共查询到20条相似文献,搜索用时 0 毫秒
1.
We have shown in the past that (1) Nerve Growth Factor (NGF) controls the Na+,K+-pump in its ganglionic neuronal targets and (2) the NGF requirement for pump control is developmentally regulated in the chick embryo dorsal root ganglion. We report here that NGF is fully competent to insure the control of intracellular Na+ concentrations (as expression of pump control) in intact chick sympathetic ganglia and enriched suspensions of sympathetic neurons from embryonic day 8 (E8) through 13. At later stages (E13–E18), NGF becomes less and less required for that control as the neurons gain a self-sustained ionic pump competence. In monolayer cultures of enriched sympathetic neurons, an increasing neuronal survival in the absence of NGF occurs. These data demonstrate that the ability of developing sympathetic neurons to survive without NGF increases with the same temporal pattern as does their independence from NGF for ionic pump control, stressing the importance of ionic events for neuronal survival. 相似文献
2.
Selective dependence of mammalian dorsal root ganglion neurons on nerve growth factor during embryonic development. 总被引:9,自引:0,他引:9
We have investigated the NGF dependence of dorsal root ganglion (DRG) neurons in mammals using a paradigm of multiple in utero injections of a high titer anti-NGF antiserum. We have determined the specificity of our antiserum in relation to other members of the NGF neurotrophin family and found no cross-reactivity with brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT-3). To identify various classes of DRG neurons, we have stained their characteristic central projections with Dil. We show here that the NGF dependence of DRG neurons is strikingly selective. Although a majority of DRG neurons are lost after NGF deprivation during embryonic life, these are almost exclusively small diameter neurons that project to laminae I and II of the dorsal horn and presumably subserve nociception and thermoreception. Larger neurons that project to more ventral spinal laminae and subserve other sensory modalities do not require NGF for survival. These NGF-independent DRG neurons likely require one of the more recently identified neurotrophins, BDNF or NT-3. 相似文献
3.
Female steroid hormones modulate receptors for nerve growth factor in rat dorsal root ganglia 总被引:9,自引:0,他引:9
Lanlua P Decorti F Gangula PR Chung K Taglialatela G Yallampalli C 《Biology of reproduction》2001,64(1):331-338
Calcitonin gene-related peptide (CGRP) is a vasodilatory peptide, and it is primarily synthesized in dorsal root ganglia (DRG). Plasma CGRP levels increase during pregnancy and with steroid hormones, and nerve growth factor (NGF) stimulates calcitonin/CGRP promoter and CGRP synthesis in DRG. We previously showed that CGRP levels in DRG were stimulated with steroid hormone treatments in vivo but not in vitro. Thus, the stimulation of CGRP by these hormones may be indirect through the upregulation of NGF effects. We hypothesized that the female sex steroid hormones upregulate NGF receptors, trkA and p75(NTR), in DRG. We examined the effects of 17 beta-estradiol (E(2)) and progesterone (P(4)) on NGF receptors in DRG obtained from ovariectomized (ovx) rats. Groups of 4 ovx rats were injected s.c. with 5 microg E(2), 4 mg P(4), or 5 microg E(2) + 4 mg P(4) in 0.2 ml sesame oil or injected with oil only and were killed at 6, 24, and 48 h. In addition, ovx rats were also injected s.c. with varying doses (0.2, 1.0, 5.0, 25 microg) of E(2) (0.5, 1.5, 4, 10 mg) P(4), and (5 microg) E(2) + (0.5, 1.5, 4.0, 10 mg) P(4) in 0.2 ml sesame oil, or vehicle, and killed at 6 (for E(2)) or 24 (for P(4) and E(2) + P(4)) h. Furthermore, groups of ovx rats were also killed at 12 and 24 h; 3 and 7 days; 2, 4, and 6 wk after ovariectomy. The DRGs were collected from all groups and then processed for Western immunoblotting to examine both trkA and p75(NTR) levels. Estradiol increased trkA at 6 h but not p75(NTR). Progesterone caused upregulation of trkA and p75(NTR) at 6 and 24 h. 17 beta-Estradiol + P(4) increased trkA at 6 and 24 h and p75(NTR) at all time points examined. One microgram of E(2) increased trkA but did not affect p75(NTR) levels. Progesterone at 4 and 10 mg upregulated trkA but only 10 mg P(4) increased p75(NTR). Five micrograms of E(2) coinjected with P(4) at 1.5 and 4 mg increased trkA, while p75(NTR) receptor was upregulated when coinjected with P(4) at 1.5 to 10 mg. The ovariectomy caused a decrease in trkA receptors compared to proestrus rats, and these decreases were significant by 6 wk, but surprisingly p75(NTR) increased at 2 wk after ovariectomy. 17 beta-Estradiol increased trkA but not p75(NTR) receptors in DRG, whereas P(4) caused increases in both trkA and p75(NTR) in DRG. In addition, the combination of these steroid hormones had more effect on both receptors than either hormone alone. Thus, we concluded that high levels of female steroid hormones such as those due to pregnancy or hormonal replacement therapy could increase NGF receptor expression in DRG that carry more NGF to elevate the CGRP synthesis in these groups. We suggested that the regulation of NGF receptors by ovarian steroids may underlie steroidal regulation of other factors such as CGRP. 相似文献
4.
5.
B S Scott 《Journal of neurobiology》1977,8(5):417-427
A method has been developed for the long-term culture of dissociated adult mouse dorsal root ganglia (DRG). Of critical importance to the success of this technique was a three-hour incubation in collagenase which softened the DRG and permitted gentle dissociation. The morphological and electrophysiological features of the dissociated adult DRG were similar to those observed in previous studies of immature (i.e., embryonic and newborn) DRG in culture and also to those of adult DRG in situ. With regard to electrophysiological work, the adult DRG neurons are superior to embryonic and newborn neurons because of their larger size and greatly increased survival in culture (no degeneration for first six days, and thereafter a relatively slow decrease). The adult neurons regenerated nerve fibers to an extent comparable to that of immature neurons. Therefore, the adult DRG cultures might be useful to study factors influencing regeneration in the adult mammalian nervous system. The adult cultures might also be useful to investigated factors influencing the aging process. 相似文献
6.
Lineage of neurons and glia in chick dorsal root ganglia: analysis in vivo with a recombinant retrovirus 总被引:7,自引:0,他引:7
We used retrovirus-mediated gene transfer to study the lineage of neural crest cells in chick embryos. Individual crest cells were infected before they migrated from the neural tube, and their clonal progeny were subsequently revealed in sensory ganglia and associated structures by a histochemical stain for the viral gene product (lacZ). We found that crest cells were multipotential in several respects. (1) Many clones contained both ventrolateral (VL) and dorsomedial (DM) neurons, which had been suggested to be lineally distinct. (2) Many clones contained both large and small neurons, which are known to innervate distinct targets. (3) Many clones contained multiple glial subtypes, e.g. both Schwann cells, which ensheath axons, and satellite cells, which ensheath neuronal somata. (4) Many clones contained both neurons and glial cells. On the other hand, a sizeable minority of clones was homogenous, e.g. they contained only neurons or only glial cells--suggesting that some progenitors may be, or become, restricted in potential. Finally, this study provides the first opportunity to compare directly the two methods currently available for tracing cell lineage in vertebrate embryos, retroviral infection and tracer injection: our results and those of Bronner-Fraser and Fraser (1989), who used the latter method, provide complementary but consistent views of crest lineage. 相似文献
7.
8.
9.
Gestational changes in calcitonin gene-related peptide, nerve growth factor, and its receptors in rat dorsal root ganglia. 总被引:3,自引:0,他引:3
In dorsal root ganglia (DRG) cell cultures, levels of calcitonin gene-related peptide (CGRP) are increased in the presence of ovarian hormones and nerve growth factor (NGF). In addition, injection of ovariectomized rats with ovarian hormones led to an increase in levels of two NGF receptors, TrkA and p75(NTR), in DRG. Thus, we hypothesized that increased levels of ovarian hormones during pregnancy may elevate the synthesis of CGRP and NGF receptors in the DRG. DRG harvested from rats on specific days of pregnancy, on Day 2 postpartum, and after ovariectomy were subjected to radioimmunoassay, Western blot analysis, and NGF immunoassay to determine levels of CGRP, TrkA and p75(NTR), and NGF, respectively. CGRP levels in rat DRG were significantly higher during pregnancy than at Day 2 postpartum or in ovariectomized rats. Levels of both TrkA and p75(NTR) in DRG increased during pregnancy and remained elevated at Day 2 postpartum, but CGRP levels declined. Levels of NGF reached a statistically significant peak at Day 18 of gestation, and were not significantly reduced at Day 2 postpartum. Increased levels of ovarian steroid hormones during pregnancy may be involved in the synthesis of CGRP, however, the postpartum decreases in CGRP synthesis appear to be unrelated to NGF and its receptors. 相似文献
10.
Neurite outgrowth from dorsal root (DRG) and sympathetic ganglia has been studied utilizing a simplified in vitro culture system for intact ganglia. Attachment of ganglia to tissue culture plates was achieved after a brief incubation of ganglia on the plates in the presence of 100% fetal calf serum or 5% ovalbumin in F12 medium. Neurite outgrowth from dorsal root and sympathetic ganglia was dependent on the continued presence of nerve growth factor (NGF) and on the NGF concentration. The NGF induced neurite outgrowth from DRG cultured in serum-free medium was delayed approximately 24 hr compared to the outgrowth in serum-containing medium. 相似文献
11.
Reinshagen M Geerling I Eysselein VE Adler G Huff KR Moore GP Lakshmanan J 《Journal of neurochemistry》2000,74(5):2127-2133
Examination of commercial recombinant human beta-nerve growth factor (rh-beta-NGF) preparations with polyclonal antibodies specific to 13-kDa NGF and pro-NGF-specific domains revealed the presence of high-molecular-mass immunoreactive proteins, including a 60-kDa NGF prohormone. On incubation with a mixture of N- and O-specific glycosidases, the 60-kDa NGF pro-hormone generated a 32-kDa protein corresponding to the molecular size of NGF precursor predicted by the cloned human NGF cDNA. Highly sensitive chemiluminescence immunoblot analysis of adult rat dorsal root ganglia, spinal cord, and colon tissues with NGF- and pro-NGF domain-specific antibodies also revealed the presence of high-molecular-mass proteins, including the 60-kDa NGF prohormone. Based on the presence of the 60-kDa NGF prohormone in dorsal root ganglia and its efferent tissues, we suggest that proteolytically unprocessed, glycosylated NGF prohormone may mediate interactions between neurons and the tissues they innervate. 相似文献
12.
13.
Brian S. Scott 《Developmental neurobiology》1977,8(5):417-427
A method has been developed for the long-term culture of dissociated adult mouse dorsal root ganglia (DRG). Of critical importance to the success of this technique was a three-hour incubation in collagenase which softened the DRG and permitted gentle dissociation. The morphological and electrophysiological features of the dissociated adult DRG were similar to those observed in previous studies of immature (i.e., embryonic and newborn) DRG in culture and also to those of adult DRG in situ. With regard to electrophysiological work, the adult DRG neurons are superior to embryonic and newborn neurons because of their larger size and greatly increased survival in culture (no degeneration for first six days, and thereafter a relatively slow decrease). The adult neurons regenerated nerve fibers to an extent comparable to that of immature neurons. Therefore, the adult DRG cultures might be useful to study factors influencing regeneration in the adult mammalian nervous system. The adult cultures might also be useful to investigate factors influencing the aging process. 相似文献
14.
Progenitor cells from embryonic chick dorsal root ganglia differentiate in vitro to neurons: biochemical and electrophysiological evidence. 总被引:4,自引:0,他引:4
下载免费PDF全文

We have analyzed the appearance of neurons and glial cells in chick dorsal root ganglia during development. Neurons were identified by the presence of polysialogangliosides recognized by tetanus toxin (GD1b, GT1) or by the monoclonal antibody Q211 directed against polysialogangliosides containing four, five and six sialic acid residues. Glial cells were identified by the presence of 04 antigen. A population of undifferentiated cells, i.e., cells which express neither neuronal nor glial cell surface antigens, present in dorsal root ganglia until embryonic day 7, was separated from the neuronal and glial population. This cell population contains neuronal progenitor cells which differentiate to neurons within 1 day in culture. This differentiation process is characterized by the appearance of neuronal morphology, of neuron-specific gangliosides and by the appearance of voltage-dependent sodium and calcium channels. 相似文献
15.
Dissociated embryonic chick dorsal root ganglion (DRG) neurons maintained in culture exhibit a mixed Na+/Ca2+ action potential. The characteristic shoulder on the repolarizing phase is due to the relatively prolonged inward Ca2+ current. DRG neurons grown in an elevated K+ medium (25 versus. 5 mM) lack the plateau phase of the action potential. Voltage-clamp analysis showed that this plastic change in action potential duration is not due to the loss of the inward Ca2+ current but is partly due to the appearance of a Ca2(+)-dependent, 4-aminopyridine-(4-AP)-sensitive transient outward current. Faster activation of the purely voltage-dependent delayed rectifier outward current also contributes to the rapid repolarization observed in neurons cultured in elevated K+ medium. 相似文献
16.
The transplantation of Schwann cells (SCs) could successfully promote axonal regeneration. This is likely to attribute to the adhesion molecules expression and growth factors secretion of SCs. But which factor(s) play a key role has not been precisely studied. In this study, an outgrowth assay using dorsal root ganglia (DRG) neuron-SC co-culture system in vitro was performed. Co-culture of SCs or application of SC-conditioned medium (CM) substantially and significantly increased DRG neurite outgrowth. Further, nerve growth factor and NGF receptor (TrkA) mRNA were highly expressed in Schwann cells and DRG neuron, respectively. The high concentration of NGF protein was detected in SC-CM. When K-252a, a specific inhibitor of NGF receptor was added, DRG neurite outgrowth was significantly decreased in a concentration-dependent manner. These data strongly suggest that SCs play important roles in neurite outgrowth of DRG neurons by secreted NGF. 相似文献
17.
Homocysteine modifies development of neurulation and dorsal root ganglia in chick embryos 总被引:3,自引:0,他引:3
BACKGROUND: The formation of the neural tube (neurulation) involves two mechanisms: primary and secondary neurulation. In chicks, there is also an overlap zone, where both mechanisms work together. Homocysteine (Hcy) may have an important teratogenic role in neural tube defects (NTD) when folic acid levels are considered normal. Recently, Hcy capability to generate NTD and modify neural crest cell migration has been demonstrated in chick embryos. This study was aimed to evaluate the effects of Hcy on neurulation and the development of the dorsal root ganglia (DRG). METHODS: Chick embryos were treated with L-Hcy thiolactone 20 micromol to produce the highest rate of survival with embryos carrying neural tube defect (NTD) in the spine. Embryos at stages (st) 3-10 were treated and harvested at st 18-23. Only externally normal embryos or those carrying spinal NTD embryos were considered. RESULTS: Histological sections of Hcy-treated embryos showed: open spina bifida (39% of embryos), more than one tube forming the spinal cord (26%), disorganized spinal cord (26%), always affecting lumbosacral regions, probably in the overlap zone. Additionally, 32% of embryos had small and continuous DRG, associated with a slimmed roof plate. Three-dimensional reconstruction showed unsegmented DRG until the C8 ganglion level. There was a 75% reduction of C3 DRG cells in treated embryos in comparison to untreated ganglia. CONCLUSION: Hcy teratogenicity in avian embryos affected the neural tube in the overlap zone, secondary neurulation and the cervical DRG. 相似文献
18.
19.
20.
The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons 总被引:25,自引:0,他引:25
Levanon D Bettoun D Harris-Cerruti C Woolf E Negreanu V Eilam R Bernstein Y Goldenberg D Xiao C Fliegauf M Kremer E Otto F Brenner O Lev-Tov A Groner Y 《The EMBO journal》2002,21(13):3454-3463