首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jiang W  Hallberg RL 《Genetics》2001,158(4):1413-1429
In Schizosaccharomyces pombe, the initiation of cytokinesis is regulated by a septation initiation network (SIN). We previously reported that deletion of par1 and par2, two S. pombe genes encoding B' regulatory subunits of protein phosphatase 2A, causes a multiseptation phenotype, very similar to that seen in hyperactive SIN mutants. In this study, we examined the genetic interactions between par deletions and mutations in the genes encoding components of SIN and found that deletion of par1 and par2 suppressed the morphological and viability defects caused by overproduction of Byr4p and rescued a loss-of-function allele of spg1. However, par deletions could not suppress any mutations in genes downstream of spg1 in the SIN pathway. We showed further that, in suppressing the lethality of a spg1 loss-of-function allele, the correct localization of Cdc7p to the spindle pole body (SPB), which is normally lost in spg1 mutant cells, was restored. The fact that par mutant cells themselves exhibited a symmetric localization of Cdc7p to SPBs indicated a hyperactivity of SIN in such cells. On the basis of our epistasis analyses and cytological studies, we concluded that par genes normally negatively regulate SIN at or upstream of cdc7, ensuring that multiple rounds of septation do not occur.  相似文献   

2.
The fission yeast septation initiation network (SIN) triggers the onset of septum formation and cytokinesis. SIN proteins signal from the spindle pole body (SPB), to which they bind in a cell cycle-dependent manner, via the scaffold proteins sid4p and cdc11p. cdc11p becomes hyperphosphorylated during anaphase, when the SIN is active. We have investigated the phosphorylation state of cdc11p during mitosis in various mutant backgrounds. We show that association of cdc11p with the spindle pole body is required for its phosphorylation and that ectopic activation of the SIN results in hyperphosphorylation of cdc11p. We demonstrate that mitotic hyperphosphorylation of cdc11p requires the activity of cdc7p and that its dephosphorylation at the end of mitosis requires PP2A-par1p. Furthermore, spindle checkpoint arrest prevents cdc11p hyperphosphorylation. Finally, we show that the septation inhibitor byr4p interacts preferentially with hypophosphorylated cdc11p. We conclude that cdc11p hyperphosphorylation correlates with activation of the SIN and that this may be mediated primarily by cdc7p in vivo.  相似文献   

3.
4.
Krapp A  Cano E  Simanis V 《FEBS letters》2004,565(1-3):176-180
The initiation of cytokinesis in the fission yeast Schizosaccharomyces pombe is signalled by the septation initiation network (SIN). Signalling originates from the spindle pole body (SPB), where SIN proteins are anchored by a scaffold composed of cdc11p and sid4p. Cdc11p links the other SIN proteins to sid4p and the SPB. Homologues of cdc11p have been identified in Saccharomyes cerevisiae (Nud1p) and human cells (Centriolin). We have defined functional domains of cdc11p by analysis of deletion mutants. We demonstrate that the C-terminal end of cdc11p is necessary for SPB localisation. We also show that the N-terminal domain is necessary and sufficient for signal transduction, since tethering of this domain to the SPB will substitute for cdc11p in SIN function.  相似文献   

5.
BACKGROUND: The signal for the onset of septum formation in the fission yeast Schizosaccharomyces pombe is transduced by the septation initiation network (SIN). Many of the components of the SIN are located on the spindle pole body during mitosis, from where it is presumed that the signal for septum formation is delivered. Cdc11 mutants are defective in SIN signaling, but the role of cdc11 in the pathway has remained enigmatic. RESULTS: We have cloned the cdc11 gene by a combination of chromosome walking and transfection of cosmids into a cdc11 mutant. Cdc11p most closely resembles Saccharomyces cerevisiae Nud1p and is essential for septum formation. Cdc11p is a phosphoprotein, which becomes hyperphosphorylated during anaphase. It localizes to the spindle pole body at all stages of the cell cycle, in a sid4p-dependent manner, and cdc11p is required for the localization of all the known SIN components, except sid4p, to the SPB. Cdc11p and sid4p can be coimmunoprecipitated from cell extracts. Finally, like its S. cerevisiae ortholog Nud1p, cdc11p is involved in the proper organization of astral microtubules during mitosis. CONCLUSIONS: We propose that cdc11p acts as a bridge between sid4p and the other SIN proteins, mediating their association with the spindle pole body.  相似文献   

6.
Saccharomyces cerevisiae, like most eucaryotic cells, can prevent the onset of anaphase until chromosomes are properly aligned on the mitotic spindle. We determined that Cdc55p (regulatory B subunit of protein phosphatase 2A [PP2A]) is required for the kinetochore/spindle checkpoint regulatory pathway in yeast. ctf13 cdc55 double mutants could not maintain a ctf13-induced mitotic delay, as determined by antitubulin staining and levels of histone H1 kinase activity. In addition, cdc55::LEU2 mutants and tpd3::LEU2 mutants (regulatory A subunit of PP2A) were nocodazole sensitive and exhibited the phenotypes of previously identified kinetochore/spindle checkpoint mutants. Inactivating CDC55 did not simply bypass the arrest that results from inhibiting ubiquitin-dependent proteolysis because cdc16-1 cdc55::LEU2 and cdc23-1 cdc55::LEU2 double mutants arrested normally at elevated temperatures. CDC55 is specific for the kinetochore/spindle checkpoint because cdc55 mutants showed normal sensitivity to gamma radiation and hydroxyurea. The conditional lethality and the abnormal cellular morphogenesis of cdc55::LEU2 were suppressed by cdc28F19, suggesting that the cdc55 phenotypes are dependent on the phosphorylation state of Cdc28p. In contrast, the nocodazole sensitivity of cdc55::LEU2 was not suppressed by cdc28F19. Therefore, the mitotic checkpoint activity of CDC55 (and TPD3) is independent of regulated phosphorylation of Cdc28p. Finally, cdc55::LEU2 suppresses the temperature sensitivity of cdc20-1, suggesting additional roles for CDC55 in mitosis.  相似文献   

7.
Cullen CF  May KM  Hagan IM  Glover DM  Ohkura H 《Genetics》2000,155(4):1521-1534
We describe a general genetic method to identify genes encoding proteins that functionally interact with and/or are good candidates for downstream targets of a particular gene product. The screen identifies mutants whose growth depends on high levels of expression of that gene. We apply this to the plo1(+) gene that encodes a fission yeast homologue of the polo-like kinases. plo1(+) regulates both spindle formation and septation. We have isolated 17 high plo1(+)-dependent (pld) mutants that show defects in mitosis or septation. Three mutants show a mitotic arrest phenotype. Among the 14 pld mutants with septation defects, 12 mapped to known loci: cdc7, cdc15, cdc11 spg1, and sid2. One of the pld mutants, cdc7-PD1, was selected for suppressor analysis. As multicopy suppressors, we isolated four known genes involved in septation in fission yeast: spg1(+), sce3(+), cdc8(+), and rho1(+), and two previously uncharacterized genes, mpd1(+) and mpd2(+). mpd1(+) exhibits high homology to phosphatidylinositol 4-phosphate 5-kinase, while mpd2(+) resembles Saccharomyces cerevisiae SMY2; both proteins are involved in the regulation of actin-mediated processes. As chromosomal suppressors of cdc7-PD1, we isolated mutations of cdc16 that resulted in multiseptation without nuclear division. cdc16(+), dma1(+), byr3(+), byr4(+) and a truncated form of the cdc7 gene were isolated by complementation of one of these cdc16 mutations. These results demonstrate that screening for high dose-dependent mutants and their suppressors is an effective approach to identify functionally interacting genes.  相似文献   

8.
Cell division in the fission yeast Schizosaccharomyces pombe requires the formation and constriction of an actomyosin ring at the division site. The actomyosin ring is assembled in metaphase and anaphase A, is maintained throughout mitosis, and constricts after completion of anaphase. Maintenance of the actomyosin ring during late stages of mitosis depends on the septation initiation network (SIN), a signaling cascade that also regulates the deposition of the division septum. However, SIN is not active in metaphase and is not required for the initial assembly of the actomyosin ring early in mitosis. The FER/CIP4-homology (FCH) domain protein Cdc15p is a component of the actomyosin ring. Mutations in cdc15 lead to failure in cytokinesis and result in the formation of elongated, multinucleate cells without a division septum. Here we present evidence that the requirement of Cdc15p for actomyosin ring formation is dependent on the stage of mitosis. Although cdc15 mutants are competent to assemble actomyosin rings in metaphase, they are unable to maintain actomyosin rings late in mitosis when SIN is active. In the absence of functional Cdc15p, ring formation upon metaphase arrest depends on the anillin-like Mid1p. Interestingly, when cytokinesis is delayed due to perturbations to the division machinery, Cdc15p is maintained in a hypophosphorylated form. The dephosphorylation of Cdc15p, which occurs transiently in unperturbed cytokinesis, is partially dependent on the phosphatase Clp1p/Flp1p. This suggests a mechanism where both SIN and Clp1p/Flp1p contribute to maintenance of the actomyosin ring in late mitosis through Cdc15p, possibly by regulating its phosphorylation status.  相似文献   

9.
In budding yeast Saccharomyces cerevisiae, Cdc5 kinase is a component of mitotic exit network (MEN), which inactivates cyclin-dependent kinase (CDK) after chromosome segregation. cdc5-1 mutants arrest at telophase at the nonpermissive temperature due to the failure of CDK inactivation. To identify more negative regulators of MEN, we carried out a genetic screen for genes that are toxic to cdc5-1 mutants when overexpressed. Genes that encode the B-regulatory subunit (Cdc55) and the three catalytic subunits (Pph21, Pph22, and Pph3) of phosphatase 2A (PP2A) were isolated. In addition to cdc5-1, overexpression of CDC55, PPH21, or PPH22 is also toxic to other temperature-sensitive mutants that display defects in mitotic exit. Consistently, deletion of CDC55 partially suppresses the temperature sensitivity of these mutants. Moreover, in the presence of spindle damage, PP2A mutants display nuclear localized Cdc14, the key player in MEN pathway, indicative of MEN activation. All the evidence suggests the negative role of PP2A in mitotic exit. Finally, our genetic and biochemical data suggest that PP2A regulates the phosphorylation of Tem1, which acts at the very top of MEN pathway.  相似文献   

10.
The protein phosphatase activity in rat liver cytosol or nuclear extracts that dephosphorylates histone H1 which has been phosphorylated by p34cdc2 is inhibited completely by okadaic acid, but unaffected by inhibitor-2 or magnesium ions, demonstrating that the only enzyme in this tissue capable of dephosphorylating this substrate is a type 2A phosphatase. Fractionation of the cytosol by anion-exchange chromatography and gel filtration demonstrated that histone H1 phosphatase activity coeluted with the major species of protein phosphatase 2A, termed PP2A1 and PP2A2. PP2A1 was the most active histone H1 phosphatase, its histone phosphatase phosphorylase phosphatase activity ratio being 6-fold higher than PP2A2 and 30-fold higher than the free catalytic subunit PP2AC. It is concluded that PP2A1 is likely to be the enzyme which dephosphorylates p34cdc2-labelled histone H1 in vivo and that the A and B subunits which interact with PP2AC in this species each play a key role in facilitating dephosphorylation of this substrate. The results demonstrate that PP2A, in addition to being involved in suppressing the activation of p34cdc2 in vivo, can also function to reverse at least one of its actions.  相似文献   

11.
Loss of the nonessential RNA-binding domain protein, Scw1, increases resistance to cell-wall-degrading enzymes in fission yeast. Surprisingly, scw1 null mutations also suppress the lethality of mutations (cdc11-136, cdc7-24, cdc14-118, sid1-239, sid2-250, sid3-106, sid4-A1, and mob1-1) at all levels of the sid pathway. This pathway forms part of the septation initiation network (SIN), which regulates the onset of septum formation and ensures the proper coupling of mitosis to cytokinesis. In contrast, scw1(-) mutations do not suppress ts alleles of the rng genes, cdc12 or cdc15. These mutations also prevent the formation of a septum and in addition block assembly and/or function of the contractile acto-myosin ring. sid mutants exhibit a hyper-sensitivity to cell-wall-degrading enzymes that is suppressed by loss of Scw1. Furthermore, scw1(-)-mediated rescue of sid mutants is abolished in the presence of calcofluor white, a compound that interferes with cell-wall synthesis. These data suggest that Scw1 acts in opposition to the SIN as a negative regulator of cell-wall/septum deposition. Unlike components of the SIN, Scw1 is predominantly a cytoplasmic protein and is not localized to the spindle pole body.  相似文献   

12.
Myo2 truncations fused to green fluorescent protein (GFP) defined a C-terminal domain essential for the localization of Myo2 to the cytokinetic actin ring (CAR). The localization domain contained two predicted phosphorylation sites. Mutation of serine 1518 to alanine (S(1518)A) abolished Myo2 localization, whereas Myo2 with a glutamic acid at this position (S(1518)E) localized to the CAR. GFP-Myo2 formed rings in the septation initiation kinase (SIN) mutant cdc7-24 at 25 degrees C but not at 36 degrees C. GFP-Myo2S(1518)E rings persisted at 36 degrees C in cdc7-24 but not in another SIN kinase mutant, sid2-250. To further examine the relationship between Myo2 and the SIN pathway, the chromosomal copy of myo2(+) was fused to GFP (strain myo2-gc). Myo2 ring formation was abolished in the double mutants myo2-gc cdc7.24 and myo2-gc sid2-250 at the restrictive temperature. In contrast, activation of the SIN pathway in the double mutant myo2-gc cdc16-116 resulted in the formation of Myo2 rings which subsequently collapsed at 36 degrees C. We conclude that the SIN pathway that controls septation in fission yeast also regulates Myo2 ring formation and contraction. Cdc7 and Sid2 are involved in ring formation, in the case of Cdc7 by phosphorylation of a single serine residue in the Myo2 tail. Other kinases and/or phosphatases may control ring contraction.  相似文献   

13.
E Villa-Moruzzi 《FEBS letters》1992,304(2-3):211-215
Purified cdc2 or cdc2 obtained from HeLa cells in association with p13suc1 activate inactive type-1 protein phosphatase (PP1) (catalytic subunit.inhibitor-2 complex, purified from skeletal muscle). Likewise in the case of PP1 activation by FA/GSK3, activation by cdc2 is accompanied by phosphorylation of inhibitor-2 (I2) and free I2 can be phosphorylated as well. Correlation between PP1 activation and I2 phosphorylation is suggested by the fact that both activation and phosphorylation (a) increase in parallel during incubation with cdc2, (b) decrease in parallel upon subsequent cdc2 inhibition by EDTA, and (c) are inhibited by the cdc2 inhibitor 5,6-dichlorobenzimidazole riboside. cdc2 also phosphorylates the catalytic subunit of PP1, whether in the complex with I2 or as free molecule. The activation of PP1 by cdc2 and by FA/GSK3 is compared.  相似文献   

14.
DNA replication stress activates the S-phase checkpoint that arrests the cell cycle, but it is poorly understood how cells recover from this arrest. Cyclin-dependent kinase (CDK) and protein phosphatase 2A (PP2A) are key cell cycle regulators, and Cdc55 is a regulatory subunit of PP2A in budding yeast. We found that yeast cells lacking functional PP2ACdc55 showed slow growth in the presence of hydroxyurea (HU), a DNA synthesis inhibitor, without obvious viability loss. Moreover, PP2A mutants exhibited delayed anaphase entry and sustained levels of anaphase inhibitor Pds1 after HU treatment. A DNA damage checkpoint Chk1 phosphorylates and stabilizes Pds1. We show that chk1Δ and mutation of the Chk1 phosphorylation sites in Pds1 largely restored efficient anaphase entry in PP2A mutants after HU treatment. In addition, deletion of SWE1, which encodes the inhibitory kinase for CDK or mutation of the Swe1 phosphorylation site in CDK (cdc28F19), also suppressed the anaphase entry delay in PP2A mutants after HU treatment. Our genetic data suggest that Swe1/CDK acts upstream of Pds1. Surprisingly, cdc55Δ showed significant suppression to the viability loss of S-phase checkpoint mutants during DNA synthesis block. Together, our results uncover a PP2A-Swe1-CDK-Chk1-Pds1 axis that promotes recovery from DNA replication stress.  相似文献   

15.
The septation initiation network (SIN) triggers the onset of cytokinesis in the fission yeast Schizosaccharomyces pombe by promoting contraction of the medially placed F-actin ring. SIN signaling is regulated by the polo-like kinase plo1p and by cdc2p, the initiator of mitosis, and its activation is co-ordinated with other events in mitosis to ensure that cytokinesis does not begin until chromosomes have been separated. Though the SIN controls the contractile ring, the signal originates from the poles of the mitotic spindle. Recent studies suggest that the spindle pole body may act as a dynamic assembly site for active SIN signaling complexes. In the budding yeast Saccharomyces cerevisiae the counterpart of the SIN, called the MEN, mediates both mitotic exit and cytokinesis, in part through regulating activation of the phosphoprotein phosphatase Cdc14p. Flp1p, the S. pombe ortholog of Cdc14p, is not essential for mitotic exit, but may contribute to an orderly mitosis-G1 transition by regulating the destruction of the mitotic inducer cdc25p.  相似文献   

16.
CDC37 is required for p60v-src activity in yeast.   总被引:6,自引:0,他引:6       下载免费PDF全文
Mutations in genes encoding the molecular chaperones Hsp90 and Ydj1p suppress the toxicity of the protein tyrosine kinase p60v-src in yeast by reducing its levels or its kinase activity. We describe isolation and characterization of novel p60v-src-resistant, temperature-sensitive cdc37 mutants, cdc37-34 and cdc37-17, which produce less p60v-src than the parental wild-type strain at 23 degrees C. However, p60v-src levels are not low enough to account for the resistance of these strains. Asynchronously growing cdc37-34 and cdc37-17 mutants arrest in G1 and G2/M when shifted from permissive temperatures (23 degrees C) to the restrictive temperature (37 degrees C), but hydroxyurea-synchronized cdc37-34 and cdc37-17 mutants arrest in G2/M when released from the hydroxyurea block and shifted from 23 to 37 degrees C. The previously described temperature-sensitive cdc37-1 mutant is p60v-src-sensitive and produces wild-type amounts of p60v-src at permissive temperatures but becomes p60v-src-resistant at its restrictive temperature, 38 degrees C. In all three cdc37 mutants, inactivation of Cdc37p by incubation at 38 degrees C reduces p60v-src-dependent tyrosine phosphorylation of yeast proteins to low or undetectable levels. Also, p60v-src levels are enriched in urea-solubilized extracts and depleted in detergent-solubilized extracts of all three cdc37 mutants prepared from cells incubated at the restrictive temperature. These results suggest that Cdc37p is required for maintenance of p60v-src in a soluble, biologically active form.  相似文献   

17.
Coordination of mitosis and cytokinesis is crucial for ensuring proper chromosome segregation and genomic stability. In Schizosaccharomyces pombe, the sid genes (cdc7, cdc11, cdc14, spg1, sid1, sid2 and sid4) define a signaling pathway that regulates septation and cytokinesis. Here we describe the characterization of a novel protein kinase, Sid1p. Sid1p localizes asymmetrically to one spindle pole body (SPB) in anaphase. Sid1p localization is maintained during medial ring constriction and septum synthesis and disappears prior to cell separation. Additionally, we found that Cdc14p is in a complex with Sid1p. Epistasis analysis places Sid1p-Cdc14p downstream of Spg1p-Cdc7p but upstream of Sid2p. Finally, we show that cyclin proteolysis during mitosis is unaffected by inactivating the sid pathway; in fact, loss of Cdc2-cyclin activity promotes Sid1p-Cdc14p association with the SPB, possibly providing a mechanism that couples cytokinesis with mitotic exit.  相似文献   

18.
R Rowley 《Radiation research》1992,132(2):144-152
Radiation-induced mitotic delay is under investigation in the fission yeast, Schizosaccharomyces pombe. A large range of cell cycle- and radiation-sensitive mutants of this yeast is available to facilitate this effort. Through an examination of such mutants it has been shown that the X-ray transition point and the p34cdc2 execution point are coincident; wee1- strains are not delayed by irradiation; and the radiation-sensitive mutants rad1-1, rad3-136, rad9-192, and rad17-W are not delayed by radiation or by inhibitors of DNA synthesis, including hydroxyurea. A model is proposed: Damaged DNA generates a signal to delay mitosis which is carried by the products of the rad genes to activate the tyrosine kinase p110wee1. This in turn inactivates the serine/threonine kinase p34cdc2, thereby blocking entry to mitosis. Unreplicated DNA also initiates a signal to delay mitosis which is carried by these same rad genes but, as indicated in the literature, transmission to p34cdc2 does not require p110wee1. The delay-deficient rad mutants may possess some properties of tumor suppressor genes, with implications for mutagenesis and oncogenesis.  相似文献   

19.
CDC55 encodes a Saccharomyces cerevisiae protein phosphatase 2A (PP2A) regulatory subunit. cdc55-null cells growing at low temperature exhibit a failure of cytokinesis and produce abnormally elongated buds, but cdc55-null cells producing the cyclin-dependent kinase Cdc28-Y19F, which is unable to be inhibited by Y19 phosphorylation, show a loss of the abnormal morphology. Furthermore, cdc55-null cells exhibit a hyperphosphorylation of Y19. For these reasons, we have examined in wild-type and cdc55-null cells the levels and activities of the kinase (Swe1p) and phosphatase (Mih1p) that normally regulate the extent of Cdc28 Y19 phosphorylation. We find that Mih1p levels are comparable in the two strains, and an estimate of the in vivo and in vitro phosphatase activity of this enzyme in the two cell types indicates no marked differences. By contrast, while Swe1p levels are similar in unsynchronized and S-phase-arrested wild-type and cdc55-null cells, Swe1 kinase is found at elevated levels in mitosis-arrested cdc55-null cells. This excess Swe1p in cdc55-null cells is the result of ectopic stabilization of this protein during G(2) and M, thereby accounting for the accumulation of Swe1p in mitosis-arrested cells. We also present evidence indicating that, in cdc55-null cells, misregulated PP2A phosphatase activity is the cause of both the ectopic stabilization of Swe1p and the production of the morphologically abnormal phenotype.  相似文献   

20.
The p34cdc2 protein kinase is a component of maturation-promoting factor, the master regulator of the cell cycle in all eukaryotes. The activity of p34cdc2 is itself tightly regulated by phosphorylation and dephosphorylation. Predicted regulatory phosphorylation sites of Xenopus p34cdc2 were mutated in vitro, and in vitro-transcribed RNAs were injected into Xenopus oocytes. The cdc2 single mutants Thr-14----Ala and Tyr-15----Phe did not induce germinal vesicle breakdown (BVBD) upon microinjection into oocytes. In contrast, the cdc2 double mutant Ala-14/Phe-15 did induce GVBD. Both the Ala-14 and Ala-14/Phe-15p34cdc2 mutants were shown to coimmunoprecipitate cyclin B1 and to phosphorylate histone H1 in immune complex kinase assays. Microinjection of antisense oligonucleotides to c-mosXe was used to demonstrate the role of mos protein synthesis in the induction of GVBD by the Ala-14/Phe-15 cdc2 mutant. Thr-161 was also mutated. p34cdc2 single mutants Ala-161 and Glu-161 and triple mutants Ala-14/Phe-15/Ala-161 and Ala-14/Phe-15/Glu-161 failed to induce GVBD in oocytes and showed a decreased binding to cyclin B1 in coimmunoprecipitations. Each of the cdc2 mutants was also assayed by coinjection with cyclin B1 or c-mosXe RNA into oocytes. Several of the cdc2 mutants were found to affect the kinetics of cyclin B1 and/or mos-induced GVBD upon coinjection, although none affected the rate of progesterone-induced maturation. We demonstrate here the significance of Thr-14, Tyr-15, and Thr-161 of p34cdc2 in Xenopus oocyte maturation. In addition, these results suggest a regulatory role for mosXe in induction of oocyte maturation by the cdc2 mutant Ala-14/Phe-15.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号