首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Multiple branched DNA fragments present in a fast sedimenting complex comprising a minute fraction of the E. coli genome have been isolated. Similar structures were also observed among bacteriophage DNA replicative intermediates after infection of synchronized E. coli cells. These structures were found to be associated with the amino acid and thymidine starvation steps required for synchronization and originate either by initiation from secondary sites or by snap-back of daughter strands containing substantial single stranded regions in the vicinity of the growing point.  相似文献   

2.
Summary Electroporation offers a fast, efficient and reproducible way to introduce DNA into bacteria. We have successfully used this technique to transform two commercially important strains of Bradyrhizobium japonicum, the nitrogen-fixing soybean symbiont. Initially, electroporation conditions were optimized using plasmid DNA which had been prepared from the same B. japonicum strain into which the{imDNA was to b}e transformed. Efficiencies of 105-106 transformants/g DNA were obtained for strains USDA 110 and 61A152 with ready-to-use frozen cells. Successful electroporation of B. japonicum with plasmid DNA prepared from Escherichia coli varied with the E. coli strain from which the plasmid was purified. The highest transformation efficiencies (104 transformants/g DNA) were obtained using DNA prepared from a dcm dam strain of E. coli. This suggests that routine isolation of DNA from an E. coli strain incapable of DNA modification should help in increasing transformation efficiencies for other strains of bacteria where DNA restriction appears to be a significant obstacle to successful transformation. We have also monitored the rate of spontaneous mutation in electroporated cells and saw no significant difference in the frequency of streptomycin resistance for electroporated cells compared to control cells.  相似文献   

3.
Stimulation of T7 DNA polymerase by a new phage-coded protein   总被引:10,自引:0,他引:10  
Summary A bacteriophage-induced DNA-binding protein was purified from T7 infected E. coli. The protein has a molecular weight of about 25000, as judged by SDS-polyacrylamide gel electrophoresis. The purified protein binds to single-stranded but not to native T7 DNA. Like the T4 gene-32 protein and the 22000-dalton unwinding protein of E. coli, the T7 25000 protein lowers the melting temperature of poly d(A-T). Using partially single-stranded T7 DNA as template-primer, the protein stimulates in vitro DNA synthesis by T7 DNA polymerase about five-fold. It was also found that the DNA-unwinding protein of E. coli stimulates T7 DNA polymerase to approximately the same extent. However, neither of the unwinding proteins stimulate DNA polymerase I of E. coli.  相似文献   

4.
A number ofEscherichia coli cloning vectors, based on ColE1-like replicons, were shown to be maintained inPseudomonas stutzeri ATCC 17588. A restrictionless mutant ofP. stutzeri was isolated, and this strain was used to develop an efficient electroporation system. With theE. coli cloning vector pHSG298, transformation frequencies of up to 2×107 transformants/g DNA were achieved. This frequency is comparable to that obtained for CaCl2-mediated transformation ofE. coli; thus, direct cloning of DNA intoP. stutzeri is feasible. As will be discussed, this may prove useful for cloning DNA from high mol% G+C genera in cases in whichE. coli is not a suitable heterologous cloning host.  相似文献   

5.
E. coli SK has its own enzyme system providing DNA host specificity which differs from the known types of specificity inE. coli K12 andE. coli B. Modification and restriction are observed when the PBVI or PBV3 phages are transferred fromE. coli SK toE. coli B or K12 (and back).A methylase has been isolated fromE. coli SK cells and partly purified. This methylase catalyzesin vitro transfer of the labelled methyl groups from S-adenosylmethionine (SAM) to DNA of both phage and tissue origin which gives rise to 5-methylcytosine (5MC) and 6-methylaminopurine (6MAP). The methylase preparations isolated from the cells at the stationary growth have proved to be 1.5–1.7 times as active as the enzyme from the cells at the logarithmic growth stage. The extract ofE. coli SK cells infected with the phage SD cannot methylate DNAin vitro. This fact is due tode novo synthesis of the enzyme which disintegrates SAM down to 5-methylthioadenosine (5MTA) and homoserine (HS). This enzyme is not found in the cells infected with the SD phage in the presence of chloroamphenicole. The activity of the enzyme which disintegrates SAM is the highest between the 4th and the 5th minutes of infection. Thus it may be assumed that this enzyme, most probably, is an early virus specific protein and preventsin vivo methylation of the phage DNA.  相似文献   

6.
Transformation efficiencies as high as 107 transformants g–1 DNA have been previously reported for pseudomonads using electroporation protocols established for E. coli with plasmid DNAs prepared from methylation proficient E. coli hosts. We report here a protocol for electroporation of plasmid DNAs into a biocontrol strain of Pseudomonas syringae which could not be electroporated by standard E. coli methods. Transformation efficiencies of 107 or higher were obtained with DNA recovered from initial P. syringae transformation or with DNA prepared from methylation deficient E. coli. Both plasmids used in this study were stably maintained in the absence of selection for at least 50 generations.  相似文献   

7.
Summary Escherichia coli can be transformed to high efficiencies by subjecting a mixture of cells and DNA to a brief but intense electrical field. Factors that affect the transformation efficiency of E.coli strain DH10B were analysed. Optimal conditions gave an efficiency of 108 to 109 transformants/g DNA with E.coli strains K803 and DH10B, and plasmids pB1221.23 and pBSK+. The use of ligated DNA resulted in 106 transformants/g DNA. Detailed protocols for these systems are given.  相似文献   

8.
Escherichia coli bacteria have been found to be responsible for various health outbreaks caused by contaminated food and water. Accurate and rapid test of E. coli is thus crucial for protecting the public health. A fast‐response, label‐free bacteriophage‐based detection of E. coli using multimode microfiber probe is proposed and demonstrated in this article. Due to the abrupt taper and subwavelength diameter, different modes are excited and guided in the microfiber as evanescent field that can interact with surrounding E. coli directly. The change of E. coli concentration and corresponding binding of E. coli bacteria on microfiber surface will lead to the shift of optical spectrum, which can be exploited for the application of biosensing. The proposed method is capable of reliable detection of E. coli concentration as low as 103cfu/mL within the range of 103 to 107 cfu/mL. Owing to the advantages of high sensitivity and fast response, the microfiber probe has great potential application in the fields of environment monitoring and food safety.   相似文献   

9.
Summary From libraries of EcoRI fragments of Salmonella thyphimurium and Escherichia coli DNA in gt7, phages could be isolated that carry mglB, the structural gene of the galactose-binding protein as well as other mgl genes. Lysogenization of an E. coli mutant carrying a defective galactose-binding protein with gt7 mglB (Salmonella) restores full galactose transport and galactose chemotaxis. Both the E. coli mutant protein as well as the wild-type Salmonella galactose-binding protein are synthesized in this strain. The EcoR1 fragments of both organisms carrying the mgl genes were 6 Kb long. They were subcloned into the multicopy plasmid pACUC184. The hybrid plasmid containing the Salmonella mgl DNA gives rise to the synthesis of large amounts of galactose-binding protein in the periplasm of E. coli. The protein can be precipitated by antibodies against the E. coli binding protein and is identical to the fully processed protein isolated from Salmonella typhimurium LT2. In vitro protein synthesis (Zubay-system) with either gt7 mgl phages as well as the hybrid plasmid as DNA matrix produces the galactose-binding protein mainly in precursor form that is precipitable by specific antibodies.  相似文献   

10.
Summary A ColE1 hybrid plasmid, pNU1, carrying the amp operon coding for chromsomal -lactamase was isolated from the Clarke and Carbon collection and physically mapped. The physical location of ampC within this plasmid was further deduced by in vitro cloning.By reciprocal recombination between pNU1 and chromosome of two unstable -lactamase hyperproducing E. coli K-12 mutants a large plasmid from each mutant was obtained. The respective plasmid was physically mapped and found to contain five and two repeated DNA segments. The repetitions within each plasmid were equal in size, 9,800 bp and 11,900 bp respectively and were organized in tandem. The end points of the repeats were different in the two plasmids but shared a DNA segment carrying the ampC gene. The chromosomal DNA of the -lactamase hyperproducing E. coli mutants were found to contain an amplified DNA segment equal in size to the repeated unit found in the respective plasmid. The data shows that up to 10 identical repeats organized in tandem can be generated by a normal mutation frequency in E. coli.  相似文献   

11.
A bacteriocinogenic factor of Enterobacter cloacae   总被引:24,自引:0,他引:24  
Summary Enterobacter cloacae strain DF13 produces a bacteriocin which is able to kill other strains of Enterobacter and Klebsiella. This property can be transmitted to Enterobacter cloacae strain O 2 (up to 90% of the acceptor population became bacteriocinogenic), to E. coli K12F- and E. coli K 12 Hfr. Transfer of chromosome material was never observed, suggesting that the production of the bacteriocin is determined by a plasmid. However all attempts to eliminate this plasmid failed. The plasmid F trp cys Col B Col V could be transferred from E. coli into Ent. cloacae DF13 and subsequently it could be eliminated by acridine orange treatment. Ent. cloacae DF13 harbours in addition two independently transferable R-factors, one determining resistance against streptomycin and sulfanilamide and the other resistance against penicillin.Most but not all Ent. cloacae O2 recombinants which have received only the bacteriocinogenic factor upon conjugation with Ent. cloacae DF 13, can transfer this property to Ent. cloacae O2 but not to E. coli. E. coli F- recombinants, which have received only the bacteriocinogenic factor cannot transfer this property. The results suggest that the bacteriocinogenic factor cannot mediate its own transfer, but can be transferred when another transmissible plasmid is present. This may be the R(str sul) factor, the F-factor in E. coli Hfr or a transfer factor () in Ent. cloacae O2.Closed circular DNA molecules were selectively isolated from these strains and investigated by electron microscopy and velocity sedimentation. Ent. cloacae DF13 harbours small closed circular DNA molecules ranging from 0.5 to 3.2 in contour length, 98% of which corresponds to a size class of 0.7±0.1 . Ent. cloacae O2 also harbours closed circular DNA ranging from 0.8 to 3.0 in contour length, with major size classes of 0.9 and 1.4 respectively. Circular DNA of a contour length of 3.0±0.2 (S20,w=26 S) corresponding to a molecular weight of 6.0×106 daltons was transferred to E. coli and Ent. cloacae O 2 concomitantly with the ability to produce the bacteriocin. A significant difference was observed in the number of copies of the plasmid between Ent. cloacae and E. coli.  相似文献   

12.

Background

The ability to react early to possible outbreaks of Escherichia coli O157:H7 and to trace possible sources relies on the availability of highly discriminatory and reliable techniques. The development of methods that are fast and has the potential for complete automation is needed for this important pathogen.

Methods

In all 73 isolates of shiga-toxin producing E. coli O157 (STEC) were used in this study. The two available fully sequenced STEC genomes were scanned for tandem repeated stretches of DNA, which were evaluated as polymorphic markers for isolate identification.

Results

The 73 E. coli isolates displayed 47 distinct patterns and the MLVA assay was capable of high discrimination between the E. coli O157 strains. The assay was fast and all the steps can be automated.

Conclusion

The findings demonstrate a novel high discriminatory molecular typing method for the important pathogen E. coli O157 that is fast, robust and offers many advantages compared to current methods.  相似文献   

13.
In the present study, Escherichia coli cells exhibited antibiotic resistance after transformation with exogenous plasmid DNA adsorbed onto chrysotile particles during agar-exposure. We previously demonstrated penetration of E. coli by chrysotile particles during agar-exposure. To further investigate the mechanism by which transformation of E. coli is achieved through the use of chrysotile fibers, the interaction between E. coli cells and chrysotile was examined during agar-exposure. Dispersion of chrysotile particles within the chrysotile solution was analyzed by flow cytometry. A suspension containing E. coli cells expressing blue fluorescence protein and chrysotile particles was exposed to agar using stirring apparatus, which allowed a constant vertical reaction force to be applied to the surface of the gel. Fluorescence microscopy was then used to illustrate the adsorption of fluorescein isothiocyanate-conjugated DNA oligomers to chrysotile. Larger aggregates were observed when increasing concentrations of chrysotile were added to the solution. With prolonged exposure, during which surface moisture diffused into the agar gel, greater concentrations of chrysotile were observed on the agar surface. In addition, chrysotile aggregates exceeding 50 m developed on the agar surface. They were shaped like a chestnut bur. The chrysotile aggregates penetrated the cell membranes of adherent E. coli cells during agar-exposure due to sliding friction forces generated at the interface of the agar and the stirring stick. E. coli cells thus acquired plasmid DNA and antibiotic resistance, since the plasmid DNA had been adsorbed onto the chrysotile particles. The inoculation of plasmid DNA into E. coli cells demonstrates the usefulness of chrysotile for E. coli transformation.  相似文献   

14.
Summary The ada + gene of E. coli is a regulatory gene of the adaptive response to simple alkylating agents. ada mutants are sensitive to both the mutagenicity and toxicity of alkylating agents, and are unable to induce O6-methylguanine DNA methyltransferase and 3-methyladenine DNA glycosylase II. The ada + gene was cloned from wild type E. coli B by ligating bacterial DNA partially digested with Sau3A into the cosmid vector pJB8. The hybrid cosmid, pCS33, conveyed N-methyl-N-nitro-N-nitrosoguanidine resistance to ada mutants of E. coli B and E. coli K12, and resulted in the constitutive synthesis of the two DNA repair enzymes at high levels. An alk mutation, which results in a deficiency of only the DNA glycosylase, was not complemented by this cosmid. It was concluded that the product of the ada + gene is a positive regulator of the adaptive response. The cosmid insert DNA was subcloned into the plasmid vector pAT153, and the ada + plasmids pCS42 and pCS58 selected. The ada + gene located in PCS58 by transposon mutagenesis and subcloning. Two polypeptides of Mr 37,000 and 27,000, were identified in maxicells as products of the ada + gene(s). It is as yet unclear whether they represent different forms of the same gene product, or are encoded by separate ada + genes within the same operon.  相似文献   

15.
Summary Phleomycin, at concentrations above 1 g/ml, induced breakdown of DNA and death in E. coli. Exponentially growing cultures were about 10 times more sensitive to phleomycin than were stationary cultures, and the effect was somewhat dependent on the medium.Excisionless (HCR) mutants of E. coli were insensitive to doses of phleomycin which killed over 99% of wild-type organisms within an hour, while EXR mutants were considerably more sensitive.Mutants of E. coli selected for phleomycin resistance were unable to reactivate U.V. irradiated Tl phage (HCR).It is concluded that the DNA breakdown, inhibition of DNA replication and cell death are a consequence of initial attack by an excision-endonuclease stimulated by the phleomycin.  相似文献   

16.
Summary The E. coli dnaK (groPC756) gene product is essential for bacteriophage DNA replication. Bacterial DNA segments carrying this gene have been cloned onto a bacteriophage vector. The product of the dnaK gene has been identified on SDS polyacrylamide gels after infection of UV-irradiated E. coli cells. The dnaK gene codes for a polypeptide with an apparent molecular weight of 93,000-Mr. Transducing phages carrying amber mutations in the dnaK gene fail to induce the synthesis of the 93,000-Mr polypeptide chain upon infection of sup + bacteria, but do so upon infection of supF bacteria. E. coli carrying the dnaK756 mutation are, in addition, temperature sensitive for growth at 43° C. It is shown that the dnaK756 mutation results in an overproduction of the dnaK gene product at that temperature.  相似文献   

17.
Plasmid pCspA::Km carrying a cloned mutant allele of the cspA gene for the major Escherichia coli cold-shock protein CspA with an insertion of the kanamycin resistance gene cassette from transposon Tn903 into the core region of the coding sequence causes a 2.3-fold increase in radioresistance of wild-type E. coli cells (cspA +). The radiation protective effect of this plasmid is abolished or drastically reduced in mutants recA13and rpoH15defective in RecA protein and in induction of the heat-shock protein regulon, respectively. Plasmid pCspA::Km causes a 1.3-fold elevation in the resistance to -irradiation of E. coli mutants with an intermediate level of radiation resistance (Gamr445 and KS0160) but slightly diminishes resistance of a highly radiation-resistant Gamr444 mutant. In the chromosome of E. coli strain with normal DNA repair systems, the cspA::Km mutation in the homozygous state enhances resistance to the lethal effect of -rays and UV light 2.9 and 1.4 times, respectively. These data suggest that the system of cold-shock proteins can modulate resistance of E. colicells to the lethal effect of -rays and UV light.  相似文献   

18.
Summary Specific transformation of a rifampicin sensitive strain of Escherichia coli to rifampicin resistance has been performed by a single, defined DNA restriction fragment carrying the genetic information for the subunit of E. coli RNA polymerase. In this transformation the transforming genetic character has been substituted for the corresponding recipient gene locus by recombination. The value of the described transformation system for locating genetic markers on DNA restriction fragments is discussed in comparison to previously reported in vitro systems.  相似文献   

19.
Our previous studies have shown thatEscherichia coli JE1011 possesses an errorfree DNA repair system that is inducible by heat shock or thiamine deprivation. However, it appears to be lacking inE. coli B, which islon . We now show that a similar, thermally inducible, error-free system is present inE. coli AB1157, although it requires more severe heat shock for its induction. Thelon mutant of this strain is similar toE. coli B and does not become more UV-resistant after heat shock, so this gene appears to play an essential role in the process. All three strains become more resistant to heat inactivation at 55°C following a 30°C48°C heat shock; this confirms that the induced UV and thermal resistances must arise by different mechanisms.  相似文献   

20.
Summary It has been proposed that the mutation fixation processes stimulated by SOS induction result from an induced infidelity of DNA replication (Radman 1974). The aim of this study was to determine if mutator mutations in the E. coli DNA polymerase III might affect UV-induced mutagenesis.Using a phage mutation assay which can discriminate between targeted and untargeted mutations, we show that the polC74 mutator mutation (Sevastopoulos and Glaser 1977) primarily affects untargeted mutagenesis, which occurs in a recA1 genetic background and is amplified in the recA + genetic background. The polC74 mutation also increases the UV-induced mutagenesis of the bacterial chromosome. These results suggest that DNA polymerase III is involved in the process of UV-induced mutagenesis in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号