首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Photoreconvertible fluorophore systems were found in the superposition compound eyes of the mothDeilephila and the neuropterAscalaphus. The systems are very similar to those first described by Schlecht et al. (1987) on the apposition eye of the blowflyCalliphora. The fluorophore systems in the cone cells ofDeilephila andAscalaphus closely agree with those in the Semper cells ofCalliphora. In all 3 species the primary fluorophore is converted by UV into a blue-absorbing fluorophore with its max in the range between 410 and 450 nm. The intensity of the fluorescence from the photoproducts in all 3 pigment systems is highly dependent on pH; maximal intensity is recorded if pH5. The pK point is at 6.0 (Deilephila). The fluorescence from the Semper cells (and rhabdomeres) inCalliphora is maximal at low retinoid content showing that the chromophoric group of the fluorophore systems is not a retinoid. The probable candidates for the chromophoric group in these systems are quinones, like ubiquin-one. Phospholipid vesicles into which ubiquinone has been incorporated have fluorophore characteristics comparable to those of the fluorophores in the compound eyes: photoreconversion is induced by UV and blue light, the excitation maxima of the primary and secondary fluorophore are similar, and the intensity of the fluorescence from the secondary fluorophore is highly dependent on pH. The intensity of the fluorescence from the vesicles also depends on the direction of the pH gradient across the membrane, suggesting that this pH dependence is due to an asymmetric distribution of the quinone rings at the inner and outer membrane surface.  相似文献   

2.
Summary Ultraviolet light excites a red fluorescence fromDrosophila R1–6 rhabdomeres which is superimposed on a blue background emission. Metarhodopsin (M570) pigment generates some or all of the vitamin A dependent red emission. However, the excitation spectrum for red emission peaks in the UV. This suggests that the pigment which sensitizes R1–6's visual pigment to UV light (sensitizing pigment) absorbs the UV light, sensitizing metarhodopsin's fluorescence by energy transfer. Blue emission is neither from sensitizing pigment nor from visual pigment as shown by vitamin A deprivation studies.Very intense UV or blue stimulation causes these changes: (1) conversion of visual pigment into a fluorescent product; (2) destruction of this fluorescent product; (3) a decrease in the blue background fluorescence (even in vitamin A deprived flies); and (4) a permanent destruction of visual pigment and retinal degeneration. The first effect requires intensities 3 log units brighter than needed to interconvert rhodopsin and metarhodopsin 1/2 way to photoequilibrium. UV light is about 5 times as effective as blue light for the conversion of visual pigment into fluorescent product.  相似文献   

3.
Summary The compound eye of Psychoda cinerea comprises two types of ommatidia, arranged so as to divide the retina into distinct dorsal and ventral regions. The P-type ommatidium, in the ventral part of the eye, differs fundamentally from the other dipteran ommatidia so far described, and is regarded as a primitive ommatidium. The acone dioptric apparatus is the same in both types, with a spherical lens and four Semper cells, the processes of which expand below the rhabdom to form a ring of pigment sacs. Only the distal region of the rhabdom is surrounded by a continuous ring of screening pigment, formed by 2 primary and 12–16 secondary pigment cells. The highly pigmented retinula cells penetrate the basement membrane proximally at about the level of their nuclei; in this region they are separated from the hemolymph by glial elements. The rhabdomeres R1–6 are fused to form a tube. The two types of ommatidia are defined by the arrangement of the retinula cells R7/8: in the T type the central rhabdomeres are one below the other, in the usual tandem position, whereas in the P type only R8 is central, with R7 in the peripheral ring. In the proximal region of the retina, retinula cells with parallel microvilli in neighboring ommatidia are joined in rows by lateral processes from the R8 cells. All the rhabdomeres are short and not twisted, which suggests that the retinula cells are highly sensitive to direction of polarization. The eye can adapt by a number of retinomotor processes. These findings, together with observations of behavior, imply that the psychodids have well-developed visual abilities.  相似文献   

4.
The simple eye of the human louse consists of two apparatuses: dioptric and light sensitive. The dioptric apparatus contains only a biconvex lens, which represents local thickening of the cuticle. The eye lacks the crystal cone (Semper cells) and special pigment cells. The light sensitive part of the eye contains about 130 photoreceptor cells. Each photoreceptor has rhabdomere which consists of numerous microvilli. The pigment granules are located only in the photoreceptor cells.  相似文献   

5.
The compound eye of the opaque-eye mutant of Drosophila melanogaster was investigated by means of electron microscopy to determine the morphological and physical properties of ommatidial elements. These elements in the mutant were found to differ from those of the wild-type flies in the following ways: (1) The cuticular lens was thinner than that of the control and lacked the typical lamellar construction. (2) The Semper cells were irregular in shape and contained many membranous inclusions similar to those found in degenerating cells; also their nuclei contained virus-like particles. (3) The primary pigment cells contained an abundance of drosopterin-containing granules which were lacking in those of wild-type flies. (4) The superior and inferior central photoreceptor cells were misplaced and their rhabdomeres evidenced some degeneration. (5) The secondary pigment cells had only one type of pigment granules instead of the three types found in the control. These morphological changes in ommatidial elements induced physical abnormalities such as the apparent opaqueness of the eye, the lack of a pseudopupil, the probable disability of the photoreceptor cells to respond to light and the inability of the dioptric system to produce utilizable geometric images.  相似文献   

6.
The compound eye of the opaque-eye mutant ofDrosophila melanogaster was investigated by means of electron microscopy to determine the morphological and physical properties of ommatidial elements. These elements in the mutant were found to differ from those of the wild-type flies in the following ways: (1) The cuticular lens was thinner than that of the control and lacked the typical lamellar construction. (2) The Semper cells were irregular in shape and contained many membranous inclusions similar to those found in degenerating cells; also their nuclei contained virus-like particles. (3) The primary pigment cells contained an abundance of drosopterin-containing granules which were lacking in those of wild-type flies. (4) The superior and inferior central photoreceptor cells were misplaced and their rhabdomeres evidenced some degeneration. (5) The secondary pigment cells had only one type of pigment granules instead of the three types found in the control. These morphological changes in ommatidial elements induced physical abnormalities such as the apparent opaqueness of the eye, the lack of a pseudopupil, the probable disability of the photoreceptor cells to respond to light and the inability of the dioptric system to produce utilizable geometrical images.  相似文献   

7.
Summary The retina of the phalangid, Opilio ravennae, consists of retinula cells with distal rhabdomeres, arhabdomeric cells, and sheath cells. The receptive segment of retinula cells shows a clear separation into a Proximal rhabdom, organized into distinct rhabdom units formed by three or four retinula cells, and a Distal rhabdom, consisting of an uniterrupted layer of contiguous rhabdomeres. One of the cells comprising a retinula unit, the so-called distal retinula cell (DRC), has two or three branches that pass laterally alongside the rhabdom, thereby separating the two or three principal retinula cells of a unit. The two morphologically distinct layers of the receptive segment differ with respect to the cellular origin of rhabdomeral microvilli: DRC-branches contribute very few microvilli to the proximal rhabdom and develop extremely large rhabdomeres in the distal rhabdom only, causing the rhabdom units to fuse. Principal retinula cells, on the other hand, comprise the majority of microvilli of the proximal rhabdom, but their rhabdomeres diminish in the distal rhabdom. It is argued that proximal and distal rhabdoms serve different functions in relation to the intensity of incident light.In animals fixed 4 h after sunset, pigment granules retreat from the distal two thirds of the receptive segment. A comparison of retinae of day- and night-adapted animals shows that there is a slight (approximately 15%) increase in the cross-sectional area of rhabdomeral microvilli in dark-adapted animals, which in volume corresponds to the loss of pigment granules from the receptive segment. The length of the receptive segment as well as the pattern and shape of rhabdom units, however, remain unchanged.Each retinula unit is associated with one arhabdomeric cell. Their cell bodies are located close to those of retinula cells, but are much smaller and do not contain pigment granules. The most remarkable feature is a long, slender distal dendrite that extends up to the base of the fused rhabdom where it increases in diameter and develops a number of lateral processes interdigitating with microvilli of the rhabdom. The most distal dendrite portion extends through the center of the fused rhabdom and has again a smooth outline. All dendrites end in the distal third of the proximal rhabdom and are never present in the layer of the contiguous distal rhabdom. Arhabdomeric cells are of essentially the same morphology in day- and night-adapted animals. They are interpreted as photoinsensitive secondary neurons involved in visual information-processing that channel current collected from retinula cells of the proximal rhabdom along the optic nerve. A comparison is made with morphological equivalents of these cells in other chelicerate species.  相似文献   

8.
Electron microscope observations on the differentiating Drosophila eye show an extensive proliferation of parallel arrays of microtubules at periods preceding, or coinciding with, alterations in cellular morphology. In the retinular cells they are aligned in the direction of elongation and close to the developing rhabdomeres, forming a cylinder around the central ommatidial axis. At a later stage, in the cone cells, they are aligned in the direction of cellular contraction. Thus as in other developing systems microtubules appear to be directly involved in the morphogenesis of the Drosophila eye. In the retinular cells they gradually disappear during elongation, whereas they persist in the cone cells. The pigment cells contain few of these structures. The distribution of two types of specialised cell attachments, adhering zones and septate desmosomes is discussed in relation to intercellular morphogenesis and communication. The rhabdomeres originate from infoldings of the plasma membrane which later grow out into typical microvilli. Unusul cytoplasmic granules are described in the pigment cells of early pupae.  相似文献   

9.
Summary Water bugs (Notonecta glauca) were set into flight in a room with a homogeneously illuminated ceiling and a light-emitting platform on the floor. In these conditions polarized UV light from the platform was more effective in causing the animals to fly down to the surface of the platform than was unpolarized UV light several times as intense. Experiments with an array of baffles that restricted the directions from which the polarization film on the platform could be seen showed that the polarized UV light is effective in eliciting descent only when the e-vector is perpendicular to the median sagittal plane of the animal (horizontal). It can be concluded that polarized UV light with horizontal e-vector is distinguished, as a special sensory quality, from unpolarized UV light.Notonecta thus provides an example of true polarization vision.The special orthogonal arrangement of the microvilli in the rhabdomeres of the UV visual cells in the ventral part of the eye (cf. Schwind 1983 b and Schwind et al., in press) is suggestive with regard to polarization vision. The microvilli of the two UV visual cells in the ommatidia looking forward and down are horizontal and vertical, respectively, and hence could serve as a two-channel analyzer system capable of distinguishing the polarized UV light reflected by a water surface from unpolarized UV light.  相似文献   

10.
Summary The rhabdomeres of the visual cells in the blowflyCalliphora erythrocephala and the fruit flyDrosophila melanogaster are twisted along their long axes.In rhabdomeres of the visual cells R1–6 it is possible to distinguish 3 regions differing in twist rate. In the proximal and distal regions the twist is slight (e.g., 0.52°/m) or absent, whereas in the middle the twist rate is high (e.g., 2.40°/m). The twisting of the rhabdomeres of R1–3 is congruent and codirectional, and that of R4–6 is its mirror image. The significance of twisting with regard to the dichroic absorption of the microvilli and to the polarization sensitivity and the self-screening of R1–6 is discussed. In particular, it is shown that the dichroic absorption of a single microvillus of R1–6 must be greater than 2; it follows that the absorbing dipoles of the visual pigment molecules must be more or less parallel to the axes of the microvilli. Finally, it can be shown that the twisting of the rhabdomeres R1–6 prevents self-screening — despite high microvillar absorption. Because the microvilli are not uniformly oriented, the twisted rhabdomeres R1–6 are especially effective in absorbing unpolarized light.This work was supported by a grant from the Deutsche Forschungsgemeinschaft (Sm 16/3)  相似文献   

11.
Both larval and adult New Zealand cave glowworms exhibit reactions to light; their photoreceptors must, therefore, be regarded as functional. The two principal stemmata of the larva possess large biconvex lenses and voluminous rhabdoms. Approximately 12 retinula cells are present. In light-adapted larvae the diameter of the rhabdom is 8 μm and that of an individual microvillus is 49.5 nm. Dark-adapted eyes have rhabdoms that measure 14 μm in cross section and microvilli with an average diameter of 54 nm. The compound eye of the adult comprises approximately 750 ommatidia, each with a facet diameter of 27–28 μm. A facet is surrounded by 1–6 interommatidial hairs which are up to 30 μm long. The interommatidial angle is 5.5°. Cones, consisting of 4 crystalline cone cells, are of the ‘acone’ type. Pigment granules in the primary pigment cells are twice as large as those of the retinula cells which measure 0.6–0.75 μm in diameter. The rhabdom is basically of the dipteran type, i.e. six open peripheral rhabdomeres surround 2 central rhabdomers arranged in a tandem position. The microvilli of cells 1–6 and cell 8 have diameters ranging from 68 to 73 nm, but those of the distally-located central rhabdomere 7 are 20% larger. This is irrespective of whether the eye is dark or light-adapted. In the latter the cones are long and narrow, the screening pigment granules closely surround the rhabdomeres, and the rhabdom is less voluminous than that of the dark-adapted eye.  相似文献   

12.
An opsin-encoding cDNA was cloned from the marine alga Acetabularia acetabulum. The cDNA was expressed in Xenopus oocytes into functional Acetabularia rhodopsin (AR) mediating H+ carried outward photocurrents of up to 1.2 microA with an action spectrum maximum at 518 nm (AR518). AR is the first ion-pumping rhodopsin found in a plant organism. Steady-state photocurrents of AR are always positive and rise sigmoidally from negative to positive transmembrane voltages. Numerous kinetic details (amplitudes and time constants), including voltage-dependent recovery of the dark state after light-off, are documented with respect to their sensitivities to light, internal and external pH, and the transmembrane voltage. The results are analyzed by enzyme kinetic formalisms using a simplified version of the known photocycle of bacteriorhodopsin (BR). Blue-light causes a shunt of the photocycle under H+ reuptake from the extracellular side. Similarities and differences of AR with BR are pointed out. This detailed electrophysiological characterization highlights voltage dependencies in catalytic membrane processes of this eukaryotic, H+ -pumping rhodopsin and of microbial-type rhodopsins in general.  相似文献   

13.
Summary The compound eye of male (haploid) Xyleborus ferrugineus beetles was examined with scanning and transmission electron microscopy. The eye externally consists of ca. 19 to 33 facets. Each ommatidium is composed of a thickly biconvex lenslet with about 50 electron dense and rare layers, but at the junction area between two lenslets there are only about 35 to 37 layers that can be distinguished. A very short (3.4–4.0 m) acone type crystalline cone is located directly beneath the lenslet. Each ommatidium is surrounded by pigment cells, and pigment granules also appear throughout the cytoplasm of the retinular cells. Some pigment granules are even present below the basement membrane. There are 8 retinular cells. The rhabdomeres of 2 centrally situated photoreceptor cells fuse into a rhabdom which is enveloped by the rhabdomeres of 6 peripheral retinular cells. The rhabdomeres of the 6 peripheral retinular cells join laterally to form a rhabdomeric ring around the central rhabdom. No tracheation was observed among the retinular cells. Virus-like particles are evident near the nucleus in each Semper cell of the crystalline cone.This research was supported by the Director of the Research Division, C.A.L.S., University of Wisconsin, Madison; and in part by research grant No. RR-00779 from the Division of Research Resources, National Institutes of Health and by funds from the Schoenleber Foundation, Milwaukee, WI to D.M.N.  相似文献   

14.
Summary The absorption maxima ( max) of the visual pigments in the ommatidia ofNotonecta glauca were found by measuring the difference spectra of single rhabdomeres after alternating illumination with two different adaptation wavelengths. All the peripheral rhabdomeres contain a pigment with an extinction maximum at 560 nm. This pigment is sensitive to red light up to wavelengths > 700 nm. In a given ommatidium in the dorsal region of the eye, the two central rhabdomeres both contain one of two pigments, either a pigment with an absorption maximum in the UV, at 345 nm, or — in neighboring rhabdoms — a pigment with an absorption maximum at 445 nm. In the ventral part of the eye only the pigment absorbing maximally in the UV was found in the central rhabdomeres. The spectral absorption properties of various types of screening-pigment granules were measured.  相似文献   

15.
Morphology and functional aspects of the scotopic compound eye of the moth Diatraea saccharalis, studied using light and electron microscopy, is presented. An ommatidium is composed of a laminate corneal lens, four Semper cells, a refractive cone, two primary pigment cells, six screening pigment cells, a crystalline tract that functions as an optical waveguide, and six to eight sensory retinular cells. Accessory light regulators consist of screening pigment cells that, in the dark-adapted position, increase receptor sensitivity by permitting light rays to cross over to adjacent ommatidia and specialized tracheal regions that enhance sensitivity by reflecting light back toward sensory receptors.  相似文献   

16.
Summary The effects of light and dark on photoreceptors of the brackish-water polychaete annelid Nereis Hmnicola were studied by electron microscopy. Animals dark-adapted for one or two days exhibited well-formed straight microvilli (rhabdomeres) on the sensory cell processes. Continuous illumination of worms for one or two days caused extensive breakdown of the microvilli into vesicles and debris. Thirty minutes to three h of exposure of dark-adapted animals to light produced increasing severity of degradation of photoreceptoral microvilli. Light-adapted worms placed in darkness for one-half to three h showed progressive restoration of the microvilli to the dark-adapted condition. The products of degradation were internalized by both sensory and pigmented supportive cells by phagocytosis and pinocytosis.  相似文献   

17.
The Drosophila visual transduction cascade is embedded in the rhabdomeres of photoreceptor cells and culminates in the opening of the two ion channels, TRP and TRPL. TRPL translocates from the rhabdomeres to the cell body upon illumination and vice versa when flies are kept in the dark. Here, we studied the mechanisms underlying the light-dependent internalization of TRPL. Co-localization of TRPL and rhodopsin in endocytic particles revealed that TRPL is internalized by a vesicular transport pathway that is also utilized, at least partially, for rhodopsin endocytosis. TRPL internalization is attenuated under light conditions that result in a high rate of rhodopsin internalization and is highest in orange light that result in very little rhodopsin internalization. In line with a canonical vesicular transport pathway, we found that rab proteins, Rab5 and RabX4, are required for the internalization of TRPL into the cell body. Our results provide insight into stimulus-dependent internalization of a prominent member of the TRP superfamily.  相似文献   

18.
The eyes or ocelli of trombidioid mite larvae of Euschoengastia rotundata, Hirszutiella zachvatkini and Camerotrombidium pexatum, and larvae and adults of Platytrombidium fasciatum were studied by means of transmission electron microscopy. These species together with larvae of Odontacarus efferus, Ericotrombidium hasgelum, Walchia chinensis and adult E. rotundata and H. zachvatkini were also studied under scanning electron microscope. The eyes of larvae are not inverted and characterized by an epicuticular lamellar lens. The group of phoreceptor cells with rhabdomeres arranged typically of Chelicerata is underlaid by a pigment cup. The eyes of adult mites are inverted, perikarions of photoreceptor cells are situated between the lens and rhabdomeres; tapetum occupies the space between the pigment cup and rhabdomeres. Sensitivity of eyes to light is similar to that of primary eyes of spiders dwelling on soil surface.  相似文献   

19.
Summary The fine structure of photoreceptors is described in miracidia of Fasciola hepatica, Heronimus chelydrae, Allocreadium lobatum, and Spirorchis sp., and in a spirorchiid cercaria. All have in common eyespots consisting of pigment cells with chambers occupied by rhabdomeres consisting of retinular cell dendrites with numerous microvilli. Photoreceptors of the miracidia show a bilateral asymmetry which is most pronounced in H. chelydrae with a pair of well separated eyespots unequal in size. The smaller right one consists of a pigment cell and two rhabdomeres; the larger left eyespot has an anterior pigment cell with two rhabdomeres and a posterior cell containing one rhabdomere. Photoreceptors in the other species of miracidia also have five rhabdomeres but contain only two pigment cells which are closely apposed. Each contains a pair of lateral rhabdomeres and a fifth one occupies a posteromedian extension of the left pigment cell. In the number of rhabdomeres, their relationship to pigment cells and the resulting asymmetry, photoreceptors are more alike in the distantly related species of miracidia studied than they are in ocellate cercariae or even in the miracidium and cercaria of the same species or two closely related ones. From the asymmetry of photoreceptors in larvae of certain flatworms other than digenetic trematodes, it seems that eyespots of miracidia have retained an ancestral pattern whereas the diversity of photoreceptors in cercariae reflects the varied phototactic behavior of those larvae which complete their life cycles by all the means known for cercariae with a free-swimming period. In both miracidia and cercariae, photoreceptors show an anterior-posterior organization that would seem to be concerned with orientation of the larvae with respect to light.Supported in part by a David Ross Fellowship of the Purdue Research Foundation and in part by U.S.P.H.S. Grants 1T1 GM 1392 01 and 2T1 Al 106 07. We express thanks to Dr. Keith Dixon for aid in obtaining and processing miracidia of Fasciola hepatica; to Prof. Clark P. Read for his valuable comments and suggestions; and to Profs. Charles W. Philpott and Richard H. White for advice concerning electron microscopy.  相似文献   

20.
The lateral ocelli of Scolopendra cingulata and Scolopendra oraniensis were examined by electron microscopy. A pigmented ocellar field with four eyes arranged in a rhomboid configuration is present frontolaterally on both sides of the head. Each lateral ocellus is cup-shaped and consists of a deeply set biconvex corneal lens, which is formed by 230–2,240 cornea-secreting epithelial cells. A crystalline cone is not developed. Two kinds of photoreceptive cells are present in the retinula. 561–1,026 cylindrical retinula cells with circumapically developed microvilli form a large distal rhabdom. Arranged in 13–18 horizontal rings, the distal retinula cells display a multilayered appearance. Each cell layer forms an axial ring of maximally 75 rhabdomeres. In addition, 71–127 club-shaped proximal retinula cells make up uni- or bidirectional rhabdomeres, whose microvilli interdigitate. 150–250 sheath cells are located at the periphery of the eye. Radial sheath cell processes encompass the soma of all retinula cells. Outside the eye cup there are several thin layers of external pigment cells, which not only ensheath the ocelli but also underlie the entire ocellar field, causing its darkly pigmented. The cornea-secreting epithelial cells, sheath cells and external pigment cells form a part of the basal matrix extending around the entire eye cup. Scolopendromorph lateral ocelli differ remarkably with respect to the eyes of other chilopods. The dual type retinula in scolopendromorph eyes supports the hypothesis of its homology with scutigeromorph ommatidia. Other features (e.g. cup-shaped profile of the eye, horizontally multilayered distal retinula cells, interdigitating proximal rhabdomeres, lack of a crystalline cone, presence of external pigment and sheath cells enveloping the entire retinula) do not have any equivalents in scutigeromorph ommatidia and would, therefore, not directly support homology. In fact, most of them (except the external pigment cells) might be interpreted as autapomorphies defining the Pleurostigmophora. Certain structures (e.g. sheath cells, interdigitating proximal rhabdomeres, discontinuous layer of cornea-secreting epithelial cells) are similar to those found in some lithobiid ocelli (e.g. Lithobius). The external pigment cells in Scolopendra species, however, must presently be regarded as an autapomorphy of the Scolopendromorpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号