共查询到20条相似文献,搜索用时 0 毫秒
1.
Design features of the orb web of the spider, Araneus diadematus 总被引:2,自引:0,他引:2
Analysis of orb webs of the garden cross spider (Araneus diadematus)showed that these vertical webs have a significant up/down asymmetry.Experiments demonstrated that the spider runs down faster thanup, and thus confers a relatively higher foraging value to sectionsbelow the hub. Simulations suggested that the density of capturespiral spacing, prey size, and the density of prey should allaffect the capture efficiency of a web. Webs lose effectivecapture area because of overlap of the capture zone around eachthread; the smaller the prey, the finer the mesh can be withoutlosing effective area. Lower sectors of the web have a particularmesh size (height and length of capture spiral segments) throughout,whereas in the upper sectors the mesh size changes, wideningfrom the hub towards the periphery. 相似文献
2.
In animals, it is known that age affects the abilities of the brain. In spiders, we showed that aging affects web characteristics due to behavioral alterations during web building. In this study, we investigated the effects of age on the associations between morphological changes to the spider brain and changes in web characteristics. The orb web spider Zygiella x-notata (Araneae, Araneidae) was used to test these relationships. Experiments were conducted on young (19 ± 2 days after adult molt, N = 13) and old (146 ± 32 days, N = 20) virgin females. The brain volume decreased with age (by 10%). Age also had an impact on the number of anomalies in the capture area generated during web building. The statistical relationships between the volume of the brain and web characteristics showed that there was an effect of age on both. Our results showed that in spiders, aging affects the brain volume and correlates with characteristics (anomalies) of the web. As web building is the result of complex behavioral processes, we suggest that aging affects spider behavior by causing some brain alterations. 相似文献
3.
4.
M. A. Landolfa F. G. Barth 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1996,179(4):493-508
Transmission of natural and artificial vibrations in webs of Nephila clavipes was examined using laser Doppler vibrometry to determine how this spider discriminates and localizes stimuli. 1. Vibration signals of four entrapped insect species peaked at different frequencies from 5–30 Hz, but their spectra overlapped considerably. Peak amplitudes spanned 50 dB. 2. Transmission of longitudinal vibrations along individual radii was attenuated over ca. 12 cm by 4.0 ± 2.7 dB; attenuation values for transverse and lateral vibrations were 22.2 ± 4.6 dB and 26.2 ± 4.3 dB, respectively. Some transmission spectra characteristics may be explained by resonances of the spider and threads. 3. Radial thread transmission increased by 2.2–5.8 dB after cutting the connecting auxiliary spirals, demonstrating that vibrations leak from stimulated radii via these threads. Auxiliary spirals provide structural support to Nephila webs at the expense of degraded directional transmission. 4. Upon single-point stimulation, vibrations measured around the web hub and at the spider's tarsi revealed 2-D vibration amplitude gradients of 20–30 dB indicating the stimulus direction. In contrast, measured vibration propagation velocities of 70–1500 m/s resulted in time-of-arrival differences at the spiders tarsi of < 1.5 ms, which may be too brief for stimulus direction determination.Abbreviations
A
area
-
C
propagation velocity
-
E
Young's modulus
-
LDV
laser Doppler vibrometer/-metry
-
r.h.
relative humidity
-
T
tension
-
space constant
-
radius of gyration
-
density
-
2-D
two-dimensional
-
3-D
three-dimensional 相似文献
5.
Kensuke Nakata Samuel Zschokke 《Proceedings. Biological sciences / The Royal Society》2010,277(1696):3019-3025
Almost all spiders building vertical orb webs face downwards when sitting on the hubs of their webs, and their webs exhibit an up–down size asymmetry, with the lower part of the capture area being larger than the upper. However, spiders of the genus Cyclosa, which all build vertical orb webs, exhibit inter- and intraspecific variation in orientation. In particular, Cyclosa ginnaga and C. argenteoalba always face upwards, and C. octotuberculata always face downwards, whereas some C. confusa face upwards and others face downwards or even sideways. These spiders provide a unique opportunity to examine why most spiders face downwards and have asymmetrical webs. We found that upward-facing spiders had upside-down webs with larger upper parts, downward-facing spiders had normal webs with larger lower parts and sideways-facing spiders had more symmetrical webs. Downward-facing C. confusa spiders were larger than upward- and sideways-facing individuals. We also found that during prey attacks, downward-facing spiders ran significantly faster downwards than upwards, which was not the case in upward-facing spiders. These results suggest that the spider''s orientation at the hub and web asymmetry enhance its foraging efficiency by minimizing the time to reach prey trapped in the web. 相似文献
6.
Abstract This paper describes a new kind of ladder-web structure in which there are two ladders, one above and one below a centrally positioned orb. It differs from previously described ladder-webs, not only because of the two ladders but also because of its 24 h (or more) duration, its vertical placement against the trunks of trees, and the fact that it apparently offers the spider protection against parasitism. Both the spider (Araneus atrihastulus) and its ladder-web are ideally adapted to the tree-trunk: the web with regard to its position, shape, and lack of visibility; and the spider in respect of its coloration, daytime posture, and proximity to the snare. It is concluded that the design of this web offers a number of advantages which evidently enhance the spider's survival and increase its capture potential over and above that of the simple orb. 相似文献
7.
Energetic cost of web construction and its effect on web relocation in the web-building spider Agelena limbata 总被引:2,自引:0,他引:2
Koichi Tanaka 《Oecologia》1989,81(4):459-464
Summary Although spider webs may be effective in trapping prey, they require energy for construction. The design of webs varies in complexity from species to species. I assume that the energetic cost of web construction is significantly different among web types or species. This cost may constrain foraging tactics, particularly web relocation, because web relocation also requires energy to make a new web. To clarify the effect of the cost of web construction on web relocation, the energy cost of web construction and the rate of web relocation were estimated for the spider Agelena limbata. This spider constructs a sheet-funnel web consisting of a tight mesh of silk threads. This web was costly in terms of the energy needed for construction, which ranged from 9 to 19 times the daily maintenance energy. The daily rate of web relocation was below 1%, indicating high web-site tenacity. Relocation rates of species which built different types of web were compared in relation to cost of web construction. Orbweavers, which produce less costly webs than sheet-funnel weavers, relocate webs more frequently. Sheetweavers, which make webs of intermediate cost, appear to relocate webs more frequently than sheetfunnel weavers but less frequently than orbweavers. These results suggest that the energy cost of web construction is important in determining the frequency of web relocation. 相似文献
8.
C G Liddle J P Putnam O L Lewter J Y Lewis B Bell M W West A Stead 《Bioelectromagnetics》1986,7(1):101-105
Eight cross spiders (Araneus diadematus) were exposed overnight (16 h) during web-building activity to pulsed 9.6-GHz microwaves at average power densities of 10, 1, and 0.1 mW/cm2 (estimated SARs 40, 4, and 0.4 mW/g). Under these conditions, 9.6-GHz pulsed microwaves did not affect the web-spinning ability of the cross spider. 相似文献
9.
Study of the syntype of Larinioides subinermis, a species known from Ethiopia only, revealed that it actually belongs to Singafrotypa Benoit, 1962. We redescribe Singafrotypa subinermis (Caporiacco, 1940), comb. n., and provide a key to females of four species belonging to Singafrotypa. A distribution map for all species is provided. 相似文献
10.
Summary The tenacity of the orb spider Nephila clavipes to a web site was studied in the laboratory. No differences were found between the giving-up-times and the site tenacity of spiders reared in the laboratory or those caught in the field, nor between spiders raised under a poor or a richt diet. The animals left sites at random and seemed to ignore experiences gained at previous sites. 相似文献
11.
Linyphiidae is the second largest family of spiders. Using Linyphia hortensis and L. triangularis, we describe linyphiid sheet-web construction behaviour. Orb-web construction behaviour is reviewed and compared with that of nonorb-weaving orbicularians. Phylogenetic comparisons and the biogenetic law are applied to deduce behavioural homology. Linyphia webs were constructed gradually and in segments over a period of many days and had a long lifespan. Two construction behaviours, supporting structure and sticky thread (ST) (within the sheet) were observed. ST construction behaviour in linyphiids is considered homologous to sticky spiral construction in orb-weavers. Overall web construction conformed to the pattern of alternate construction of sticky and nonsticky parts as observed in theridiids. Linyphiids had no problem in switching between structure construction and ST construction even during a single behavioural bout. Both web construction behaviours in linyphiids were nonstereotypic, which is unusual in orbicularians. This might be due to the loss of control mechanisms at genetic level, probably by macro mutation. Lack of stereotypic behaviour might have played a substantial role in the origin of the diverse web forms seen in nonorb-weaving orbicularians. This hypothesis is consistent with patterns observed in the orbicularian phylogeny. 相似文献
12.
Conservation of web proteins in the spider, Araneus diadematus 总被引:1,自引:0,他引:1
D B Peakall 《The Journal of experimental zoology》1971,176(3):257-264
13.
14.
The molecular phylogeny of the globally distributed golden orb spider genus Nephila (Nephilidae) was reconstructed to infer its speciation history, with a focus on SE Asian/W Pacific species. Five Asian, two Australian, four African, and one American species were included in the phylogenetic analyses. Other species in Nephilidae, Araneidae, and Tetragnathidae were included to assess their relationships with the genus Nephila, and one species from Uloboridae was used as the outgroup. Phylogenetic trees were reconstructed from one nuclear (18S) and two mitochondrial (COI and 16S) markers. Our molecular phylogeny shows that the widely distributed Asian/Australian species, N. pilipes, and an African species, N. constricta, form a clade that is sister to all other Nephila species. Nested in this Nephila clade are one clade with tropical and subtropical/temperate Asian/Australian species, and the other containing African and American species. The estimated divergence times suggest that diversification events within Nephila occurred during mid-Miocene to Pliocene (16 Mya-2 Mya), and these time periods were characterized by cyclic global warming/cooling events. According to Dispersal and Vicariance Analysis (DIVA), the ancestral range of the Asian/Australian clade was tropical Asia, and the ancestral range of the genus Nephila was either tropical Asia or Africa. We conclude that the speciation of the Asian/Australian Nephila species was driven by Neogene global cyclic climate changes. However, further population level studies comparing diversification patterns of sister species are needed to determine the mode of speciation of these species. 相似文献
15.
Hans M. Peters 《Zoomorphology》1995,115(1):1-9
Summary The web of Polenecia producta is interpreted as being a modified orb web. The position of the hub directly upon a twig amongst irregularly placed branches decides the web's structure. Since the radii have to be fixed in the vicinity corresponding to the local possibilities, and since these possibilities vary very much from case to case, a great variety of web scaffoldings results. All of them are characterized by a lack of symmetry. These asymmetries, for their part, prevent the production of capture threads by circling around and fixing them obliquely to the radii as do orb weavers. P. producta adapts itself to this situation by attaching the adhesive material along the radii. Under these circumstances temporary spirals, like those of orb weavers, would be without function. The short pieces of such spirals present in the webs of P. producta are interpreted as vestiges of once functional structures. The silk deposits P. producta lays down upon the hub can, in certain respects, be compared with stabilimenta of other Uloboridae. The relatively late onset of web building in P. producta (instar II spiderlings) is related to the ontogeny of the spinning apparatus. 相似文献
16.
Molecular studies of a novel dragline silk from a nursery web spider, Euprosthenops sp. (Pisauridae)
Pouchkina-Stantcheva NN McQueen-Mason SJ 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2004,138(4):169-376
Various spider species produce dragline silks with different mechanical properties. The primary structure of silk proteins is thought to contribute to the elasticity and strength of the fibres. Previously published work has demonstrated that the dragline silk of Euprosthenops sp. is stiffer then comparable silk of Nephila edulis, Araneus diadematus and Latrodectus mactans. Our studies of Euprosthenops dragline silk at the molecular level have revealed that nursery web spider fibroin has the highest polyalanine content among previously characterised silks and this is likely to contribute to the superior qualities of pisaurid dragline. 相似文献
17.
André Walter 《Evolutionary ecology》2018,32(2-3):159-170
The silk decorations that adorn the webs of many orb-web spiders are thought to have a signal function, but the evolution of the decorating behaviour remains unresolved. The decoration signal is maintained apparently because it improves foraging efficiency, through either increased encounter rates with prey or reduced damage to the web. Recent investigations suggest that the decorations may originate in a regulation of the activity of the aciniform silk glands, which produce silk for both decorating the web and wrapping prey. This view predicts a link between decorating behaviour and a preference for restraining prey by wrapping with silk, which is evident among species of Argiope spiders. Here I compare the frequency of the wrap attack behaviour in four species of orb-web spiders that occupy the same habitat, but differ in their silk decorating behaviour: two species, Plebs bradleyi and Gea theridioides, build silk decorations, while the other two, Araneus hamiltoni and Backobourkia brounii do not. Spiders were presented with prey items that varied in the ease with which they could be captured, with houseflies being more easily subdued than house crickets. As predicted, the silk decorating species used wrap attacks significantly more often than non-decorating spiders, irrespective of the prey species. These data support the view that both behaviours are evolutionary linked. I propose that silk decorating originated from the evolution of wrap attacking, and that silken web decorations have later evolved into a signal and are now maintained for that function. 相似文献
18.
19.
ABSTRACT. Two strongly acidic, ninhydrin-negative compounds were found in the water soluble fraction of the orb webs of Argiope trifasciata (Lucas) and Argiope aurantia (Forskål). One of these is a derivative of taurine. Aninhydrin-positive GABA derivative, gabamide, also exists in the water-soluble fraction of the web. 相似文献