共查询到20条相似文献,搜索用时 19 毫秒
1.
2.
3.
Nayak KC 《In silico biology》2009,9(5):337-353
In this study major factors shaping codon and amino acid usage variation in Thermobifida fusca YX are reported. It is a major degrader of plant cell walls. It produces spores that can be allergenic and has been associated with a condition called farmers lung. For comparison, two other closely related Actinobacteria, S. coelicolor and N. farcinica were considered. Correspondence analysis on RSCU (Relative Synonymous Codon Usage) showed significant correlation between the major trend of codon usage variation and gene expression level assessed by the "Codon Adaptation Index" (CAI) values. The result was further confirmed from distribution of genes along the first axis. In addition, N_{c} (effective number of codons) plot, SCUO (synonymous codon usage order) plot and correlation analyses showed that base composition and mutational bias have a dominant role in codon usage variation. Furthermore, gene expression level, hydrophobicity and aromaticity have played a significant role in the source of variations for amino acid usage. In addition, codon preference for genes at higher expression level was found to be similar among three different genera. Notably, 14 codons optimally used by Thermobifida fusca YX and its comparative study with S. coelicolor and N. farcinica might provide some useful information for their further study of molecular evolution and genetic engineering. 相似文献
4.
Relationships Among Stop Codon Usage Bias, Its Context, Isochores, and Gene Expression Level in Various Eukaryotes 总被引:1,自引:0,他引:1
It is well known that stop codons play a critical role in the process of protein synthesis. However, little effort has been
made to investigate whether stop codon usage exhibits biases, such as widely seen for synonymous codon usage. Here we systematically
investigate stop codon usage bias in various eukaryotes as well as its relationships with its context, GC3 content, gene expression
level, and secondary structure. The results show that there is a strong bias for stop codon usage in different eukaryotes,
i.e., UAA is overrepresented in the lower eukaryotes, UGA is overrepresented in the higher eukaryotes, and UAG is least used
in all eukaryotes. Different conserved patterns for each stop codon in different eukaryotic classes are found based on information
content and logo analysis. GC3 contents increase with increasing complexity of organisms. Secondary structure prediction revealed
that UAA is generally associated with loop structures, whereas UGA is more uniformly present in loop and stem structures,
i.e., UGA is less biased toward having a particular structure. The stop codon usage bias, however, shows no significant relationship
with GC3 content and gene expression level in individual eukaryotes. The results indicate that genomic complexity and GC3
content might contribute to stop codon usage bias in different eukaryotes. Our results indicate that stop codons, like synonymous
codons, exhibit biases in usage. Additional work will be needed to understand the causes of these biases and their relationship
to the mechanism of protein termination.
[Reviewing Editor: Dr. Manyuan Long] 相似文献
5.
Synonymous codon usage in yeast appears to be influenced by natural selection on gene expression, as well as regional variation in compositional bias. Because of the large number of potential targets of selection (i.e., most of the codons in the genome) and presumed small selection coefficients, codon usage is an excellent model for studying factors that limit the effectiveness of selection. We use factor analysis to identify major trends in codon usage for 5836 genes in Saccharomyces cerevisiae. The primary factor is strongly correlated with gene expression, consistent with the model that a subset of codons allows for more efficient translation. The secondary factor is very strongly correlated with third codon position GC content and probably reflects regional variation in compositional bias. We find that preferred codon usage decreases in the face of three potential limitations on the effectiveness of selection: reduced recombination rate, increased gene length, and reduced intergenic spacing. All three patterns are consistent with the Hill–Robertson effect (reduced effectiveness of selection among linked targets). A reduction in gene expression in closely spaced genes may also reflect selection conflicts due to antagonistic pleiotropy. 相似文献
6.
人类1号、X、Y染色体基因密码子偏好性研究 总被引:1,自引:0,他引:1
《生命科学研究》2014,(5)
随着人类基因组计划测序工作的完成,进一步数据挖掘工作已成为新的研究热点。根据人类1号、X、Y染色体数据,通过自编的Perl程序,提取3条染色体基因的CDS序列,利用密码子偏好性的理论及生物信息学方法分析其碱基组成特点和密码子使用模式,确定了偏好密码子和最优密码子,探讨影响其密码子用法的主要因素。结果表明:1)人类1号、X、Y染色体基因偏好使用以G或C结尾的密码子;2)密码子的使用受基因长度的影响,较长的基因具有较高的表达水平和密码子使用偏性;3)基因表达水平对人类1号、X、Y染色体基因的密码子使用没有影响,暗示了这3条染色体并未承受翻译选择的压力;4)人类1号、X、Y染色体基因共有32个偏好性密码子,其中编码Arg的AGG和AGA、编码Val的GTG、编码Leu的CTG、终止密码子TAG为最优密码子。 相似文献
7.
Qingpo Liu 《PloS one》2012,7(10)
The regulatory mechanisms of determining which genes specifically expressed in which tissues are still not fully elucidated, especially in plants. Using internal correspondence analysis, I first establish that tissue-specific genes exhibit significantly different synonymous codon usage in rice, although this effect is weak. The variability of synonymous codon usage between tissues accounts for 5.62% of the total codon usage variability, which has mainly arisen from the neutral evolutionary forces, such as GC content variation among tissues. Moreover, tissue-specific genes are under differential selective constraints, inferring that natural selection also contributes to the codon usage divergence between tissues. These findings may add further evidence in understanding the differentiation and regulation of tissue-specific gene products in plants. 相似文献
8.
Significance of Codon Usage and Irregularities of Rare Codon Distribution in Genes for Expression of BspLU11III Methyltransferases 总被引:1,自引:0,他引:1
Genes of adenine-specific DNA-methyltransferase M.BspLU11IIIa and cytosine-specific DNA-methyltransferase M.BspLU11IIIb of the type IIG BspLU11III restriction-modification system from the thermophilic strain Bacillus sp. LU11 were expressed in E. coli. They contain a large number of codons that are rare in E. coli and are characterized by equal values of codon adaptation index (CAI) and expression level measure (E(g)). Rare codons are either diffused (M.BspLU11IIIa) or located in clusters (M.BspLU11IIIb). The expression level of the cytosine-specific DNA-methyltransferase was increased by a factor of 7.3 and that of adenine-specific DNA only by a factor of 1.25 after introduction of the plasmid pRARE supplying tRNA genes for six rare codons in E. coli. It can be assumed that the plasmid supplying minor tRNAs can strongly increase the expression level of only genes with cluster distribution of rare codons. Using heparin-Sepharose and phosphocellulose chromatography and gel filtration on Sephadex G-75 both DNA-methyltransferases were isolated as electrophoretically homogeneous proteins (according to the results of SDS-PAGE). 相似文献
9.
Codon Usage in Plastid Genes Is Correlated with Context, Position Within the Gene, and Amino Acid Content 总被引:5,自引:0,他引:5
Highly expressed plastid genes display codon adaptation, which is defined as a bias toward a set of codons which are complementary
to abundant tRNAs. This type of adaptation is similar to what is observed in highly expressed Escherichia coli genes and is probably the result of selection to increase translation efficiency. In the current work, the codon adaptation
of plastid genes is studied with regard to three specific features that have been observed in E. coli and which may influence translation efficiency. These features are (1) a relatively low codon adaptation at the 5′ end of
highly expressed genes, (2) an influence of neighboring codons on codon usage at a particular site (codon context), and (3)
a correlation between the level of codon adaptation of a gene and its amino acid content. All three features are found in
plastid genes. First, highly expressed plastid genes have a noticeable decrease in codon adaptation over the first 10–20 codons.
Second, for the twofold degenerate NNY codon groups, highly expressed genes have an overall bias toward the NNC codon, but
this is not observed when the 3′ neighboring base is a G. At these sites highly expressed genes are biased toward NNT instead
of NNC. Third, plastid genes that have higher codon adaptations also tend to have an increased usage of amino acids with a
high G + C content at the first two codon positions and GNN codons in particular. The correlation between codon adaptation
and amino acid content exists separately for both cytosolic and membrane proteins and is not related to any obvious functional
property. It is suggested that at certain sites selection discriminates between nonsynonymous codons based on translational,
not functional, differences, with the result that the amino acid sequence of highly expressed proteins is partially influenced
by selection for increased translation efficiency.
Received: 21 July 1999 / Accepted: 5 November 1999 相似文献
10.
人工设计合成密码子优化的 VHb 基因及其天然的低氧启动子序列,并进行融合 T7 终止子克隆至 L-Phe 的高表达质粒中,构建高产 L-phe 的抗贫氧高密度发酵基因工程菌.高密度发酵过程中的低氧情况可诱导 VHb 基因的表达,含VHb 的工程菌较对照工程菌发酵结果显示:菌株的稳定期延长约4h,提高菌株的产酸周期,L-phe 产量提高约14%. 相似文献
11.
Siddhartha Sankar Satapathy Bhesh Raj Powdel Malay Dutta Alak Kumar Buragohain Suvendra Kumar Ray 《Journal of molecular evolution》2014,78(1):13-23
The fourfold degenerate site (FDS) in coding sequences is important for studying the effect of any selection pressure on codon usage bias (CUB) because nucleotide substitution per se is not under any such pressure at the site due to the unaltered amino acid sequence in a protein. We estimated the frequency variation of nucleotides at the FDS across the eight family boxes (FBs) defined as Um(g), the unevenness measure of a gene g. The study was made in 545 species of bacteria. In many bacteria, the Um(g) correlated strongly with Nc′—a measure of the CUB. Analysis of the strongly correlated bacteria revealed that the U-ending codons (GGU, CGU) were preferred to the G-ending codons (GGG, CGG) in Gly and Arg FBs even in the genomes with G+C % higher than 65.0. Further evidence suggested that these codons can be used as a good indicator of selection pressure on CUB in genomes with higher G+C %. 相似文献
12.
13.
14.
15.
16.
17.
de Miranda AB Alvarez-Valin F Jabbari K Degrave WM Bernardi G 《Journal of molecular evolution》2000,50(1):45-55
Mycobacterium tuberculosis and Mycobacterium leprae are the ethiological agents of tuberculosis and leprosy, respectively. After performing extensive comparisons between genes
from these two GC-rich bacterial species, we were able to construct a set of 275 homologous genes. Since these two bacterial
species also have a very low growth rate, translational selection could not be so determinant in their codon preferences as
it is in other fast-growing bacteria. Indeed, principal-components analysis of codon usage from this set of homologous genes
revealed that the codon choices in M. tuberculosis and M. leprae are correlated not only with compositional constraints and translational selection, but also with the degree of amino acid
conservation and the hydrophobicity of the encoded proteins. Finally, significant correlations were found between GC3 and synonymous distances as well as between synonymous and nonsynonymous distances.
Received: 30 October 1998 / Accepted: 16 August 1999 相似文献
18.
19.
Mutations in SOX9, the Gene Responsible for Campomelic Dysplasia and Autosomal Sex Reversal 总被引:4,自引:1,他引:4 下载免费PDF全文
Cheni Kwok Polly A. Weller Silvana Guioli Jamie W. Foster Sahar Mansour Orsetta Zuffardi Hope H. Punnett Marina A. Dominguez-Steglich J. David Brook Ian D. Young Peter N. Goodfellow Alan J. Schafer 《American journal of human genetics》1995,57(5):1028-1036
Campomelic dysplasia (CD) is a skeletal malformation syndrome frequently accompanied by 46,XY sex reversal. A mutation-screening strategy using SSCP was employed to identify mutations in SOX9, the chromosome 17q24 gene responsible for CD and autosomal sex reversal in man. We have screened seven CD patients with no cytologically detectable chromosomal aberrations and two CD patients with chromosome 17 rearrangements for mutations in the entire open reading frame of SOX9. Five different mutations have been identified in six CD patients: two missense mutations in the SOX9 putative DNA binding domain (high mobility group, or HMG, box); three frameshift mutations and a splice-acceptor mutation. An identical frameshift mutation is found in two unrelated 46,XY patients, one exhibiting a male phenotype and the other displaying a female phenotype (XY sex reversal). All mutations found affect a single allele, which is consistent with a dominant mode of inheritance. No mutations were found in the SOX9 open reading frame of two patients with chromosome 17q rearrangements, suggesting that the translocations affect SOX9 expression. These findings are consistent with the hypothesis that CD results from haploinsufficiency of SOX9. 相似文献