首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Several members of a repetitive DNA family in the nematode Caenorhabditis elegans have been shown to express ARS and centromeric function in Saccharomyces cerevisiae. The repetitive family, denoted CeRep3, consists of dispersed repeated elements about 1 kilobase in length, present 50 to 100 times in the nematode genome. Three elements were sequenced and found to contain DNA sequences homologous to yeast ARS and CEN consensus sequences. Nematode DNA segments containing these repeats were tested for ARS and CEN (or SEG) function after ligation to shuttle vectors and introduction into yeast cells. Such nematode segments conferred ARS function to the plasmid, as judged by an increased frequency of transformation compared with control plasmids without ARS function. Some, but not all, also conferred to the plasmid increased mitotic stability, increased frequency of 2+:2- segregation in meiosis, and decreased plasmid copy number. These effects are similar to those of yeast centromeric DNA. In view of these results, we suggest that the CeRep3 repetitive family may have replication and centromeric functions in C. elegans.  相似文献   

2.
In the yeast Saccharomyces cerevisiae, the activation of adenylate cyclase requires the products of the RAS genes and of CDC25. We isolated several dominant extragenic suppressors of the yeast cdc25 mutation. They did not suppress a thermosensitive allele of the adenylate cyclase gene (CDC35). One of these suppressors was a mutated RAS2 gene in which the transition C/G----T/A at position 455 resulted in replacement of threonine 152 by isoleucine in the protein. The same mutation in a v-Ha-ras gene reduces the affinity of p21 for guanine nucleotides (L.A. Feig, B. Pan, T.M. Roberts, and G.M. Cooper, Proc. Natl. Acad. Sci. USA 83:4607-4611, 1986). These results support a model in which the CDC25 gene product is the GDP-GTP exchange factor regulating the activity of the RAS gene product.  相似文献   

3.
Biochemical fractionation of the yeast Saccharomyces cerevisiae has revealed a novel DNA primase activity that copurifies with the major DNA polymerase activity. In the presence of RNA precursors and single-stranded DNA (poly(dT), M13), the DNA primase synthesizes discrete length oligoribonucleotides (apparent length, 8-12 nucleotides) as well as longer RNA chains that appear to be multiples of a modal length of 11-12 nucleotides. When DNA precursors are also present, the oligoribonucleotides are utilized by the accompanying DNA polymerase as primers for DNA synthesis. Copurification of these two enzymatic activities suggests their association in a physical complex which may function in the synthesis of Okazaki fragments at chromosomal replication forks.  相似文献   

4.
To identify the trans-acting factors involved in autonomously replicating sequence (ARS) function, we initiated a screen for Saccharomyces cerevisiae mutants capable of stabilizing a plasmid that contains a defective ARS element. The amm (altered minichromosome maintenance) mutations recovered in this screen defined at least four complementation groups. amm1, a mutation that has been studied in detail, gave rise to a 17-fold stabilization of one defective ARS1 plasmid over the level seen in wild-type cells. The mutation also affected the stability of at least one plasmid bearing a wild-type ARS element. amm1 is an allele of the previously identified TUP1 gene and exhibited the same pleiotropic phenotypes as other tup1 mutants. Plasmid maintenance was also affected in strains bearing a TUP1 gene disruption. Like the amm1 mutant, the tup1 disruption mutant exhibited ARS-specific plasmid stabilization; however, the ARS specificities of these two mutants differed. The recovery of second-site mutations that suppressed many of the tup1 phenotypes but not the increased plasmid maintenance demonstrates that the plasmid stability phenotype of tup1 mutants is not a consequence of the other defects caused by tup1.  相似文献   

5.
Curing of the 2 mu DNA plasmid from Saccharomyces cerevisiae.   总被引:4,自引:1,他引:4       下载免费PDF全文
The 2 mu DNA plasmid is often eliminated from yeast cells when they are transformed with the 2 mu DNA-LEU2-pMB9 composite plasmid pJDB219. Since pJDB219 is subsequently lost with high frequency, derivatives lacking all 2 mu DNA can be prepared from any strain.  相似文献   

6.
We have determined the fidelity of DNA synthesis by DNA polymerase I (yPol I) from Saccharomyces cerevisiae. To determine whether subunits other than the polymerase catalytic subunit influence fidelity, we measured the accuracy of yPol I purified by conventional procedures, which yields DNA polymerase with a partially proteolyzed catalytic subunit and no associated primase activity, and that of yPol I purified by immunoaffinity chromatography, which yields polymerase having a single high-molecular-weight species of the catalytic subunit, as well as three additional polypeptides and DNA primase activity. In assays that score polymerase errors within the lacZ alpha-complementation gene in M13mp2 DNA, yPol I and the yPol I-primase complex produced single-base substitutions, single-base frameshifts, and larger deletions. For specific errors and template positions, the two forms of polymerase exhibited differences in fidelity that could be as large as 10-fold. Nevertheless, results for the overall error frequency and the spectrum of errors suggest that the yPol I-DNA primase complex is not highly accurate and that, just as for the polymerase alone, its fidelity is not sufficient to account for a low spontaneous mutation rate in vivo. The specificity data also suggest models to explain -1 base frameshifts in nonrepeated sequences and certain complex deletions by a direct repeat mechanism involving aberrant loop-back synthesis.  相似文献   

7.
Proofreading DNA polymerases share common short peptide motifs that bind Mg(2+) in the exonuclease active center; however, hydrolysis rates are not the same for all of the enzymes, which indicates that there are functional and likely structural differences outside of the conserved residues. Since structural information is available for only a few proofreading DNA polymerases, we developed a genetic selection method to identify mutant alleles of the POL3 gene in Saccharomyces cerevisiae, which encode DNA polymerase delta mutants that replicate DNA with reduced fidelity. The selection procedure is based on genetic methods used to identify "mutator" DNA polymerases in bacteriophage T4. New yeast DNA polymerase delta mutants were identified, but some mutants expected from studies of the phage T4 DNA polymerase were not detected. This would indicate that there may be important differences in the proofreading pathways catalyzed by the two DNA polymerases.  相似文献   

8.
A dominant, single nuclear gene mutation, CSE1, caused inositol auxotrophy in yeast cells. The inositol requirement was marked when choline was present in the medium. Inositol-1-phosphate synthase, the regulatory enzyme of inositol synthesis, is repressed by inositol, or more profoundly by a combination of inositol and choline in the wild type. In CSE1, the level of inositol-1-phosphate synthase was low and was greatly repressed on the addition of choline alone. In accordance with this, INO1 mRNA encoding the enzyme was low even under the depressed conditions and was profoundly decreased by choline in CSE1. But in the wild type, the addition of choline alone had little effect. An INO1-lacZ fusion was constructed and the control of the INO1 promoter in CSE1 was studied. lacZ expression was repressed not only by inositol, but also by choline in CSE1, whereas it was repressed by inositol, but only slightly by choline in the wild type. CSE1 was unlinked to the INO1 structural gene. Thus CSE1 was thought to be a regulatory mutation. Furthermore, when the CDP-choline pathway was mutationally blocked, choline did not affect INO1 expression, indicating that the metabolism of choline via the CDP-choline pathway is required for INO1 repression.  相似文献   

9.
Purified heteroduplex plasmid DNAs containing 8- or 12-base-pair insertion mismatches or AC or CT substitution mismatches were used to transform Saccharomyces cerevisiae. Two insertion mismatches, separated by 943 base pairs, were repaired independently of each other at least 55% of the time. This suggested that repair tracts were frequently shorter than 1 kilobase. The two insertion mismatches were repaired with different efficiencies. Comparison of the repair efficiency of one mismatched site with or without an adjacent mismatch suggests that mismatches promote their own repair and can influence the repair of neighboring mismatches. When two different plasmids containing single-insertion mismatches were transformed into S. cerevisiae cells, a slight preference towards insertion was detected among repair products of one of the two plasmids, while no repair preference was detected among transformants with the second plasmid.  相似文献   

10.
DNA polymerase delta (Pol delta) from Saccharomyces cerevisiae consists of three subunits, Pol3 (125 kDa), Pol31 (55 kDa), and Pol32 (40 kDa), present at a 1:1:1 stoichiometry in purified preparations. Previously, based on gel filtration studies of Pol delta, we suggested that the enzyme may be a dimer of catalytic cores, with dimerization mediated by the Pol32 subunit (Burgers, P. M., and Gerik, K. J. (1998) J. Biol. Chem. 273, 19756-19762). We now report on extensive gel filtration, glycerol gradient sedimentation, and analytical equilibrium centrifugation studies of Pol delta and of several subassemblies of Pol delta. The hydrodynamic parameters of these assemblies indicate that (i) Pol32 is a rod-shaped protein with a frictional ratio f/f(0) = 2.22; (ii) any complex containing Pol32 also has an extremely asymmetric shape; (iii) the results of these studies are independent of concentration (varied between 0.1-20 microm); (iv) all complexes are monomeric under the conditions studied (up to 20 microm). Moreover, a two-hybrid analysis of the Pol32 subunit did not detect a Pol32-Pol32 interaction in vivo. Therefore, we conclude that the assembly structure of Pol delta is that of a monomer.  相似文献   

11.
Although mammals encode multiple family X DNA polymerases implicated in DNA repair, Saccharomyces cerevisiae has only one, DNA polymerase IV (pol IV). To better understand the repair functions of pol IV, here we characterize its biochemical properties. Like mammalian pol beta and pol lambda, but not pol mu, pol IV has intrinsic 5'-2-deoxyribose-5-phosphate lyase activity. Pol IV has low processivity and can fill short gaps in DNA. Unlike the case with pol beta and pol lambda, the gap-filling activity of pol IV is not enhanced by a 5'-phosphate on the downstream primer but is stimulated by a 5'-terminal synthetic abasic site. Pol IV incorporates rNTPs into DNA with an unusually high efficiency relative to dNTPs, a property in common with pol mu but not pol beta or pol lambda. Finally, pol IV is highly inaccurate, with an unusual error specificity indicating the ability to extend primer termini with limited homology. These properties are consistent with a possible role for pol IV in base excision repair and with its known role in non-homologous end joining of double strand breaks, perhaps including those with damaged ends.  相似文献   

12.
13.
14.
Potential DNA replication accessory factors from the yeast Saccharomyces cerevisiae have previously been identified by their ability to bind to DNA polymerase alpha protein affinity matrices (J. Miles and T. Formosa, Proc. Natl. Acad. Sci. USA 89:1276-1280, 1992). We have now used genetic methods to characterize the gene encoding one of these DNA polymerase alpha-binding proteins (POB1) to determine whether it plays a role in DNA replication in vivo. We find that yeast cells lacking POB1 are viable but display a constellation of phenotypes indicating defective DNA metabolism. Populations of cells lacking POB1 accumulate abnormally high numbers of enlarged large-budded cells with a single nucleus at the neck of the bud. The average DNA content in a population of cells lacking POB1 is shifted toward the G2 value. These two phenotypes indicate that while the bulk of DNA replication is completed without POB1, mitosis is delayed. Deleting POB1 also causes elevated levels of both chromosome loss and genetic recombination, enhances the temperature sensitivity of cells with mutant DNA polymerase alpha genes, causes increased sensitivity to UV radiation in cells lacking a functional RAD9 checkpoint gene, and causes an increased probability of death in cells carrying a mutation in the MEC1 checkpoint gene. The sequence of the POB1 gene indicates that it is identical to the CTF4 (CHL15) gene identified previously in screens for mutations that diminish the fidelity of chromosome transmission. These phenotypes are consistent with defective DNA metabolism in cells lacking POB1 and strongly suggest that this DNA polymerase alpha-binding protein plays a role in accurately duplicating the genome in vivo.  相似文献   

15.
J F Theis  C Yang  C B Schaefer  C S Newlon 《Genetics》1999,152(3):943-952
ARS elements of Saccharomyces cerevisiae are the cis-acting sequences required for the initiation of chromosomal DNA replication. Comparisons of the DNA sequences of unrelated ARS elements from different regions of the genome have revealed no significant DNA sequence conservation. We have compared the sequences of seven pairs of homologous ARS elements from two Saccharomyces species, S. cerevisiae and S. carlsbergensis. In all but one case, the ARS308-ARS308(carl) pair, significant blocks of homology were detected. In the cases of ARS305, ARS307, and ARS309, previously identified functional elements were found to be conserved in their S. carlsbergensis homologs. Mutation of the conserved sequences in the S. carlsbergensis ARS elements revealed that the homologous sequences are required for function. These observations suggested that the sequences important for ARS function would be conserved in other ARS elements. Sequence comparisons aided in the identification of the essential matches to the ARS consensus sequence (ACS) of ARS304, ARS306, and ARS310(carl), though not of ARS310.  相似文献   

16.
Summary Psoralen photoreaction with DNA produces interstrand crosslinks, which require the activity of excision and recombinational pathways for repair. Yeast replicating plasmids, carrying the HIS3, TRP1, and URA3 genes, were photoreacted with psoralen in vitro and transfected into Saccharomyces cerevisiae cells. Repair was assayed as the relative transformation efficiency. A recombination-deficient rad52 strain was the least efficient in the repair of psoralen-damaged plasmids; excision repair-deficient rad1 and rad3 strains had repair efficiencies intermediate between those of rad52 and RAD cells. The level of repair also depended on the conditions of transformant selection; repair was more efficient in medium lacking tryptophan than in medium from which either histidine or uracil was omitted. The plasmid repair differential between these selective media was greatest in rad1 cells, and depended on RAD52. Plasmid-chromosome recombination was stimulated by psoralen damage, and required RAD52 function. Chromosome to plasmid gene conversion was seen most frequently at the HIS3 locus. In RAD and rad3 cells, the majority of the conversions were associated with plasmid integration, while in rad1 cells most were non-crossover events. Plasmid to chromosome gene conversion was observed most frequently at the TRP1 locus, and was accompanied by plasmid loss.  相似文献   

17.
Two dimensional gel electrophoretic techniques were used to locate all functional DNA replication origins in a 22.5 kb stretch of yeast chromosome III. Only one origin was detected, and that origin is located within several hundred bp of an ARS element.  相似文献   

18.
Summary We studied the repair of double-strand breaks (DSB) in plasmid DNA introduced into haploid cells of the yeast Saccharomyces cerevisiae. The efficiency of repair was estimated from the frequency of transformation of the cells by an autonomously replicated linearized plasmid. The frequency of lithium transformation of Rad+ cells was increased greatly (by 1 order of magnitude and more) compared with that for circular DNA if the plasmid was initially linearized at the XhoI site within the LYS2 gene. This effect is due to recombinational repair of the plasmid DNA. Mutations rad52, rad53, rad54 and rad57 suppress the repair of DSB in plasmid DNA. The kinetics of DSB repair in plasmid DNA are biphasic: the first phase is completed within 1 h and the second within 14–18 h of incubating cells on selective medium.  相似文献   

19.
20.
The yeast RAD30 gene functions in error-free replication of UV-damaged DNA, and RAD30 encodes a DNA polymerase, pol eta, that has the ability to efficiently and correctly replicate past a cis-syn-thymine-thymine dimer in template DNA. To better understand the role of pol eta in damage bypass, we examined its fidelity and processivity on nondamaged DNA templates. Steady-state kinetic analyses of deoxynucleotide incorporation indicate that pol eta has a low fidelity, misincorporating deoxynucleotides with a frequency of about 10(-2) to 10(-3). Also pol eta has a low processivity, incorporating only a few nucleotides before dissociating. We suggest that pol eta's low fidelity reflects a flexibility in its active site rendering it more tolerant of DNA damage, while its low processivity limits its activity to reduce errors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号