首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Triticum aestivum (wheat) plants grown at a daynight temperature of 1813 °C from anthesis were held as well watered controls, or subject to either a mild (large pot volume) or a more severe (small pot volume) water stress by withholding water from the time of anthesis. Extracts from the peduncle (enclosed by the flag leaf sheath) and the penultimate internode were prepared to determine the activities of fructan exohydrolase and acid invertase and to assess the level of hexose sugars, sucrose and fructans. Measurements were made of ear and individual grain weights and stem fresh weight and dry weight. Plant water relations at the time of each sampling were determined as the flag leaf water potential and the water content of individual organs. Water stress resulted in a shorter duration of kernel filling, smaller kernels at maturity and an earlier loss of stem weight. There was an increase in stem fructose and a fall in fructan level that preceded the loss of dry matter associated with water stress. Coincident with the early fall in fructan content under water stress there was a rise in both fructan exohydrolase and acid invertase in the internodes of stressed plants. This correlation suggests that the conversion of fructans to fructose might have resulted from enzyme induction associated with water stress, but as this conversion occurs before the major export of reserves from the stem it might be only indirectly related to changes in the demand for reserves.  相似文献   

2.
3.
4.
Wheat plants were grown at a day/night temperature of 18/13°C under glasshouse conditions. Twenty-two d after anthesis, one set of plants was shaded to 50% of the normal photon fluence rate, another was 'degrained' by selective spikelet removal which left only the grains in the five central spikelets; a further set was left as control. Individual plants were harvested at days 22, 30 or 42 after anthesis. Extracts from the peduncle and the penultimate internode were prepared to determine the activities of sucrose phosphate synthase, sucrose synthase, fructan exohydrolase and acid invertase, and to assess the concentration of hexose sugars, sucrose and fructans. Measurements were also made of ear and individual grain weights, and stem f. wt and d. wt. There was a decline in the amount of fructans with time, more pronounced in 'shaded' (source-limited) than in control plants. By contrast, in 'degrained' (sink-limited) plants, the amount of fructans in the stem initially rose, then decreased, with a concomitant increase in the amount of fructose. The shifts in sugar content of the wheat culm reflected both the sink demand of the ear and source activity. The activity of fructan exohydrolase correlated with the carbohydrate changes. Under limited photosynthate assimilation, the mobilization of fructans from the internodes towards the ear was related to an increase in this enzyme, whereas the other enzymes played a less direct role in the mobilization of fructan reserves from the wheat stem.  相似文献   

5.
The flag leaf of wheat was examined for changes in quantity and activity of ribulose-bisphosphate carboxylase (RuBPCase; EC 4.1.1.39), in the proteolytic degradation of RuBPCase and other native proteins, and in the ultrastructure of the leaf cells during grain development. Proteolytic degradation of RuBPCase at pH 4.8 increased until 8–10 d after anthesis, then declined, and increased again 16–18 d after anthesis. The second peak coincided with the onset of a preferential loss of immunologically recognizable RuBPCase. The specific activity and number of active sites per molecule of RuBPCase did not change during senescence. Examination of ultrastructure with the electron microscope showed little change in the appearance of the mitochondria as the flag leaf aged. Prominent cristae were still evident 35 d after anthesis. In contrast, the chloroplasts showed a progressive disruption of the thylakoid structure and an increasing number of osmiophilic glubules. The double membrane envelope surrounding the chloroplast appeared intact until at least 20 d after anthesis. The tonoplast also appeared intact up to 20 d. At later stages of senescence of the leaf the outer membrane of the chloroplast adjacent to the tonoplast appeared to break but the inner membrane of the envelope appeared intact until at least 35 d after anthesis.Abbreviation RuBPCase ribulose-1,5-bisphosphate carboxylase (EC. 4.1.1.39) I=Waters et al. 1980  相似文献   

6.
7.
8.
The technique of EDTA-enhanced phloem exudation (King and Zeevaart, 1974: Plant Physiol. 53, 96–103) was evaluated with respect to the collection and identification of amino acids exported from senescing wheat leaves. Whilst the characteristics of the exudate collected conform with many of the accepted properties of phloem exudate, unexpectedly high molar proportions of phenylalanine and tyrosine were observed. By comparing exudation into a range chelator solutions with exudation into water, the increased exudation of phenylalanine and tyrosine relative to the other amino acids occurring when ethylene-diaminetetracetic acid was used, was considered to an artefact.In plants thought to be relying heavily on mobilisation of protein reserves to satisfy the nitrogen requirements of the grain, the major amino acids present in flag-leaf phloem exudate were glutamate, aspartate, serine, alanine and glycine. Only small proportions of amides were present until late in senescence when glutamine became the major amino acid in phloem exudate (25 molar-%). Glutamine was always the major amino acid in xylem sap (50 molar-%).The activities of glutamine synthetase (EC 6.3.1.2), glutamate synthase (EC 1.4.7.1), glutamate dehydrogenase (EC 1.4.1.3) and asparagine synthetase (EC 5.3.5.4) were measured in the flag leaf throughout the grain-filling period. Glutamine synthetase and glutamate-synthase activities declined during this period. Glutamate-dehydrogenase activity was markedly unchanged despite variation in the number of multiple forms visualised after gel electrophoresis. The activity of the enzyme reached a peak only very late in the course of senescence of the flag leaf. No asparagine-synthetase activity could be detected in the flag leaf during the grain-filling period.II. Peoples et al. (1980)  相似文献   

9.
The activity of a range of endo- and exopeptidase enzymes have been measured in the glumes, flag leaf and stem during the period of grain development in wheat. The enzymes show a sequential pattern of appearance with activity peaks occurring at a number of intervals from anthesis until just prior to the cessation of grain growth. Of the enzymes studied only the haemoglobin- and casein-degrading activity and alanylglycine-dipeptidase activity increased during the period of rapid protein loss, while aminopeptidase, carboxypeptidase and leucyltyrosine dipeptidase reached maximum activity prior to this period.  相似文献   

10.
Fructan: fructan fructosyl transferase (FFT, EC 2.4.1.100) was purified from chicory (Cichorium intybus L. var. foliosum cv. Flash) roots by a combination of ammonium sulfate precipitation, concanavalin A affinity chromatography, and anion- and cation-exchange chromatography. This protocol produced a 60-fold purification and a specific activity of 14.5 mol·(mg protein) –1·min–1. The mass of the enzyme was 69 kDa as estimated by gel filtration. On sodium dodecyl sulfatepolyacrylamide gel electrophoresis and mass spectrometry, 52-kDa and 17-kDa fragments were found, suggesting that the enzyme was a heterodimer. Optimal activity was found between pH 5.5 and 6.5. The enzyme used 1-kestose, 1,1-nystose, oligofructan and commercial chicory root inulin (degree of polymerization 10) as donors and acceptors. Sucrose was the best acceptor but could not be used as a donor. However, at higher concentrations sucrose acted as a competitive inhibitor for donors of FFT. 1-Kestose was the most efficient and 1,1-nystose the least efficient donor. The purified enzyme exhibited -fructosidase activity, specially at higher temperatures and lower substrate concentrations. The synthesis of fructans from 1-kestose decreased at higher temperatures (5–50°C). Therefore enzyme assays were performed at 0°C. The same fructan oligosaccharides, with a distribution similar to that observed in vivo, were obtained upon incubation of the enzyme with sucrose and commercial chicory root inulin.Abbreviations Con A concanavalin A - DP degree of polymerization - FFT fructan: fructan fructosyl transferase - Fru fructose - Glc glucose - Kes 1-kestose - MALDI-TOF MS matrix-assisted laser desorption ionisation time of flight mass spectrometry - Nys 1,1-nystose - pI isoelectric point - SST sucrose: sucrose fructosyl transferase - Suc sucrose The authors would like to thank E. Nackaerts for valuable assistance. W. Van den Ende is also grateful to the National Fund for Scientific Research (NFSR Belgium) for giving a grant for research assistants. P. Verhaert is a research associate of the NFSR. This work was also supported by grant OT/91/18 from the Research Fund K.U. Leuven.  相似文献   

11.
12.
Yang J  Zhang J  Wang Z  Zhu Q  Liu L 《Planta》2004,220(2):331-343
This study investigated if a controlled water deficit during grain filling of wheat (Triticum aestivum L.) could accelerate grain filling by facilitating the remobilization of carbon reserves in the stem through regulating the enzymes involved in fructan and sucrose metabolism. Two high lodging-resistant wheat cultivars were grown in pots and treated with either a normal (NN) or high amount of nitrogen (HN) at heading time. Plants were either well-watered (WW) or water-stressed (WS) from 9 days post anthesis until maturity. Leaf water potentials markedly decreased at midday as a result of water stress but completely recovered by early morning. Photosynthetic rate and zeatin + zeatin riboside concentrations in the flag leaves declined faster in WS plants than in WW plants, and they decreased more slowly with HN than with NN when soil water potential was the same, indicating that the water deficit enhanced, whereas HN delayed, senescence. Water stress, both at NN and HN, facilitated the reduction in concentration of total nonstructural carbohydrates (NSC) and fructans in the stems but increased the sucrose level there, promoted the re-allocation of pre-fixed 14C from the stems to grains, shortened the grain-filling period, and accelerated the grain-filling rate. Grain weight and grain yield were increased under the controlled water deficit when HN was applied. Fructan exohydrolase (FEH; EC 3.2.1.80) and sucrose phosphate synthase (SPS; EC 2.4.1.14) activities were substantially enhanced by water stress and positively correlated with the total NSC and fructan remobilization from the stems. Acid invertase (EC 3.2.1.26) activity was also enhanced by the water stress and associated with the change in fructan concentration, but not correlated with the total NSC remobilization and 14C increase in the grains. Sucrose:sucrose fructosyltransferase (EC 2.4.1.99) activity was inhibited by the water stress and negatively correlated with the remobilization of carbon reserves. Sucrose synthase (EC 2.4.1.13) activity in the stems decreased sharply during grain filling and showed no significant difference between WW and WS treatments. Abscisic acid (ABA) concentration in the stem was remarkably enhanced by water stress and significantly correlated with SPS and FEH activities. Application of ABA to WW plants yielded similar results to those for WS plants. The results suggest that the increased remobilization of carbon reserves by water stress is attributable to the enhanced FEH and SPS activities in wheat stems, and that ABA plays a vital role in the regulation of the key enzymes involved in fructan and sucrose metabolism.Abbreviations ABA Abscisic acid - DAS Days after sowing - DPA Days post anthesis - ESC Ethanol-soluble carbohydrate - FEH Fructan exohydrolase - HN High amount of nitrogen - INV Invertase - NN Normal amount of nitrogen - NSC Nonstructural carbohydrate - leaf Leaf water potential - soil Soil water potential - Pr Photosynthetic rate - SPS Sucrose phosphate synthase - SS Sucrose synthase - SST Sucrose:sucrose fructosyltransferase - Vlimit Limiting substrate - Vmax Saturated substrate - WS Water stressed - WSC Water-soluble carbohydrate - WW Well watered - Z Zeatin - ZR Zeatin riboside  相似文献   

13.
14.
15.
16.
The effects of foliar applications of nitrogen and benzyladenine (BA) on grain yield and grain protein of wheat grown under field conditions were studied over 2 years with 5 cultivars at 2 locations. Nitrogen (N) at 20 kg.ha–1, and BA at 100 or 800 mg.l–1 were applied alone or combined at pre and post-anthesis; applications of BA at 8 mg.l–1 were also made on individual ears in order to study the effect on cell number. Weekly determinations of the chlorophyll content of the flag leaf were conducted after anthesis to study leaf senescence. At harvest, yield, yield components and grain protein percentage were determined. N and BA applications delayed chlorophyll loss in the flag leaf, but modified neither yield nor yield components. Foliarly applied BA increased grain protein in four of the five cultivars tested. It is concluded that delay of the senescence induced by BA might allow more energy to be available for N uptake by the crop leading to an increase in grain protein.Research supported by a CAFPTA grant 1656/86 and by CONICET, PID 30017700/85.CONICETComisión de Investigaciones Cientificas de la Provincia de Buenos AiresInstituto de Fisiologia Vegetal  相似文献   

17.
The comparative uptake of four perfluorinated carboxylic acids (PFCAs) by wheat (Triticum aestivum L.) grown in nutrient solution was investigated. Wheat is the main food crop in northern China and may become a potential pathway of human exposure to these PFCAs. The uptake of four PFCAs from water at a fixed concentration (1 μg/mL) increased over time, approaching a steady state, and except for the short-chain perfluorobutanoic acid, most of the total mass of each of the PFCAs taken up by wheat was found to be at the root. The root concentration factor (RCF) and shoot/root concentration factor (SRCF) were calculated, and with the increase in carbon chain length, the RCFs increased but SRCFs decreased, which indicated that long-chain PFCAs had stronger root uptake and weaker translocation capacities than short-chain PFCAs. In addition, pH could obviously impact the uptake of four PFCAs in the roots and shoots of wheat, and the highest concentrations were found at pH = 7 when the pH increased from 4 to 10.  相似文献   

18.
19.
The aim of this work was to discover whether the respiration of wheat (Triticum aestivum L. cv. Huntsman) leaves, transferred to darkness after 7 h photosynthesis, showed an initial period of wasteful respiration. For young and old leaves, CO2 production and O2 uptake after 7 h photosynthesis were up to 56% higher than at the end of an 8-h night. The maximum catalytic activities of citrate synthase (EC 4.1.3.7), aconitase (EC 4.2.1.3), fumarase (EC 4.2.1.2) and cytochrome-c oxidase (EC 1.9.3.1) at the end of the day did not differ from those at the end of the night. Changes in the contents of glucose 6-phosphate, fructose-1,6-bisphosphate, dihydroxyacetone phosphate, and -ketoglutarate did not as a group parallel the changes in the rate of respiration. The detailed distribution of label from [U-14C] sucrose supplied to leaves in the dark was similar at the end of the day and the end of the night. No correlation was observed between the rates of leaf respiration and extension growth. It is argued that the higher rate of respiration at the beginning of the night cannot be attributed to wasteful respiration.Abbreviation RQ respiratory quotient We thank Dr H. Thomas and Professor C.J. Pollock, Institute for Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, UK for their generous help in measuring leaf extension. R.H.A. thanks the Science and Engineering Research Council for a studentship.  相似文献   

20.
We have developed a method for the accelerated production of fertile transgenic wheat (Triticum aestivum L.) that yields rooted plants ready for transfer to soil in 8–9 weeks (56–66 days) after the initiation of cultures. This was made possible by improvements in the procedures used for culture, bombardment, and selection. Cultured immature embryos were given a 4–6 h pre-and 16 h post-bombardment osmotic treatment. The most consistent and satisfactory results were obtained with 30 g of gold particles/bombardment. No clear correlation was found between the frequencies of transient expression and stable transformation. The highest rates of regeneration and transformation were obtained when callus formation after bombardment was limited to two weeks in the dark, with or without selection, followed by selection during regeneration under light. Selection with bialaphos, and not phosphinothricin, yielded more vigorously growing transformed plantlets. The elongation of dark green plantlets in the presence of 4–5 mg/l bialaphos was found to be reliable for identifying transformed plants. Eighty independent transgenic wheat lines were produced in this study. Under optimum conditions, 32 transformed wheat plants were obtained from 2100 immature embryos in 56–66 days, making it possible to obtain R3 homozygous plants in less than a year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号