首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The photoreceptor membrane of Drosophila melanogaster (wild type, vitamin A-deprived wild type, and the mutants ninaAP228, ninaBP315, and oraJK84) was studied by freeze-fracture electron microscopy. The three mutations caused a decrease in the number of particles on the protoplasmic face of the rhabdomeric membrane. The ninaAP228 mutation affected only the peripheral photoreceptors (R1-6), while the ninaBP315 mutation affected both the peripheral (R1-6) and the central photoreceptors (R7). The oraJK84 mutation, which essentially eliminates R1-6 rhabdomeres, was found to drastically deplete the membrane particles in the vestigial R1-6 rhabdomeres but not in the normal rhabdomeres of R7 photoreceptors, suggesting that the failure of the oraJK84 mutant to form normal R1-6 rhabdomeres may be due to a defect in a major R1-6 photoreceptor-specific protein in the mutant. In all cases in which both the rhabdomeric particle density and rhodopsin content were studied, the mutations or vitamin A deprivation was found to reduce both these quantities, supporting the idea that at least the majority of the rhabdomeric membrane particles are closely associated with rhodopsin. Vitamin A deprivation and the mutations also reduced the number of particles in the plasma membrane as in the rhabdomeric membrane, suggesting that both classes of membrane contain rhodopsin.  相似文献   

2.
Visual pigment extracts prepared from rhabdomeric membranes of vitamin A deficient blowflies contain a 5-10 times lower concentration of rhodopsin than extracts from flies which were raised on a vitamin A rich diet. Spectrophotometry showed that digitonin-solubilized rhodopsin from blowfly photoreceptors R1-6 has an absorbance maximum at about 490 nm, but no unusually enhanced beta-band in the ultraviolet. The extracts did not contain detectable concentrations of other visual pigments nor was there any evidence for the presence of photostable vitamin A derivatives. Sodium dodecyl sulfate polyacrylamide gel electrophoresis demonstrated that the concentration of opsin in the rhabdomeric membrane is significantly reduced in vitamin A deficient flies compared to normal flies. The results indicate that the synthesis of opsin or its incorporation into the photoreceptor membrane is regulated by the chromophore concentration in the receptor cell. Furthermore, our findings open up the possibility that differences in the spectral absorption and excitability of photoreceptors from normal and vitamin A deficient flies result from the differing opsin content of the rhabdomeres.  相似文献   

3.
Characterization of Drosophila melanogaster rhodopsin   总被引:1,自引:0,他引:1  
A polypeptide present in Drosophila eye homogenates was identified as opsin. This polypeptide pI 7.8, with Mr 39,000 is a retina-specific protein. It has the spectral characteristics of rhodopsin contained in the R1-6 photoreceptors and decreases in amount with vitamin A deprivation. It contains a chromophore derived from vitamin A and linked to the protein moiety by a Schiff base. Moreover, the polypeptide identified corresponds to a retina-specific polypeptide that was shown previously to undergo light-dependent phosphorylation in living flies. These results indicate that many properties of Drosophila rhodopsin do not differ significantly from those reported for rhodopsins of other organisms. However, the isoelectric point of Drosophila opsin is considerably more basic than those reported for vertebrate rhodopsins.  相似文献   

4.
Visual pigment extracts prepared from rhabdomeric membranes of vitamin A deficient blowflies contain a 5–10 times lower concentration of rhodopsin than extracts from flies which were raised on a vitamin A rich diet. Spectrophotometry showed that digitonin-solubilized rhodopsin from blowfly photoreceptors R1–6 has an absorbance maximum at about 490 nm, but no unusually enhanced β-band in the ultraviolet. The extracts did not contain detectable concentrations of other visual pigments nor was there any evidence for the presence of photostable vitamin A derivatives.Sodium dodecyl sulfate polyacrylamide gel electrophoresis demonstrated that the concentration of opsin in the rhabdomeric membrane is significantly reduced in vitamin A deficient flies compared to normal flies. The results indicate that the synthesis of opsin or its incorporation into the photoreceptor membrane is regulated by the chromophore concentration in the receptor cell. Furthermore, our findings open up the possibility that differences in the spectral absorption and excitability of photoreceptors from normal and vitamin A deficient flies result from the differing opsin content of the rhabdomeres.  相似文献   

5.
Electrophysiological study of Drosophila rhodopsin mutants   总被引:6,自引:2,他引:4       下载免费PDF全文
Electrophysiological investigations were carried out on several independently isolated mutants of the ninaE gene, which encodes opsin in R1-6 photoreceptors, and a mutant of the ninaD gene, which is probably important in the formation of the rhodopsin chromophore. In these mutants, the rhodopsin content in R1-6 photoreceptors is reduced by 10(2)-10(6)-fold. Light-induced bumps recorded from even the most severely affected mutants are physiologically normal. Moreover, a detailed noise analysis shows that photoreceptor responses of both a ninaE mutant and a ninaD mutant follow the adapting bump model. Since any extensive rhodopsin-rhodopsin interactions are not likely in these mutants, the above results suggest that such interactions are not needed for the generation and adaptation of light-induced bumps. Mutant bumps are strikingly larger in amplitude than wild-type bumps. This difference is observed both in ninaD and ninaE mutants, which suggests that it is due to severe depletion of rhodopsin content, rather than to any specific alterations in the opsin protein. Lowering or buffering the intracellular calcium concentration by EGTA injection mimics the effects of the mutations on the bump amplitude, but, unlike the mutations, it also affects the latency and kinetics of light responses.  相似文献   

6.
Rhodopsin activation causes retinal degeneration in Drosophila rdgC mutant   总被引:5,自引:0,他引:5  
F Steele  J E O'Tousa 《Neuron》1990,4(6):883-890
Drosophila rdgC (retinal degeneration-C) mutants show normal retinal morphology and photoreceptor physiology at young ages. Dark-reared rdgC flies retain this wild-type phenotype, but light-reared mutants undergo retinal degeneration. rdgC photoreceptors with low levels of rhodopsin as a result of vitamin A deprivation or a mutant rhodopsin (ninaE) gene fail to show rdgC-induced degeneration even after prolonged light treatment, demonstrating that degeneration occurs as a result of light stimulation of rhodopsin. Analysis of norpA; rdgC flies shows that the norpA-encoded phospholipase C, the target enzyme of the G protein activated by rhodopsin, is not required for rdgC-induced degeneration. Thus the rdgC+ gene product is required to prevent retinal degeneration that results from a previously unrecognized consequence of rhodopsin stimulation.  相似文献   

7.
Tsutsui K  Imai H  Shichida Y 《Biochemistry》2007,46(21):6437-6445
A visual pigment consists of an opsin protein and a chromophore, 11-cis-retinal, which binds to a specific lysine residue of opsin via a Schiff base linkage. The Schiff base chromophore is protonated in pigments that absorb visible light, whereas it is unprotonated in ultraviolet-absorbing visual pigments (UV pigments). To investigate whether an unprotonated Schiff base can undergo photoisomerization as efficiently as a protonated Schiff base in the opsin environment, we measured the quantum yields of the bovine rhodopsin E113Q mutant, in which the Schiff base is unprotonated at alkaline pH, and the mouse UV pigment (mouse UV). Photosensitivities of UV pigments were measured by irradiation of the pigments followed by chromophore extraction and HPLC analysis. Extinction coefficients were estimated by comparing the maximum absorbances of the original pigments and their acid-denatured states. The quantum yield of the bovine rhodopsin E113Q mutant at pH 8.2, where the Schiff base is unprotonated, was significantly lower than that of wild-type rhodopsin, whereas the mutant gave a quantum yield almost identical to that of the wild type at pH 5.5, where the Schiff base is protonated. These results suggest that Schiff base protonation plays a role in increasing quantum yield. The quantum yield of mouse UV, which has an unprotonated Schiff base chromophore, was significantly higher than that of the unprotonated form of the rhodopsin E113Q mutant, although it was still lower than the visible-absorbing pigments. These results suggest that the mouse UV pigment has a specific mechanism for the efficient photoisomerization of its unprotonated Schiff base chromophore.  相似文献   

8.
Rhodopsin is the rod photoreceptor G protein-coupled receptor responsible for capturing light. Mutations in the gene encoding this protein can lead to a blinding disease called retinitis pigmentosa, which is inherited frequently in an autosomal dominant manner. The E150K opsin mutant associated with rarely occurring autosomal recessive retinitis pigmentosa localizes to trans-Golgi network membranes rather than to plasma membranes of rod photoreceptor cells. We investigated the molecular mechanisms underlying opsin retention in the Golgi apparatus. Electrostatic calculations reveal that the E150K mutant features an overall accumulation of positive charges between helices H-IV and H-II. Human E150K and several other closely related opsin mutants were then expressed in HEK-293 cells. Spectral characteristics and functional biochemistry of each mutant were analyzed after reconstitution with the cis-retinoid chromophore. UV-visible spectra and rhodopsin/transducin activation assays revealed only minor differences between the purified wild type control and rhodopsin mutants. However, partial restoration of the surface electrostatic charge in the compensatory R69E/E150K double mutant rescues the plasma membrane localization of opsin. These findings emphasize the fundamental importance of electrostatic interactions for appropriate membrane trafficking of opsin and advance our understanding of the pathophysiology of autosomal recessive retinitis pigmentosa due to the E150K mutation.  相似文献   

9.
We previously reported (Sarfare, S., Ahmad, S. T., Joyce, M. V., Boggess, B., and O'Tousa, J. E. (2005) J. Biol. Chem. 280, 11895-11901) that the Drosophila ninaG gene encodes an oxidoreductase involved in the biosynthesis of the (3S)-3-hydroxyretinal serving as chromophore for Rh1 rhodopsin and that ninaG mutant flies expressing Rh4 as the major opsin accumulate large amounts of a different retinoid. Here, we show that this unknown retinoid is 11-cis-3-hydroxyretinol. Reversed phase high performance liquid chromatography coupled with a photodiode array UV-visible absorbance detector and mass spectrometer revealed a major product eluting at a retention time, t(r), of 3.5 min with a lambda(max) of approximately 324 nm and with a base peak in the mass spectrum at m/z 285. These observations are identical with those of the 3-hydroxyretinol standard. The base peak in the electrospray ionization mass spectrum arises from the loss of a water molecule from the protonated molecule at m/z 303 because of fragmentation in the ion source. These results suggest that 11-cis-3-hydroxyretinol is an intermediate required for chromophore biogenesis in Drosophila. We further show that ninaG mutants fed on retinal as the sole source of vitamin A are able to synthesize 3-hydroxyretinoids. Thus, the NinaG oxidoreductase is not responsible for the initial hydroxylation of the retinal ring but rather acts in a subsequent step in chromophore production. These data are used to review chromophore biosynthesis and propose that NinaG acts in the conversion of (3R)-3-hydroxyretinol to the 3S enantiomer.  相似文献   

10.
The P23H opsin mutation is the most common cause of autosomal dominant retinitis pigmentosa. Even though the pathobiology of the resulting retinal degeneration has been characterized in several animal models, its complex molecular mechanism is not well understood. Here, we expressed P23H bovine rod opsin in the nervous system of Caenorhabditis elegans. Expression was low due to enhanced protein degradation. The mutant opsin was glycosylated, but the polysaccharide size differed from that of the normal protein. Although P23H opsin aggregated in the nervous system of C. elegans, the pharmacological chaperone 9-cis-retinal stabilized it during biogenesis, producing a variant of rhodopsin called P23H isorhodopsin. In vitro, P23H isorhodopsin folded correctly, formed the appropriate disulfide bond, could be photoactivated but with reduced sensitivity, and underwent Meta II decay at a rate similar to wild type isorhodopsin. In worm neurons, P23H isorhodopsin initiated phototransduction by coupling with the endogenous Gi/o signaling cascade that induced loss of locomotion. Using pharmacological interventions affecting protein synthesis and degradation, we showed that the chromophore could be incorporated either during or after mutant protein translation. However, regeneration of P23H isorhodopsin with chromophore was significantly slower than that of wild type isorhodopsin. This effect, combined with the inherent instability of P23H rhodopsin, could lead to the structural cellular changes and photoreceptor death found in autosomal dominant retinitis pigmentosa. These results also suggest that slow regeneration of P23H rhodopsin could prevent endogenous chromophore-mediated stabilization of rhodopsin in the retina.  相似文献   

11.
12.
Five different, well-characterized mutants of the R1-6 rhodopsin gene (ninaE), which corresponds to the rod opsin gene of vertebrates, have been examined morphologically as a function of age (up to 9 weeks) to determine whether or not the photoreceptors degenerate and to assess the pattern of degeneration. Structural deterioration of R1-6 photoreceptors with age has been found in all five mutants. The structural pattern of degeneration is similar in the five mutants, but the time course of degeneration is allele dependent and varies greatly among the five, with the strongest alleles causing the fastest degeneration. The degeneration appears to be independent of either the illumination cycle to which the animals are exposed or the presence of screening pigments in the eye. Although the degeneration first appears in R1-6 photoreceptors, eventually R7/8 photoreceptors, which correspond to cones of vertebrates, are also affected. In many of these mutants, striking proliferations of membrane processes have been observed in the subrhabdomeric region of R1-6 photoreceptors. It is hypothesized that (1) this accumulation of membranes may be caused by the failure of newly synthesized membranes that are inserted into the base of microvilli to be assembled into R1-6 rhabdomeres and (2) this failure may be caused by the extremely low concentration of normal R1-6 rhodopsin in the ninaE mutants.  相似文献   

13.
The prolonged depolarizing after potential (PDA) in the R1–6 receptors of the fly was used to isolate intermediate processes in phototransduction which are not manifested directly in the voltage response. It is first demonstrated that a pigment shift by light from metarhodopsin to rhodopsin in four species of the flies: Drosophila, Calliphora, Chrysomya and Musca induces an independent antagonistic process to the PDA, which is manifested in a strong inhibitory effect on PDA induction and is called the anti-PDA.By using mutants of Drosophila the existence of processes underlying the PDA were examined. The norpA H52and the trp mutant were used in which the voltage response of the photoreceptors could be reversibly abolished by elavated temperature and long intense light respectively. It is shown that the excitatory process underlying the PDA could be induced and depressed in conditions that block the voltage response of the photoreceptors, thus indicating the existance of intermediate processes which link the pigment activation by light to the PDA voltage response.Based on material presented at the European Neurosciences Meeting, Florence, September 1978  相似文献   

14.
G protein-coupled receptors (GPCRs), which constitute the largest and structurally best conserved family of signaling molecules, are involved in virtually all physiological processes. Crystal structures are available only for the detergent-solubilized light receptor rhodopsin. In addition, this receptor is the only GPCR for which the presumed higher order oligomeric state in native membranes has been demonstrated (Fotiadis, D., Liang, Y., Filipek, S., Saperstein, D. A., Engel, A., and Palczewski, K. (2003) Nature 421, 127-128). Here, we have determined by atomic force microscopy the organization of rhodopsin in native membranes obtained from wild-type mouse photoreceptors and opsin isolated from photoreceptors of Rpe65-/- mutant mice, which do not produce the chromophore 11-cis-retinal. The higher order organization of rhodopsin was present irrespective of the support on which the membranes were adsorbed for imaging. Rhodopsin and opsin form structural dimers that are organized in paracrystalline arrays. The intradimeric contact is likely to involve helices IV and V, whereas contacts mainly between helices I and II and the cytoplasmic loop connecting helices V and VI facilitate the formation of rhodopsin dimer rows. Contacts between rows are on the extracellular side and involve helix I. This is the first semi-empirical model of a higher order structure of a GPCR in native membranes, and it has profound implications for the understanding of how this receptor interacts with partner proteins.  相似文献   

15.
Invertebrates such as Drosophila or Limulus assemble their visual pigment into the specialized rhabdomeric membranes of photoreceptors where phototransduction occurs. We have investigated the biosynthesis of rhodopsin from the Limulus lateral eye with three cell culture expression systems: mammalian COS1 cells, insect Sf9 cells, and amphibian Xenopus oocytes. We extracted and affinity-purified epitope-tagged Limulus rhodopsin expressed from a cDNA or cRNA from these systems. We found that all three culture systems could efficiently synthesize the opsin polypeptide in quantities comparable with that found for bovine opsin. However, none of the systems expressed a protein that stably bound 11-cis-retinal. The protein expressed in COS1 and Sf9 cells appeared to be misfolded, improperly localized, and proteolytically degraded. Similarly, Xenopus oocytes injected with Limulus opsin cRNA did not evoke light-sensitive currents after incubation with 11-cis-retinal. However, injecting Xenopus oocytes with mRNA from Limulus lateral eyes yielded light-dependent conductance changes after incubation with 11-cis-retinal. Also, expressing Limulus opsin cDNA in the R1-R6 photoreceptors of transgenic Drosophila yielded a visual pigment that bound retinal, had normal spectral properties, and coupled to the endogenous phototransduction cascade. These results indicate that Limulus opsin may require one or more photoreceptor-specific proteins for correct folding and/or chromophore binding. This may be a general property of invertebrate opsins and may underlie some of the functional differences between invertebrate and vertebrate visual pigments.  相似文献   

16.
1. The proposed models of two independent groups, which relate the different states of the visual pigment to the excitation of the membrane in invertebrate photoreceptors (with particular reference to the prolonged depolarising afterpotential, the PDA) are compared and evaluated. 2. The validity of the late receptor potential (the "normal" receptor response) as an index of photoreceptor sensitivity, i.e., an index of the number of rhodopsin to metarhodopsin transitions, is verified by concurrent spectrophotometry. 3. Electrophysiological observations alone allow the calculation of 1.3 x 10(8) photopigment molecules in the rhabdom of an R1-6 photoreceptor of a vitamin A-bred Calliphora. 4. The PDA is shown to be quantifiable in terms of the number of rhodopsin to metarhodopsin conversions by the absorption of single light quanta. 5. The comparison of discrete membrane fluctuations (quantum bumps) during the PDA and during exposure to sustained light stimuli that mimic the PDA suggest that, the PDA, similar to the late receptor potential, may be due to the summation of quantum bumps.  相似文献   

17.
Rho (rhodopsin; opsin plus 11-cis-retinal) is a prototypical G protein-coupled receptor responsible for the capture of a photon in retinal photoreceptor cells. A large number of mutations in the opsin gene associated with autosomal dominant retinitis pigmentosa have been identified. The naturally occurring T4R opsin mutation in the English mastiff dog leads to a progressive retinal degeneration that closely resembles human retinitis pigmentosa caused by the T4K mutation in the opsin gene. Using genetic approaches and biochemical assays, we explored the properties of the T4R mutant protein. Employing immunoaffinity-purified Rho from affected RHO(T4R/T4R) dog retina, we found that the mutation abolished glycosylation at Asn(2), whereas glycosylation at Asn(15) was unaffected, and the mutant opsin localized normally to the rod outer segments. Moreover, we found that T4R Rho(*) lost its chromophore faster as measured by the decay of meta-rhodopsin II and that it was less resistant to heat denaturation. Detergent-solubilized T4R opsin regenerated poorly and interacted abnormally with the G protein transducin (G(t)). Structurally, the mutation affected mainly the "plug" at the intradiscal (extracellular) side of Rho, which is possibly responsible for protecting the chromophore from the access of bulk water. The T4R mutation may represent a novel molecular mechanism of degeneration where the unliganded form of the mutant opsin exerts a detrimental effect by losing its structural integrity.  相似文献   

18.
Summary The prolonged depolarizing afterpotential (PDA) is a phenomenon which is tightly linked to visual pigment conversion. In order to determine whether processes underlying PDA induction and depression can spread in space, the PDA was recorded intracellularly in white-eyedCalliphora R1-6 photoreceptors and used to examine interactions between processes induced by activating statistically different photopigment molecules (Figs. 3–6). It was found that a PDA induced by converting some fraction of rhodopsin (R) molecules forward into the metarhodopsin (M) state can be completely depressed by equal or smaller amounts of pigment conversion, backward from metarhodopsin to rhodopsin even when largely different sets of pigment molecules were shifted in the respective directions, in agreement with previous experiments conducted on the barnacle. The characteristics of the afterpotentials obtained following the cessation of strong blue and green light stimuli which did not cause a net pigment conversion was examined (Figs. 7, 8). It was found that these afterpotentials, obtained when nonet R to M conversion took place, could not be depressed by an opposite net large M to R pigment conversion. Accordingly we propose to restrict the term PDA to an afterpotential which can be depressed by a net M to R pigment conversion. It is concluded: (a) that some processes underlying PDA induction and depression inCalliphora must interact at a distance which extends at least to the nearest neighboring pigment molecule, and (b) that inCalliphora photoreceptors net pigment conversion is required in order to induce and depress a PDA.Abbreviations R rhodopsin - M metarhodopsin - R to M rhodopsin to metarhodopsin pigment conversion - M to R metarhodopsin to rhodopsin pigment conversion - PDA prolonged depolarizing afterpotential - ERG electroretinogram - M potential metarhodopsin potential - ERP early receptor potential  相似文献   

19.
The early receptor current (ERC) is the charge redistribution occurring in plasma membrane rhodopsin during light activation of photoreceptors. Both the molecular mechanism of the ERC and its relationship to rhodopsin conformational activation are unknown. To investigate whether the ERC could be a time-resolved assay of rhodopsin structure-function relationships, the distinct sensitivity of modern electrophysiological tools was employed to test for flash-activated ERC signals in cells stably expressing normal human rod opsin after regeneration with 11-cis-retinal. ERCs are similar in waveform and kinetics to those found in photoreceptors. The action spectrum of the major R(2) charge motion is consistent with a rhodopsin photopigment. The R(1) phase is not kinetically resolvable and the R(2) phase, which overlaps metarhodopsin-II formation, has a rapid risetime and complex multiexponential decay. These experiments demonstrate, for the first time, kinetically resolved electrical state transitions during activation of expressed visual pigment in a unicellular environment (single or fused giant cells) containing only 6 x 10(6)-8 x 10(7) molecules of rhodopsin. This method improves measurement sensitivity 7 to 8 orders of magnitude compared to other time-resolved techniques applied to rhodopsin to study the role particular amino acids play in conformational activation and the forces that govern those transitions.  相似文献   

20.
Halorhodopsin (HR) and sensory rhodopsin (SR) have been regenerated with retinal analogues that are covalently locked in the 6-s-cis or 6-s-trans conformations. Both pigments regenerate more completely with the locked 6-s-trans retinal and produce analogue pigments with absorption maxima (577 nm for HR and 592 nm for SR) nearly identical to those of the native pigments (577 and 587 nm). This indicates that HR and SR bind retinal in the 6-s-trans conformation. The opsin shift for the locked 6-s-trans analogue in HR is 1,200 cm-1 less than that for the native chromophore (5,400 cm-1). The opsin shift for the 6-s-trans analogue in SR is 1,100 cm-1 less than that for the native retinal (5,700 cm-1). This demonstrates that approximately 20% of the opsin shift in these pigments arises from a protein-induced change in the chromophore conformation from twisted 6-s-cis in solution to planar 6-s-trans in the protein. The reduced opsin shift observed for the locked 6-s-cis analogue pigments compared with the locked 6-s-trans pigments may be due to a positive electrostatic perturbation near C7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号