首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously reported that mouse orthologue of puromycin insensitive leucyl-specific aminopeptidase (mPILSAP) played an important role in angiogenesis by regulating the proliferation and migration of endothelial cells (ECs) (Miyashita et al., 2002. Blood 99:3241-3249). Here, we examined the mechanism as to how mPILSAP regulates the migration of ECs. Cell adhesion through integrins plays a crucial role in cell migration, and ECs use at least type-1 collagen receptor integrin alpha2beta1, fibronectin receptor alpha5beta1, and vitronectin receptors alphavbeta3 and alphavbeta5. mPILSAP antisense oligodeoxynucleotide (AS-ODN) or leucinethiol (LT), a leucyl-aminopeptidase inhibitor, did not affect the attachment but did significantly inhibit the spreading of cells of the murine endothelial cell line MSS31 when they were plated on vitronectin-, fibronectin-, or type-1 collagen, although they did not affect the expression of integrin alpha2, alpha5, alphav, beta1, beta3, and beta5 subunits on the cell surface. AS-ODN and LT also inhibited the tyrosine phosphorylation of FAK when cells were plated on vitronectin, fibronectin, or type-1 collagen. This inhibition of cell spreading and of tyrosine phosphorylation of FAK could be negated by Mg(2+). These results suggest that mPILSAP is involved in the activation of endothelial integrins.  相似文献   

2.
Laminin alpha3 chain, a functionally key subunit of laminin-5, contains a large globular module (G module) which consists of a tandem repeat of five homologous LG modules (LG1-5). We previously demonstrated that the LG4 module of laminin alpha3 chain (alpha3 LG4) induces a matrix metalloproteinase-1 (MMP-1) expression through the interaction with syndecans leading to MAPK activation/IL-1beta expression signaling loop (Utani et al., J. Biol. Chem. 278, 34483-34490, 2003). Here, we show that a recombinant alpha3 LG4 and synthetic peptides containing syndecan binding motif induced a cell motility and a MMP-9 expression in ketarinocytes. The synthetic peptide (A3G756)-induced cell migration and MMP-9 upregulation were inhibited by each application of a heparin and an IL-1 receptor antagonist (IL-1RA), suggesting the involvement of syndecans and IL-1beta autocrine. Furthermore, the A3G756-induced cell motility was inhibited by an MMP-9 inhibitor and a neutralizing antibody of MMP-9, indicating induced cell motility was dependent on an MMP-9 activity. Taken these together, laminin-5 alpha3 LG4 module may play an important role in re-epithelialization at tissue remodeling.  相似文献   

3.
Sphingosine 1-phosphate (SPP), a platelet-derived bioactive lysophospholipid, is a regulator of angiogenesis. However, molecular mechanisms involved in SPP-induced angiogenic responses are not fully defined. Here we report the molecular mechanisms involved in SPP-induced human umbilical vein endothelial cell (HUVEC) adhesion and migration. SPP-induced HUVEC migration is potently inhibited by antisense phosphothioate oligonucleotides against EDG-1 as well as EDG-3 receptors. In addition, C3 exotoxin blocked SPP-induced cell attachment, spreading and migration on fibronectin-, vitronectin- and Matrigel-coated surfaces, suggesting that endothelial differentiation gene receptor signaling via the Rho pathway is critical for SPP-induced cell migration. Indeed, SPP induced Rho activation in an adherence-independent manner, whereas Rac activation was dispensible for cell attachment and focal contact formation. Interestingly, both EDG-1 and -3 receptors were required for Rho activation. Since integrins are critical for cell adhesion, migration, and angiogenesis, we examined the effects of blocking antibodies against alpha(v)beta(3), beta(1), or beta(3) integrins. SPP induced Rho-dependent integrin clustering into focal contact sites, which was essential for cell adhesion, spreading and migration. Blockage of alpha(v)beta(3)- or beta(1)-containing integrins inhibited SPP-induced HUVEC migration. Together our results suggest that endothelial differentiation gene receptor-mediated Rho signaling is required for the activation of integrin alpha(v)beta(3) as well as beta(1)-containing integrins, leading to the formation of initial focal contacts and endothelial cell migration.  相似文献   

4.
Smooth muscle cell migration plays an important role during angiogenesis and vascular remodeling. In this study, we examined the effects of doxycycline and minocycline on vascular endothelial growth factor (VEGF)-induced human aortic smooth muscle cell (HASMCs) migration, and explored the mechanisms in which doxycycline or minocycline inhibit HASMC migration. We demonstrated that both doxycycline and minocycline attain consistent anti-angiogenic effects in the inhibition of HASMC migration via a different signal pathway (p<0.05). This effect is through attenuating VEGF-induced matrix metalloproteinase-9 (MMP-9) activity (p<0.05). Doxycycline could increase tissue inhibitors of metalloproteinases-1 (TIMP-1) expression while minocycline down-regulated PI3K/Akt phosphorylation in HASMC. Our study suggests that doxycycline has a stronger ability to inhibit MMP secretion in HASMC by up-regulating endogenous MMPs inhibitor TIMP-1, while minocycline implements anti-angiogenic effect through inhibiting HASMC migration by down-regulating PI3K/Akt pathway.  相似文献   

5.
CCN3 (NOV) is a novel angiogenic regulator of the CCN protein family   总被引:10,自引:0,他引:10  
CCN3 (NOV) is a matricellular protein of the CCN family, which also includes CCN1 (CYR61), CCN2 (CTGF), CCN4 (WISP-1), CCN5 (WISP-2), and CCN6 (WISP-3). During development, CCN3 is expressed widely in derivatives of all three germ layers, and high levels of expression are observed in smooth muscle cells of the arterial vessel wall. Altered expression of CCN3 has been observed in a variety of tumors, including hepatocellular carcinomas, Wilm's tumors, Ewing's sarcomas, gliomas, rhabdomyosarcomas, and adrenocortical carcinomas. To understand its biological functions, we have investigated the activities of purified recombinant CCN3. We show that in endothelial cells, CCN3 supports cell adhesion, induces directed cell migration (chemotaxis), and promotes cell survival. Mechanistically, CCN3 supports human umbilical vein endothelial cell adhesion through multiple cell surface receptors, including integrins alphavbeta3, alpha5beta1, alpha6beta1, and heparan sulfate proteoglycans. In contrast, CCN3-induced cell migration is dependent on integrins alphavbeta3 and alpha5beta1, whereas alpha6beta1 does not play a role in this process. Although CCN3 does not contain a RGD sequence, it binds directly to immobilized integrins alphavbeta3 and alpha5beta1, with half-maximal binding occurring at 10 nm and 50 nm CCN3, respectively. Furthermore, CCN3 induces neovascularization when implanted in rat cornea, demonstrating that it is a novel angiogenic inducer. Together, these findings show that CCN3 is a ligand of integrins alphavbeta3 and alpha5beta1, acts directly upon endothelial cells to stimulate pro-angiogenic activities, and induces angiogenesis in vivo.  相似文献   

6.
The angiogenic inducer CCN1 (cysteine-rich 61, CYR61), a secreted matricellular protein of the CCN family, is a ligand of multiple integrins, including alpha 6 beta 1. Previous studies have shown that CCN1 interaction with integrin alpha 6 beta 1 mediates adhesion of fibroblasts, endothelial cells, and smooth muscle cells, as well as migration of smooth muscle cells. Recently, we have reported that CCN1-induced tubule formation of unactivated endothelial cells is also mediated through integrin alpha 6 beta 1. In this study, we demonstrate that human skin fibroblasts adhere specifically to the T1 sequence (GQKCIVQTTSWSQCSKS) within domain III of CCN1, and this process is blocked by anti-alpha 6 and anti-beta 1 monoclonal antibodies. Alanine substitution mutagenesis of the T1 sequence further defines the sequence TTSWSQCSKS as the critical determinant for mediating alpha 6 beta 1-dependent adhesion. Soluble T1 peptide specifically inhibits fibroblast adhesion to CCN1 in a dose-dependent manner. Furthermore, T1 also inhibits cell adhesion to other alpha 6 beta 1 ligands, including CCN2 (CTGF), CCN3 (NOV), and laminin, but not to ligands of other integrins. In addition, T1 specifically inhibits alpha 6 beta 1-dependent tubule formation of unactivated endothelial cells in a CCN1-containing collagen gel matrix. To confirm that T1 binds integrin alpha 6 beta 1 directly, we perform affinity chromatography and show that integrin alpha 6 beta 1 is isolated from an octylglucoside extract of fibroblasts on T1-coupled Affi-gel. Taken together, these findings define the T1 sequence in CCN1 as a novel binding motif for integrin alpha 6 beta 1, providing the basis for the development of peptide mimetics to examine the functional role of alpha 6 beta 1 in angiogenesis.  相似文献   

7.
Hepatic stellate cells are the major source of the extracellular matrix that accumulates in fibrotic liver. During progressive liver fibrosis, hepatic stellate cells proliferate, but during resolution of fibrosis there is extensive stellate cell apoptosis that coincides with degradation of the liver scar. We have examined the possibility that the fate of stellate cells is influenced by the extracellular matrix through the intermediary of alpha(v)beta(3) integrin. alpha(v)beta(3) integrin was expressed by activated, myofibroblastic rat and human stellate cells in culture. Antagonism of this integrin using neutralizing antibodies, echistatin, or small inhibitory RNA to silence alpha(v) subunit expression inhibited stellate cell proliferation and their expression of proliferating cell nuclear antigen and activated forms of p44 and p42 MAPK. These alpha(v)beta(3) antagonists also increased apoptosis of cultured stellate cells, and this was associated with an increase in the BAX/BCL-2 protein ratio, induction of nuclear DNA fragmentation, and activation of intracellular caspase-3. Expression of tissue inhibitor of metalloproteinases-1 by activated stellate cells was reduced by the alpha(v)beta(3) antagonists, while matrix metalloproteinase-9 synthesis was enhanced. Stellate cells incubated with active recombinant matrix metalloproteinase-9 showed enhanced apoptosis, while cells treated with a synthetic inhibitor of this protease showed increased survival. Our studies suggest that alpha(v)beta(3) integrin regulates the fate of hepatic stellate cells. Degradation of alpha(v)beta(3) ligands surrounding activated stellate cells during resolution of liver fibrosis might decrease alpha(v)beta(3) integrin ligation, suppressing stellate cell proliferation and inducing a fibrolytic, matrix metalloproteinase-secreting phenotype that may prime stellate cells for apoptosis.  相似文献   

8.
We have examined the role of Ras in integrin expression in ECV304 endothelial cells. Among the integrins examined in stable ECV304 transfectants expressing dominant active H-Ras (DAR-ECV), expression of alpha3beta1 integrin showed a prominent reduction in all the DAR-ECV clones when compared to the parental ECV304 cells. This implies that H-Ras negatively regulates the expression of alpha3beta1 integrin in ECV304 cells. When treated with inhibitors of the Ras downstream pathway (LY294002, PD98059, SB203580), the expression of alpha3beta1 integrin was up-regulated most significantly by LY294002, suggesting that among the downstream pathways of Ras, phosphatidylinositol 3-kinase is a major determinant. With the application of blocking antibody to alpha3beta1 integrin (2 - 2 x 10(4) nM), migration of ECV304 cells was enhanced to maximal (18%) at 20 nM. These results suggest that migration of endothelial cells could be modulated by H-Ras via alteration of the expression levels of alpha3beta1 integrin.  相似文献   

9.
Gangliosides GM3 and GT1b both inhibit epithelial cell adhesion and migration on fibronectin. GT1b binds to integrin alpha5beta1 and blocks the integrin-fibronectin interaction; GM3 does not interact with integrin, and its effect is poorly understood. We evaluated the effects of endogenous modulation of GM3 expression on epithelial cell motility on several matrices and the mechanism of these effects. Endogenous accumulation of GM3 decreased cell migration on fibronectin, types I, IV, and VII collagen matrices; depletion of GM3 dramatically increased cell migration, regardless of matrix. GM3 overexpression and depletion in vitro correlated inversely with the expression and activity of matrix metalloproteinase-9; consistently, the cell migration stimulated by GM3 depletion is reversed by inhibition of matrix metalloproteinase-9 activity. Accumulation and depletion of GM3 in epithelial cells grown on fibronectin also correlated inversely with epidermal growth factor receptor and mitogen activated protein kinase phosphorylation and with Jun expression. Ganglioside depletion facilitated the co-immunoprecipitation of matrix metal-loproteinase-9 and integrin alpha5beta1, while endogenous accumulation of GM3, but not GT1b, blocked the co-immunoprecipitation. These data suggest modulation of epidermal growth factor receptor signaling and dissociation of integrin/matrix metalloproteinase-9 as mechanisms for the GM3-induced effects on matrix metalloproteinase-9 function.  相似文献   

10.
The integrin alpha9beta1 is expressed on epithelial cells, smooth muscle cells, skeletal muscle, and neutrophils and recognizes at least three distinct ligands: vascular cell adhesion molecule 1 (VCAM-1), tenascin-C, and osteopontin. The alpha9 subunit is structurally similar to the integrin alpha4 subunit, and alpha9beta1 and alpha4beta1 both recognize VCAM-1 as a ligand. We therefore examined whether the disintegrin EC3, which we have recently shown specifically inhibits the binding of alpha4 integrins to ligands, would also be a functional inhibitor of alpha9beta1. EC3 and a novel heterodimeric disintegrin that we identified, EC6, both were potent inhibitors of alpha9beta1-mediated adhesion to VCAM-1 and of neutrophil migration across tumor necrosis factor-activated endothelial cells. A peptide containing a novel MLDG motif shared by both of these disintegrins also inhibited alpha9beta1- and alpha4beta1-mediated adhesion to VCAM-1. Surprisingly though, concentrations of EC3 that completely inhibited adhesion of alpha9-transfected cells to VCAM-1 had little or no effect on adhesion to either of the other alpha9beta1 ligands, osteopontin and tenascin-C. Furthermore, peptides AEIDGIEL and SVVYGLR, which we have previously shown inhibit binding of alpha9beta1-expressing cells to tenascin-C and osteopontin, respectively, had no effect on adhesion to VCAM-1. These data suggest that there are structurally distinct requirements for interactions of the alpha9beta1 integrin with VCAM-1 and the extracellular matrix ligands osteopontin and tenascin-C.  相似文献   

11.
Endothelial cell invasion is a key step in angiogenic blood vessel formation. Sphingosine-1-phosphate (S1P) has been previously reported to play a role in endothelial cell proliferation, survival, migration, and angiogenesis. Here, we examine the ability of S1P to regulate human endothelial cell invasion into three-dimensional collagen or fibrin matrices. We show that S1P potently stimulated human endothelial cell invasion, lumen formation, and branching morphogenesis in collagen, and fibrin matrices, (5- and 15-fold increases in invasion were observed, respectively). The S1P-induced invasion response was pertussis-toxin sensitive and completely dependent on integrins. Addition of integrin blocking reagents revealed that the alpha2beta1 integrin regulated invasion in collagen matrices, while a combination of alphavbeta3 and alpha5beta1 integrins regulated invasion in fibrin. Additionally, the S1P-induced invasion response was dependent on matrix metalloproteinases (MMPs). Tissue inhibitor of metalloproteinase-3 (TIMP-3) was the only physiologic inhibitor of metalloproteinases that completely inhibited the potent stimulation of invasion induced by S1P. In contrast, TIMP-1 had no blocking effect on invasion or morphogenesis, while TIMP-2 and TIMP-4 partially reduced invasion but completely blocked lumen formation events. Collectively, these data reveal a marked ability of S1P to induce metalloproteinase- and integrin-dependent human endothelial cell invasion and morphogenesis in both collagen and fibrin three-dimensional matrices, the two most physiologically relevant matrices for angiogenesis.  相似文献   

12.
Vascular endothelial growth factor A (VEGF-A) is a potent inducer of angiogenesis. We now show that VEGF-A-induced adhesion and migration of human endothelial cells are dependent on the integrin alpha9beta1 and that VEGF-A is a direct ligand for this integrin. Adhesion and migration of these cells on the 165 and 121 isoforms of VEGF-A depend on cooperative input from alpha9beta1 and the cognate receptor for VEGF-A, VEGF receptor 2 (VEGF-R2). Unlike alpha3beta1or alphavbeta3 integrins, alpha9beta1 was also found to bind the 121 isoform of VEGF-A. This interaction appears to be biologically significant, because alpha9beta1-blocking antibody dramatically and specifically inhibited angiogenesis induced by VEGF-A165 or -121. Together with our previous findings that alpha9beta1 directly binds to VEGF-C and -D and contributes to lymphangiogenesis, these results identify the integrin alpha9beta1 as a potential pharmacotherapeutic target for inhibition of pathogenic angiogenesis and lymphangiogenesis.  相似文献   

13.
During the second phase of osteogenesis in vitro, rat osteoblasts secrete inducer(s) of chemotaxis and chemoinvasion of endothelial and tumor cells. We report here the characterization and purification from mature osteoblast conditioned medium of the agent chemotactic for endothelial cells. The chemoactive conditioned medium specifically induces directional migration of endothelial cells, not affecting the expression and activation of gelatinases, cell proliferation, and scattering. Directional migration induced in endothelial cells by conditioned medium from osteoblasts is inhibited by pertussis toxin, by blocking antibodies to integrins alpha(1), beta(1), and beta(3), and by antibodies to metalloproteinase 2 and 9. The biologically active purified protein has two sequences, coincident with the amino-terminal amino acids, respectively, of the alpha(1) and of the alpha(2) carboxyl propeptides of type I collagen, as physiologically produced by procollagen C proteinase. Antibodies to type I collagen and to the carboxyl terminus of alpha(1) or alpha(2) chains inhibit chemotaxis. The chemoattractant is the propeptide trimer carboxyl-terminal to type I collagen, and its activity is lost upon reduction. These data illustrate a previously unknown function for the carboxyl-terminal trimer, possibly relevant in promoting endothelial cell migration and vascularization of tissues producing collagen type I.  相似文献   

14.
During angiogenesis capillary endothelial cells undergo a coordinated set of modifications in their interactions with extracellular matrix components. In this study we have investigated the effect of the prototypical angiogenic factor basic fibroblast growth factor (bFGF) on the expression and function of several integrins in microvascular endothelial cells. Immunoprecipitation experiments with antibodies to individual subunits indicated that microvascular cells express at their surface several integrins. These include the alpha 1 beta 1, alpha 2 beta 1, and alpha 3 beta 1 laminin/collagen receptors; the alpha 6 beta 1 laminin receptor; the alpha 5 beta 1 and alpha v beta 1 fibronectin receptors; the alpha 6 beta 4 basement membrane receptor; and the alpha v beta 3 and alpha v beta 5 vitronectin receptors. Treatment with bFGF caused a significant increase in the surface expression of the alpha 2 beta 1, alpha 3 beta 1, alpha 5 beta 1, alpha 6 beta 1, alpha 6 beta 4, and alpha v beta 5 integrins. In contrast, the level of expression of the alpha 1 beta 1 and alpha v beta 3 integrins was decreased in bFGF-treated cells. Immunoprecipitation of metabolically labeled cells indicated that bFGF increases the biosynthesis of the alpha 3, alpha 5, alpha 6, beta 4, and beta 5 subunits and decreases the production of the alpha v and beta 3 subunits. These results suggest that bFGF modulates integrin expression by altering the biosynthesis of individual alpha or beta subunits. In accordance with the upregulation of several integrins observed in bFGF-treated cells, these cells adhered better to fibronectin, laminin, vitronectin, and type I collagen than did untreated cells. The largest differences in beta 1 integrin expression occurred approximately 72 h after exposure to bFGF, at a time when the expression of the endothelial cell-to-cell adhesion molecule endoCAM was also significantly upregulated. In contrast, a shorter exposure to bFGF (24-48 h) was required for the maximal induction of plasminogen activator production in the same cells. Taken together, these results show that bFGF causes significant changes in the level of expression and function of several integrins in microvascular endothelial cells.  相似文献   

15.
Components of the extracellular matrix contain cryptic domains, which are exposed by proteolysis and elicit biological responses distinct from intact molecules. The disparate cellular response to extracellular matrix fragments and parent intact molecules suggests differential recognition and signaling pathways. In experiments reported here, we demonstrate that urokinase and matrix metalloproteinase-9 expression by RAW264.7 macrophages is stimulated by a synthetic laminin peptide derived from the alpha1-chain (SRARKQAASIKVAVSADR), whereas intact laminin-1 has no effect on proteinase expression by macrophages. Incubation of macrophages with alpha1:SRARKQAASIKVAVSADR stimulates tyrosine phosphorylation of several proteins including mitogen-activated protein kinase (MAPK)(erk1/2). In contrast, neither intact laminin-1 nor the beta1-chain peptide CDPGYIGSR stimulated protein tyrosine phosphorylation in these cells. Inhibition of tyrosine kinases or protein kinase C blocked alpha1-chain peptide-induced phosphorylation of MAPK(erk1/2) and the up-regulation of steady state levels of urokinase mRNA and matrix metalloproteinase-9 activity. A MAPK kinase inhibitor blocked alpha1-chain-induced phosphorylation of MAPK(erk1/2) and the induction of proteinase expression. Intact laminin-1, which was unable to induce macrophage proteinase expression, failed to stimulate the phosphorylation of MAPK(erk1/2). These data demonstrate that incubation of macrophages with alpha1:SRARKQAASIKVAVSADR, but not intact laminin-1, triggers protein kinase C-dependent activation of MAPK(erk1/2), leading to the up-regulation of proteinase expression.  相似文献   

16.
The hypothesis was tested that different chemoattractants have different effects on the activity of integrins expressed by the human eosinophil. Three chemoattractants, CXCL8 (IL-8), CCL11 (eotaxin-1), and C5a were tested with respect to their ability to induce migration and the transition of eosinophils from a rolling interaction to a firm arrest on activated endothelial cells under flow conditions. CCL11 and C5a induced a firm arrest of eosinophils rolling on an endothelial surface, whereas CXCL8 induced only a transient arrest of the cells. The CXCL8- and CCL11-induced arrest was inhibited by simultaneously blocking alpha4 integrins (HP2/1) and beta2 integrins (IB4). In contrast, the C5a-induced arrest was only inhibited by 30% under these conditions. The potency differences of C5a>CCL11>CXCL8 to induce firm adhesion under flow condition was also observed in migration assays and for the activation of the small GTPase Rap-1, which is an important signaling molecule in the inside-out regulation of integrins. Interestingly, only C5a was able to induce the high activation epitope of alphaMbeta2 integrin recognized by MoAb CBRM1/5. The C5a-induced appearance of this epitope and Rap activation was controlled by phospholipase C (PLC), as was shown with the PLC inhibitor U73122. These data show that different chemoattractants are able to induce distinct activation states of integrins on eosinophils and that optimal chemotaxis is associated with the high activation epitope of the alphaMbeta2 integrin. Furthermore, PLC plays an important role in the inside-out signaling and, thus, the activation status of integrins on eosinophils.  相似文献   

17.
We report the effect of the stable expression of a 13 amino acid human fibronectin (FN) peptide (FN13) on the organization of the FN extracellular matrix (ECM) and of FN integrin receptors (FNRs), in relationship with the inhibition of cellular invasion, in three FN-ECM defective human tumor-derived cell lines: SK-Hep1C3, hepatoma, ACN, neuroblastoma, and SK-OV-3, ovary carcinoma. All these cell lines stably expressing the FN13 peptide, organized an FN-ECM, disorganized alpha v beta 1 integrins and inactivated the ILK pathway, with the loss of secretion of MMP-9. This was associated with the inhibition of cell invasion in Matrigel matrix only in SK-Hep1C3 and ACN, but not in SK-OV-3 cells. Analysis of the integrin receptors organization showed that the FN13 expressing cells SK-Hep1C3 and ACN organized alpha v beta 3 integrins, whereas SK-OV-3 organized alpha v beta 5 dimers. The functional block of alpha v beta 5 integrins, with an inactivating anti-alpha v beta 5 antibody, led to the induction of alpha v beta 3 integrins also in SK-OV-3 cells, and to the inhibition of cell invasion. These data show that in the human tumor cells studied FN13 inhibits the in vitro invasion through the dissociation of alpha v beta 1 dimers, leading to ILK pathway inactivation, only when the organization of alpha v beta 3 integrins is induced in the plasma membrane.  相似文献   

18.
Up-regulation of urokinase receptors is common during tumor progression and thought to promote invasion and metastasis. Urokinase receptors bind urokinase and a set of beta1 integrins, but it remains unclear to what degree urokinase receptor/integrin binding is important to beta1 integrin signaling. Using site-directed mutagenesis, single amino acid mutants of the urokinase receptor were identified that fail to associate with either alpha3beta1 (D262A) or alpha5beta1 (H249A) but associate normally with urokinase. To study the effects of these mutations on beta1 integrin function, endogenous urokinase receptors were first stably silenced in tumor cell lines HT1080 and H1299, and then wild type or mutant receptors were expressed. Knockdown of urokinase receptors resulted in markedly reduced fibronectin and alpha5beta1-dependent ERK activation and metalloproteinase MMP-9 expression. Re-expression of wild type or D262A mutant receptors but not the alpha5beta1 binding-deficient H249A mutant reconstituted fibronectin responses. Because urokinase receptor.alpha5beta1 complexes bind in the fibronectin heparin-binding domain (Type III 12-14) whereas alpha5beta1 primarily binds in the RGD-containing domain (Type III 7-10), signaling pathways leading to ERK and MMP-9 responses were dissected. Binding to III 7-10 led to Src/focal adhesion kinase activation, whereas binding to III 7-14 caused Rac 1 activation. Tumor cells engaging fibronectin required both Type III 7-10- and 12-14-initiated signals to activate ERK and up-regulate MMP-9. Thus urokinase receptor binding to alpha5beta1 is required for maximal responses to fibronectin and tumor cell invasion, and this operates through an enhanced Src/Rac/ERK signaling pathway.  相似文献   

19.
The alpha4 laminin subunit regulates endothelial cell survival   总被引:3,自引:0,他引:3  
The alpha4 laminin subunit is a major structural component of assembling basement membranes of endothelial cells. We have been investigating its functions with regard to endothelial cell survival. An anti-laminin alpha4 antibody (2A3), directed against the G domain of the alpha4 laminin subunit of laminins-8 and -9, inhibits proliferation and enhances apoptosis of endothelial cells when cells are maintained in vitro. Activation of caspases-9 and -3 plays a role in 2A3 antibody-induced apoptosis, since inhibitors specific for these caspases and overexpression of the anti-apoptotic protein Bcl-X(L), but not c-FLIP, inhibit 2A3 antibody-triggered endothelial cell death. Extracellular matrix is known to play a role in regulating programmed cell death in an integrin-dependent fashion. The alpha4 laminin subunit conforms to this idea since activation of beta1 integrin subunits on endothelial cells blocks the ability of 2A3 antibody to induce endothelial cell death. In summary, our data indicate that complexes composed of alpha4 laminin/beta1 subunit-containing integrins at the cell surface support endothelial cell survival. Furthermore, we propose that antagonists of alpha4 laminin function, including antibody 2A3, have value as angiogenesis inhibitors in a clinical setting where blocking aberrant growth of blood vessel by triggering apoptosis of endothelial cells may be therapeutic.  相似文献   

20.
The objective of this study was to determine the presence of autocrine/paracrine regulation of matrix metalloproteinase-9 (MMP-9) expression mediated by proinflammatory cytokines in human fetal membranes. Fetal membranes obtained from women who underwent cesarean delivery before labor were manually separated into amnion and chorion layers and maintained in culture. These explants were stimulated with tumor necrosis factor alpha (TNFalpha), interleukin-1beta (IL-1beta), and either lipopolysaccharide (LPS) alone or LPS with anti-TNFalpha or anti-IL-1beta-neutralizing antibodies. Levels of proMMP-9 in culture media were evaluated by zymography. Enzyme-linked immunosorbant assay was performed to measure the quantity of IL-1beta, TNFalpha, and tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) after LPS stimulation. ProMMP-9 activity was upregulated after stimulation of the amnion by LPS, TNFalpha, and IL-1beta. The increased activity of proMMP-9 resulting from LPS stimulation in the amnion was blocked by the addition of TNFalpha neutralizing antibody but not with anti-IL-1beta. No significant effect of LPS, TNFalpha, or IL-1beta on proMMP-9 expression was observed in the chorion; however, the chorion produced both cytokines when stimulated with LPS. In contrast, TIMP-1 levels remained unchanged in all cultures incubated in the presence of LPS. Therefore, these data indicate that proMMP-9 is produced by the amnion but not the chorion in response to LPS. Because anti-TNFalpha-neutralizing antibody inhibits proMMP-9 activity in the amnion, TNFalpha appears to upregulate proMMP-9 production by the amnion in an autocrine fashion. Meanwhile, TNFalpha and IL-1beta produced by the chorion may upregulate amnionic proMMP-9 production in a paracrine manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号