrically recording from coupled cells and by determining the extent of diffusion of tracer molecules, which are gap junction permeable, but not membrane permeable, following iontophoretic injection into single cells. However, these procedures can be extremely difficult to perform on neurons with small somata in intact neural tissue.Numerous studies on electrical synapses and the modulation of electrical communication have been conducted in the vertebrate retina, since each of the five retinal neuron types is electrically connected by gap junctions3,4. Increasing evidence has shown that the circadian (24-hour) clock in the retina and changes in light stimulation regulate gap junction coupling3-8. For example, recent work has demonstrated that the retinal circadian clock decreases gap junction coupling between rod and cone photoreceptor cells during the day by increasing dopamine D2 receptor activation, and dramatically increases rod-cone coupling at night by reducing D2 receptor activation7,8. However, not only are these studies extremely difficult to perform on neurons with small somata in intact neural retinal tissue, but it can be difficult to adequately control the illumination conditions during the electrophysiological study of single retinal neurons to avoid light-induced changes in gap junction conductance.Here, we present a straightforward method of determining the extent of gap junction tracer coupling between retinal neurons under different illumination conditions and at different times of the day and night. This cut-loading technique is a modification of scrape loading9-12, which is based on dye loading and diffusion through open gap junction channels. Scrape loading works well in cultured cells, but not in thick slices such as intact retinas. The cut-loading technique has been used to study photoreceptor coupling in intact fish and mammalian retinas7, 8,13, and can be used to study coupling between other retinal neurons, as described here.  相似文献   

2.
Ribelayga C  Cao Y  Mangel SC 《Neuron》2008,59(5):790-801
Although rod and cone photoreceptor cells in the vertebrate retina are anatomically connected or coupled by gap junctions, a type of electrical synapse, rod-cone electrical coupling is thought to be weak. Using tracer labeling and electrical recording in the goldfish retina and tracer labeling in the mouse retina, we show that the retinal circadian clock, and not the retinal response to the visual environment, controls the extent and strength of rod-cone coupling by activating dopamine D(2)-like receptors in the day, so that rod-cone coupling is weak during the day but remarkably robust at night. The results demonstrate that circadian control of rod-cone electrical coupling serves as a synaptic switch that allows cones to receive very dim light signals from rods at night, but not in the day. The increase in the strength and extent of rod-cone coupling at night may facilitate the detection of large dim objects.  相似文献   

3.
Dye and electrical coupling of endothelial cells in situ   总被引:3,自引:0,他引:3  
J L Bény  F Gribi 《Tissue & cell》1989,21(6):797-802
Electron microscopic studies show that endothelial cells of pig coronary arteries are linked by gap junctions. We investigated the dye and electrical coupling of these junctions in a strip of pig coronary artery in vitro. The membrane potential of two neighbouring (about 0.2 mm) endothelial cells were simultaneously recorded with two microelectrodes. The fluorescent dye lucifer yellow was microiontophoretically injected through one of the microelectrodes. The endothelial cells in situ were dye and electrically coupled. The dye coupling extended parallel to the longitudinal axis of the arteries. We conclude that an electrical message like the bradykinin and substance P hyperpolarizations of the endothelial cells can be conveyed electrotonically by the endothelium along the longitudinal axis of arteries.  相似文献   

4.
神经组织缝隙连接   总被引:3,自引:0,他引:3  
Li WC 《生理科学进展》1999,30(4):321-325
近年来神经组织中缝隙连接的分布和功能研究取得了一些显著进展。分子生物学方法的应用促进了GJ结构,亚型及生物物理特性的揭示,染料偶联实验和Ca^2+成像技术为GJ的功能研究提供了直观有效的手段。GJ的调控涉及GJ的表达,导通性的改变等环节。GJ胞间通讯的基本形式是交换第二信使和电偶联。  相似文献   

5.
Connexin36 mediates spike synchrony in olfactory bulb glomeruli   总被引:8,自引:0,他引:8  
Neuronal synchrony is important to network behavior in many brain regions. In the olfactory bulb, principal neurons (mitral cells) project apical dendrites to a common glomerulus where they receive a common input. Synchronized activity within a glomerulus depends on chemical transmission but mitral cells are also electrically coupled. We examined the role of connexin-mediated gap junctions in mitral cell coordinated activity. Electrical coupling as well as correlated spiking between mitral cells projecting to the same glomerulus was entirely absent in connexin36 (Cx36) knockout mice. Ultrastructural analysis of glomeruli confirmed that mitral-mitral cell gap junctions on distal apical dendrites contain Cx36. Coupled AMPA responses between mitral cell pairs were absent in the knockout, demonstrating that electrical coupling, not transmitter spillover, is responsible for synchronization. Our results indicate that Cx36-mediated gap junctions between mitral cells orchestrate rapid coordinated signaling via a novel form of electrochemical transmission.  相似文献   

6.
As ubiquitous conduits for intercellular transport and communication, gap junctional pores have been the subject of numerous investigations aimed at elucidating the molecular mechanisms underlying permeability and selectivity. Dye transfer studies provide a broadly useful means of detecting coupling and assessing these properties. However, given evidence for selective permeability of gap junctions and some anomalous correlations between junctional electrical conductance and dye permeability by passive diffusion, the need exists to give such studies a more quantitative basis. This article develops a detailed diffusion model describing experiments (reported separately) involving transport of fluorescent dye from a "donor" region to an "acceptor" region within a pair of Xenopus oocytes coupled by gap junctions. Analysis of transport within a single oocyte is used to determine the diffusion and binding characteristics of the cellular cytoplasm. Subsequent double-cell calculations then yield the intercellular junction permeability, which is translated into a single-channel permeability using concomitant measurements of intercellular conductance, and known single-channel conductances of gap junctions made up of specific connexins, to count channels. The preceding strategy, combined with use of a graded size series of Alexa dyes, permits a determination of absolute values of gap junctional permeability as a function of dye size and connexin type. Interpretation of the results in terms of pore theory suggests significant levels of dye-pore affinity consistent with the expected order of magnitude of typical (e.g., van der Waals) intermolecular attractions.  相似文献   

7.
Dye coupling experiments were performed to determine whether the gap junctions connecting Sertoli cells with other Sertoli cells and different germ cell stages in rats showed functional variations. Chop loading of adult rat seminiferous tubules was conducted using fluorescent dextran controls and a variety of low-molecular-weight tracers (lucifer yellow, biotin-X-cadaverine, biotin cadaverine, and neurobiotin) to evaluate dye coupling in situ, and scrape loading was used to study dye coupling in Sertoli-germ cell cocultures established using prepuberal rats. Sertoli-Sertoli coupling is relatively short range and nonselective in situ, whereas coupling between Sertoli cells and chains of spermatogonia is strongly selective for the positively charged biotin tracers relative to negatively charged lucifer yellow. Coupling between Sertoli cells and spermatogonia was also asymmetric; lucifer yellow in germ cells never diffused into Sertoli cells, and biotinylated tracers only weakly diffused from spermatogonia to Sertoli cells. Asymmetric coupling would facilitate the concentration in germ cells of molecules diffusing through junctions from Sertoli cells. Dye coupling between Sertoli cells and adluminal germ cells was too weak to detect by fluorescence microscopy, suggesting that the junctional communication between these cells may be functionally different from that between Sertoli and basal germ cells. The results show that there are multiple routes of gap junction communication in rat seminiferous tubules that differ in permeability properties and show alternative gating states. Functional diversity of gap junctions may permit regulated communication among the many interacting Sertoli cells and germ cell stages in the seminiferous epithelium.  相似文献   

8.
Electron microscopic studies show that endothelial cells of pig coronary arteries are linked by gap junctions. We investigated the dye and electrical coupling of these junctions in a strip of pig coronary artery in vitro. The membrane potential of two neighbouring (about 0.2 mm) endothelial cells were simultaneously recorded with two microelectrodes. The fluorescent dye lucifer yellow was microiontophoretically injected through one of the microelectrodes. The endothelial cells in situ were dye and electrically coupled. The dye coupling extended parallel to the longitudinal axis of the arteries. We conclude that an electrical message like the bradykinin and substance P hyperpolarizations of the endothelial cells can be conveyed electrotonically by the endothelium along the longitudinal axis of arteries.  相似文献   

9.
Axo-axonal coupling. a novel mechanism for ultrafast neuronal communication   总被引:27,自引:0,他引:27  
We provide physiological, pharmacological, and structural evidence that axons of hippocampal principal cells are electrically coupled, with prepotentials or spikelets forming the physiological substrate of electrical coupling as observed in cell somata. Antidromic activation of neighboring axons induced somatic spikelet potentials in neurons of CA3, CA1, and dentate gyrus areas of rat hippocampal slices. Somatic invasion by these spikelets was dependent on the activation of fast Na(+) channels in the postjunctional neuron. Antidromically elicited spikelets were suppressed by gap junction blockers and low intracellular pH. Paired axo-somatic and somato-dendritic recordings revealed that the coupling potentials appeared in the axon before invading the soma and the dendrite. Using confocal laser scanning microscopy we found that putative axons of principal cells were dye coupled. Our data thus suggest that hippocampal neurons are coupled by axo-axonal junctions, providing a novel mechanism for very fast electrical communication.  相似文献   

10.
Pancreatic beta-cells constitute a well-communicating multicellular network that permits a coordinated and synchronized signal transmission within the islet of Langerhans that is necessary for proper insulin release. Gap junctions are the molecular keys that mediate functional cellular connections, which are responsible for electrical and metabolic coupling in the majority of cell types. Although the role of gap junctions in beta-cell electrical coupling is well documented, metabolic communication is still a matter of discussion. Here, we have addressed this issue by use of a fluorescence recovery after photobleaching (FRAP) approach. This technique has been validated as a reliable and noninvasive approach to monitor functional gap junctions in real time. We show that control pancreatic islet cells did not exchange a gap junction-permeant molecule in either clustered cells or intact islets of Langerhans under conditions that allowed cell-to-cell exchange of current-carrying ions. Conversely, we have detected that the same probe was extensively transferred between islet cells of transgenic mice expressing connexin 32 (Cx32) that have enhanced junctional coupling properties. The results indicate that the electrical coupling of native islet cells is more extensive than dye communication. Dye-coupling domains in islet cells appear more restricted than previously inferred with other methods.  相似文献   

11.
'Non-synaptic' mechanisms in seizures and epileptogenesis   总被引:8,自引:0,他引:8  
The role of 'non-synaptic' mechanisms (i.e. those mechanisms that are independent of active chemical synpases) in the synchronization of neuronal activity during seizures and their possible contribution to chronic epileptogenesis are summarized. These 'non-synaptic' mechanisms include electrotonic coupling through gap junctions, electrical field effects (i.e. ephaptic transmission), and ionic interactions (e.g. increases in the extracellular concentration of K(+)). Several lines of evidence indicate that granule cells and pyramidal cells of the hippocampus, and probably other cortical neurons, can generate synchronized electrical activity after active chemical synaptic transmission has been blocked. This synchronized activity is sensitive to alterations in the size of the extracellular space, thus suggesting that electrical field effects and ionic mechanisms contribute to this synchronized activity. Recent studies also indicate that 'non-synaptic' synchronization is quite prominent early in development. Electrophysiological data from hippocampal and neocortical slices have led to a re-interpretation of the fast prepotentials (i.e. partial spikes) recorded in cortical pyramidal cells, suggesting that they may not be due to dendritic spike generation. Improvement in freeze-fracture ultrastructural techniques have led to a re-assessment of previous data on gap junctions in the nervous system and opened new approaches to the quantitative analysis and characterization of gap junctions on glia and neurons. Finally, new methods of dye/tracer coupling have the potential to provide a more rigorous basis for evaluating gap junctions and electrotonic communication between neurons in the mammalian central nervous system. Therefore, recent data continue to suggest that gap junctions and electrotonic coupling play an important role in neural integration, although additional studies using new techniques will be needed to address some of the controversial issues that have arisen over the last several decades.  相似文献   

12.
Emergent properties of electrically coupled smooth muscle cells   总被引:1,自引:0,他引:1  
Asynchronous and synchronous calcium oscillations occur in a variety of cells. A well-established pathway for intercellular communication is provided by gap junctions which connect adjacent cells and can mediate electrical and chemical coupling. Several experimental studies report that cells presenting only a transient increase when freshly dispersed may oscillate when they are coupled. Such observations suggest that the role of gap junctions is not only to coordinate calcium oscillations of adjacent cells. Gap junctions may also be important to generate oscillations. Here we illustrate the emergent properties of electrically coupled smooth muscle cells using a model that we recently proposed. A bifurcation analysis in the case of two cells reveals that synchronous and asynchronous calcium oscillations can be induced by electrical coupling. In a larger population of smooth muscle cells, electrical coupling may result in the creation of groups of cells presenting synchronous calcium oscillations. The elements of one group may be distant from each other. Moreover, our results highlight a general mechanism by which gap junctional electrical coupling can give rise to out of phase calcium oscillations in smooth muscle cells that are non-oscillating when uncoupled. All these observations remain true in the case of non-identical cells, except that the solution corresponding to synchronous calcium oscillations disappears and that the formation of groups is sensitive to the degree of heterogeneity. The first two authors contributed equally to this work.  相似文献   

13.
In mammals, the part of the nervous system responsible for most circadian behavior can be localized to a pair of structures in the hypothalamus known as the suprachiasmatic nucleus (SCN). Importantly, when SCN neurons are removed from the organism and maintained in a brain slice preparation, they continue to generate 24h rhythms in electrical activity, secretion, and gene expression. Previous studies suggest that the basic mechanism responsible for the generation of these rhythms is intrinsic to individual cells in the SCN. If we assume that individual cells in the SCN are competent circadian oscillators, it is obviously important to understand how these cells communicate and remain synchronized with each other. Cell-to-cell communication is clearly necessary for conveying inputs to and outputs from the SCN and may be involved in ensuring the high precision of the observed rhythm. In addition, there is a growing body of evidence that a number of systems-level phenomena could be dependent on the cellular communication between circadian pacemaker neurons. It is not yet known how this cellular synchronization occurs, but it is likely that more than one of the already proposed mechanisms is utilized. The purpose of this review is to summarize briefly the possible mechanisms by which the oscillatory cells in the SCN communicate with each other. (Chronobiology International, 18(4)579-600, 2001)  相似文献   

14.
The suprachiasmatic nucleus (SCN) of the hypothalamus is the site of the pacemaker that controls circadian rhythms of a variety of physiological functions. Data strongly indicate the majority of the SCN neurons express self-sustaining oscillations that can be detected as rhythms in the spontaneous firing of individual neurons. The period of single SCN neurons in a dissociated cell culture is dispersed in a wide range (from 20h to 28h in rats), but that of the locomotor rhythm is close to 24h, suggesting individual oscillators are coupled to generate an averaged circadian period in the nucleus. Electrical coupling via gap junctions, glial regulation, calcium spikes, ephaptic interactions, extracellular ion flux, and diffusible substances have been discussed as possible mechanisms that mediate the interneuronal rhythm synchrony. Recently, GABA (γ-aminobutyric acid), a major neurotransmitter in the SCN, was reported to regulate cellular communication and to synchronize rhythms through GABAA receptors. At present, subsequent intracellular processes that are able to reset the genetic loop of oscillations are unknown. There may be diverse mechanisms for integrating the multiple circadian oscillators in the SCN. This article reviews the knowledge about the various circadian oscillations intrinsic to the SCN, with particular focus on the intercellular signaling of coupled oscillators. (Chronobiology International, 18(3), 371-387, 2001)  相似文献   

15.
The suprachiasmatic nucleus (SCN) of the hypothalamus is the site of the pacemaker that controls circadian rhythms of a variety of physiological functions. Data strongly indicate the majority of the SCN neurons express self-sustaining oscillations that can be detected as rhythms in the spontaneous firing of individual neurons. The period of single SCN neurons in a dissociated cell culture is dispersed in a wide range (from 20h to 28h in rats), but that of the locomotor rhythm is close to 24h, suggesting individual oscillators are coupled to generate an averaged circadian period in the nucleus. Electrical coupling via gap junctions, glial regulation, calcium spikes, ephaptic interactions, extracellular ion flux, and diffusible substances have been discussed as possible mechanisms that mediate the interneuronal rhythm synchrony. Recently, GABA (γ-aminobutyric acid), a major neurotransmitter in the SCN, was reported to regulate cellular communication and to synchronize rhythms through GABAA receptors. At present, subsequent intracellular processes that are able to reset the genetic loop of oscillations are unknown. There may be diverse mechanisms for integrating the multiple circadian oscillators in the SCN. This article reviews the knowledge about the various circadian oscillations intrinsic to the SCN, with particular focus on the intercellular signaling of coupled oscillators. (Chronobiology International, 18(3), 371–387, 2001)  相似文献   

16.
Ovarian granulosa cells arecoupled via gap junctions containing connexin43 (Cx43 or -1connexin). In the absence of Cx43, granulosa cells stop growing in anearly preantral stage. However, the fact that granulosa cells of maturefollicles express multiple connexins complicated interpretation of thisfinding. The present experiments were designed to clarify the role ofCx43 vs. these other connexins in the earliest stages offolliculogenesis. Dye injection experiments revealed that granulosacells from Cx43 knockout follicles are not coupled, and this wasconfirmed by ionic current injections. Furthermore, electron microscopyrevealed that gap junctions are extremely rare in mutant granulosacells. In contrast, mutant granulosa cells were able to form gapjunctions with wild-type granulosa cells in a dye preloading assay. Itwas concluded that mutant granulosa cells contain a population of connexons, composed of an unidentified connexin, that do not normally contribute to gap junctions. Therefore, although Cx43 is not the onlygap junction protein present in granulosa cells of early preantralfollicles, it is the only one that makes a significant contribution tointercellular coupling.

  相似文献   

17.
Intercellular communication via gap junctions, as measured by dye and electrical coupling, disappears within 12 h in primary rat hepatocytes cultured in serum-supplemented media or within 24 h in cells in a serum-free, hormonally defined medium (HDM) designed for hepatocytes. Glucagon and linoleic acid/BSA were the primary factors in the HDM responsible for the extended life span of the electrical coupling. After 24 h of culture, no hormone or growth factor tested could restore the expression of gap junctions. After 4-5 d of culture, the incidence of coupling was undetectable in a serum-supplemented medium and was only 4-5% in HDM alone. However, treatment with glycosaminoglycans or proteoglycans of 24-h cultures, having no detectable gap junction protein, resulted in synthesis of gap junction protein and of reexpression of electrical and dye coupling within 48 h. Most glycosaminoglycans were inactive (heparan sulfates, chondroitin-6 sulfates) or only weakly active (dermatan sulfates, chondroitin 4-sulfates, hyaluronates), the weakly active group increasing the incidence of coupling to 10-30% with the addition of 50-100 micrograms/ml of the factor. Treatment of the cells with 50-100 micrograms/ml of heparins derived from lung or intestine resulted in cells with intermediate levels of coupling (30-50%). By contrast, 10-20 micrograms/ml of chondroitin sulfate proteoglycan, dermatan sulfate proteoglycan, or liver-derived heparin resulted in dye coupling in 80-100% of the cells, with numerous cells showing dye spread from a single injected cell. Sulfated polysaccharides of glucose (dextran sulfates) or of galactose (carrageenans) were inactive or only weakly active except for lambda-carrageenan, which induced up to 70% coupling (albeit no multiple coupling in the cultures). The abundance of mRNA (Northern blots) encoding gap junction protein and the amounts of the 27-kD gap junction polypeptide (Western blots) correlated with the degree of electrical and dye coupling indicating that the active glycosaminoglycans and proteoglycans are inducing synthesis and expression of gap junctions. Thus, proteoglycans and glycosaminoglycans, especially those found in abundance in the extracellular matrix of liver cells, are important in the regulation of expression of gap junctions and, thereby, in the regulation of intercellular communication in the liver. The relative potencies of heparins from different tissue sources at inducing gap junction expression are suggestive of functional tissue specificity for these glycosaminoglycans.  相似文献   

18.
In mammals, the part of the nervous system responsible for most circadian behavior can be localized to a pair of structures in the hypothalamus known as the suprachiasmatic nucleus (SCN). Importantly, when SCN neurons are removed from the organism and maintained in a brain slice preparation, they continue to generate 24h rhythms in electrical activity, secretion, and gene expression. Previous studies suggest that the basic mechanism responsible for the generation of these rhythms is intrinsic to individual cells in the SCN. If we assume that individual cells in the SCN are competent circadian oscillators, it is obviously important to understand how these cells communicate and remain synchronized with each other. Cell-to-cell communication is clearly necessary for conveying inputs to and outputs from the SCN and may be involved in ensuring the high precision of the observed rhythm. In addition, there is a growing body of evidence that a number of systems-level phenomena could be dependent on the cellular communication between circadian pacemaker neurons. It is not yet known how this cellular synchronization occurs, but it is likely that more than one of the already proposed mechanisms is utilized. The purpose of this review is to summarize briefly the possible mechanisms by which the oscillatory cells in the SCN communicate with each other. (Chronobiology International, 18(4)579–600, 2001)  相似文献   

19.
In insect gap junctions, species-specific differences occur in response to the purported gap junction uncoupling agent, 1-octanol. Changes in gap junctional communication between oocytes and their epithelial cells following treatment with 1-octanol were assayed in Oncopeltus fasciatus (the milkweed bug), Hyalophora cecropia (the American silk moth), and Drosophila melanogaster. In all three species, microinjection of untreated control follicles with Lucifer yellow CH revealed extensive dye coupling among epithelial cells and between epithelial cells and their oocytes. Also for all three species, treatment with octanol appeared to completely block dye coupling and increase oocyte input resistance. The effect on electrical coupling varied. In Drosophila, octanol diminished the electrical coupling from 64% (0.64 coupling coefficient) in controls to 53% in treated follicles. In Hyalophora, the coupling ratio remained the same following treatment. In Oncopeltus, octanol actually increased the electrical coupling ratio from 84% in controls to 94% in treated follicles. While 0.5 mM octanol left some Oncopeltus epithelial cells dye coupled to the oocyte, the electrical coupling ratio was increased slightly more by this concentration than by 1 or 5 mM octanol solutions, although the differences were not significant. While input resistance (R(o )) increased in all three following treatment with octanol, there was considerable difference in the magnitude of the response. Average oocyte R(o ) for Oncopeltus increased the least of the three species, rising from 196-240 kOhm. Both Hyalophora, with a nearly fourfold increase from 230-900 kOhm or more, and Drosophila, with a twofold increase from 701 kOhm to over 1.2 MegOhm showed much larger changes. Results shown here indicate that insect gap junctions have more varied responses to this common gap junction antagonist than have been reported for their vertebrate counterparts. Arch.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号