共查询到20条相似文献,搜索用时 0 毫秒
1.
R N Armstrong W Levin D E Ryan P E Thomas H D Mah D M Jerina 《Biochemical and biophysical research communications》1981,100(3):1077-1084
N-Nitroethylenediamine is a mushroom product which closely resembles the neurotransmitter 4-aminobutyrate, GABA. The nitramine is sequentially accepted as a substrate by the GABA-catabolizing enzymes GABA aminotransferase (EC 2.6.1.19) and succinic semialdehyde dehydrogenase (EC 1.2.1.16). In view of the steric and ionic similarity of the nitramino group to the carboxymethyl group, nitramines may prove generally useful for enzymological and pharmacological purposes as analogs of carboxylic acids. 相似文献
2.
H Diehl J Sch?delin V Ullrich 《Hoppe-Seyler's Zeitschrift für physiologische Chemie》1970,351(11):1359-1371
3.
E L Cavalieri E G Rogan P D Devanesan P Cremonesi R L Cerny M L Gross W J Bodell 《Biochemistry》1990,29(20):4820-4827
To investigate whether cytochrome P-450 catalyzes the covalent binding of substrates to DNA by one-electron oxidation, the ability of both uninduced and 3-methylcholanthrene (MC) induced rat liver microsomes and nuclei to catalyze covalent binding of benzo[a]pyrene (BP) to DNA and formation of the labile adduct 7-(benzo[a]pyren-6-yl)guanine (BP-N7Gua) was investigated. This adduct arises from the reaction of the BP radical cation at C-6 with the nucleophilic N-7 of the guanine moiety. In the various systems studied, 1-9 times more BP-N7Gua adduct was isolated than the total amount of stable BP adducts in the DNA. The specific cytochrome P-450 inhibitor 2-[(4,6-dichloro-o-biphenyl)oxy]ethylamine hydrobromide (DPEA) reduced or eliminated BP metabolism, binding of BP to DNA, and formation of BP-N7Gua by cytochrome P-450 in both microsomes and nuclei. The effects of the antioxidants cysteine, glutathione, and p-methoxythiophenol were also investigated. Although cysteine had no effect on the microsome-catalyzed processes, glutathione and p-methoxythiophenol inhibited BP metabolism, binding of BP to DNA, and formation of BP-N7Gua by cytochrome P-450 in both microsomes and nuclei. The decreased levels of binding of BP to DNA in the presence of glutathione or p-methoxythiophenol are matched by decreased amounts of BP-N7Gua adduct and of stable BP-DNA adducts detected by the 32P-postlabeling technique. This study represents the first demonstration of cytochrome P-450 mediating covalent binding of substrates to DNA via one-electron oxidation and suggests that this enzyme can catalyze peroxidase-type electron-transfer reactions. 相似文献
4.
N V Adrianov A I Archakov M Tsigler 《Biulleten' eksperimental'no? biologii i meditsiny》1989,108(8):164-166
Perfluorodecalin was incorporated into phospholipid liposomes and injected intraperitoneally in various dozes. The maximal cytochrome P-450 induction is reached 48 hours after perfluorodecalin injection. Cytochrome P-450 content increases 4 times after perfluorodecalin injection in dose of 0.6 ml/kg in homogenate, and 6 times after perfluorodecalin injection in a dose of 0.4 ml/kg in microsomes. Phenobarbital and perfluorodecalin induce several cytochrome P-450 isozymes and cause the appearance of a new isozyme with mass 56 kD absent in microsomes of intact CBA mice. Perfluorodecalin induction strongly increased the rate of NADPH-dependent aminopyrine nN-demethylation (6-7 times per mg of microsomal protein and 1.5 times per nmol cytochrome P-450). The rate of NADPH-dependent hydroxylation of aniline was not affected by perfluorodecalin induction. 相似文献
5.
6.
Eric Eisenstadt Barry Shpizner Avram Gold 《Biochemical and biophysical research communications》1981,100(3):965-971
Liver microsomes and reconstituted cytochrome P-450 systems purified from phenobarbital or 3-methylcholanthrene pre-treated rats metabolize cyclopenta(cd)pyrene at its K-region to -9,10-dihydroxy-9,10-dihydrocyclopenta(cd)pyrene. The rate of formation of the K-region product is from 5% to 25% that of -3,4-dihydroxy-3,4-dihydro-cyclopenta(cd)pyrene. The preference of microsomes and purified cytochromes P-450 for oxygenating cyclopenta(cd)pyrene at the ethylenic C(3)–C(4) position is explainable in part by the fact that the C(4) position has the greatest electron density in the highest occupied molecular orbital. 相似文献
7.
Cytochrome P-450-dependent monooxygenases are able to oxidize a large variety of endogenous and exogenous substrates. This paper describes the in vitro interaction between benzopyrene and steroids at the level of two rat liver monooxygenases: steroid-16 alpha-hydroxylase and aryl hydrocarbon hydroxylase (AHH). The results obtained suggest the following conclusions: (1) Steroid-16 alpha-hydroxylase is partially supported by a specific cytochrome P-450 form which is not inhibited in vitro by exogenous substrates. Steroid-16 alpha-hydroxylase is completely independent from cytochrome P1-450 (or P-448), as it is insensitive, in vitro, to alpha-naphthoflavone; (2) AHH is supported by two cytochrome P-450 forms: a specific form which is inducible by methylcholanthrene and inhibited in vitro by alpha-naphthoflavone, but is insensitive to metyrapone and steroids; and another less specific form which is inhibited by metyrapone and steroids in vitro. 相似文献
8.
Leonard S. Baskin Chung S. Yang 《Biochemical and biophysical research communications》1982,108(2):700-707
The topography of microsomal proteins was studied by 2-dimensional gelelectrophoresis. The second dimension was run in the presence of 2-mercaptoethanol, thus allowing detection of proteins previously cross-linked by disulfide bonds as off-diagonal spots. With hepatic microsomes from phenobarbital pretreated rats, several off-diagonal spots were seen. The most intense spot, with a molecular weight of 52,000, was derived from a dimer of this protein. It was identified as cytochrome P-450 (P-450) by a double antibody enzyme-immunoassay. The dimer is probably formed by oxidation of sulfhydryl groups of P-450 molecules during the preparation of microsomes. P-450 can also be cross-linked to form 105,000, 167,000, and 240,000 dal oligomers by treating microsomes with dithiobis(succinimidyl propionate) at 0°C. Cross-linking of P-450 to other proteins was also observed with one-dimensional gel-electrophoresis. The results suggest that the cross-linked proteins are close neighbors of P-450 in the membrane. 相似文献
9.
A A Fa?bushevich L F Guliaeva A Iu Grishanova V M Mishin V V Liakhovich 《Biokhimii?a (Moscow, Russia)》1990,55(7):1210-1215
The synthesis of pharmacologically active diazepam metabolites (oxazepam, 4-hydroxydiazepam, N-demethyldiazepam) in liver microsomes of intact and phenobarbital-, 3-methylcholanthrene- and dexamethasone-induced male and female Wistar rats as well as in a reconstituted system with isolated forms of cytochrome P-450 (P-450a, P-450b, P-450c, P-450d and P-450k according to the Ryan nomenclature) was studied. Marked sex-dependent differences in the rates of diazepam metabolism in liver microsomes of intact and induced animals were revealed. The changes in the spectrum of diazepam metabolites in liver microsomes of induced rats (as compared to control animals) were revealed. In a reconstituted system only phenobarbital-induced cytochromes P-450b and P-450k were found to be active participants of diazepam N-demethylation; none of the isoenzymes tested were shown to be involved in diazepam hydroxylation. 相似文献
10.
Honey S O'Keefe P Drahushuk AT Olson JR Kumar S Sikka HC 《Comparative biochemistry and physiology. Toxicology & pharmacology : CBP》2000,126(3):285-292
The metabolism of benzo(a)pyrene [BP], a model carcinogenic PAH, by hepatic microsomes of two duck species, mallard (Anas platyrhynchos) and common merganser (Mergus merganser americanus) collected from chemically-contaminated and relatively non-contaminated areas was investigated. The rate of metabolism of BP by liver microsomes of common merganser and mallard collected from polluted areas (2,650 +/- 310 and 2,200 +/- 310 pmol/min per mg microsomal protein, respectively) was significantly higher than that obtained with liver microsomes of the two species collected from non-polluted areas (334 +/- 33 and 231 +/- 30 pmol/min per mg microsomal protein, respectively). The level of cytochrome P-450 1A1 was significantly higher in the liver microsomes of both duck species from the polluted areas as compared to the ducks from the non-polluted areas. The major BP metabolites, including BP-9, 10-diol, BP-4, 5-diol, BP-7, 8-diol, BP-1, 6-dione, BP-3, 6-dione, BP-6, 12-dione, 9-hydroxy-BP and 3-hydroxy-BP, formed by liver microsomes of both duck species from polluted and non-polluted areas, were qualitatively similar. However, the patterns of these metabolites were considerably different from each other. Liver microsomes of ducks from the polluted areas produced a higher proportion of benzo-ring dihydrodiols than the liver microsomes of ducks from the non-polluted areas, which converted a greater proportion of BP to BP-phenols. The predominant enantiomer of BP-7,8-diol formed by hepatic microsomes of the two duck species had an (-)R,R absolute stereochemistry. The data suggest that duck and rat liver microsomal enzymes have different regioselectivity but similar stereoselectivity in the metabolism of BP. 相似文献
11.
Benzo[a]pyrene (BP) fluorescence-emission intensities in phospholipid micelles are quantitatively described over a broad range of lipid and BP concentrations by excitation that is linearly dependent upon BP concentration and an offsetting excimer quenching that is dependent upon the square of the BP concentration. The fluorescence of BP is quenched by the presence of cytochrome P-450c in proportion to the concentration of the cytochrome in the micelles and in accord with stoichiometric complex formation. Parallel optical titrations indicate a change in spin state of P-450c to a predominantly high-spin state that correlates directly with the percentage fluorescence quenching of complexed BP. Neither change occurs with five other purified forms of rat liver P-450 that have low activity in BP metabolism. N-Octylamine, a ligand that binds to the heme of P-450, competitively inhibits both the spin-state changes and the fluorescence quenching in equal proportion. The Kd for the interaction of BP with P-450c is exceptionally low (10 nM) relative to the Km for monooxygenation (ca. 1 microM). Decreasing the concentration of either dilauroylphosphatidylcholine or dioleoylphosphatidylcholine concomitantly increases the high-spin state (from 30% to 80%) of fully complexed P-450c and the fluorescence quenching (50-100%) of the complexed BP (half-maximal at 80 micrograms of lipid/mL). It is concluded that spin state and fluorescence quenching both reflect the same changes in the interaction of the BP with the P-450 heme.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
12.
B G Niranjan N M Wilson C R Jefcoate N G Avadhani 《The Journal of biological chemistry》1984,259(20):12495-12501
Rat liver mitoplasts containing less than 1% microsomal contamination contain cytochrome P-450 at 25% of the microsomal level and retain the capacity for monooxygenase activation of structurally different carcinogens such as aflatoxin B1 (AFB1), benzo(a)pyrene (BaP), and dimethylnitrosamine. Both phenobarbital (PB) and 3-methylcholanthrene (3-MC) induce the level of mitochondrial cytochrome P-450 by 2.0- to 2.5-fold above the level of control mitoplasts. The enzyme activities for AFB1 (3-fold) and BaP (16-fold) metabolism were selectively induced by PB and 3-MC, respectively. Furthermore, the metabolism of AFB1 and BaP by intact mitochondria was supported by Krebs cycle substrates but not by NADPH. Both PB and 3-MC administration cause a shift in the CO difference spectrum of mitoplasts (control, 448 nm; PB, 451 nm; and 3-MC, 446 nm) suggesting that they induce two different forms of mitochondrial cytochromes P-450. Mitoplasts solubilized with cholate and fractionated with polyethylene glycol exhibit only marginal monooxygenase activities. The activity, however, was restored to preparations from both PB-induced and 3-MC-induced mitochondrial enzymes (AFB1 activation, ethylmorphine, and benzphetamine deamination and BaP metabolism) by addition of purified rat liver cytochrome P-450 reductase, and beef adrenodoxin and adrenodoxin reductase. The latter proteins failed to reconstitute activity to purified microsomal cytochromes P-450b and P-450c that were fully active with P-450 reductase. Monospecific rabbit antibodies against cytochrome P-450b and P-450c inhibited both P-450 reductase and adrenodoxin-supported activities to similar extents. Anti-P-450b and anti-P-450c provided Ouchterlony precipitin bands against PB- and 3-MC induced mitoplasts, respectively. We conclude that liver mitoplasts contain cytochrome P-450 that is closely similar to the corresponding microsomal cytochrome P-450 but can be distinguished by a capacity to interact with adrenodoxin. These inducible cytochromes P-450 are of mitochondrial origin since their levels in purified mitoplasts are over 10 times greater than can arise from the highest possible microsomal contamination. 相似文献
13.
14.
Cytochrome P-450 appears to be a component of the steroid-coverting enzymes, 17alpha-hydroxylase and 17,20-lyase, which catalyze sequential steps in sex hormone synthesis. Further evidence indicates that the steroid substrates of these enzymes bind to cytochrome P-450 during catalysis. The present report deals with the problem of whether a single form of cytochrome P-450 mediates both enzyme reactions or whether two enzymes are involved. Both activities are competitively inhibited by a number of the same inhibitors. Because K1 values of competitive inhibitors are dissociated constants, and thus a property of the cytochrome, different magnitudes of K1, determined for the same inhibitor with each enzyme, are consistent with the participation of more than one form of cytochrome P-450. Differences in the K1 values were found to be statistically significant and varied from 3- to 10-fold. Two competitive inhibitors retarded velocities with one reaction but not the other. In addition, the enzyme activities were markedly different in their sensitivity to carbon monoxide inhibition. The conclusion based on these two lines of evidence is that separate enzymes and different forms of cytochrome P-450 are involved in each reaction. 相似文献
15.
《The International journal of biochemistry》1989,21(5):525-529
- 1.1. Effects of antioxidants (butylated hydroxytoluene and nor-dihydroguaiaretic acid), vitamin K-related quinones (vitamin K1 and coenzyme Q10) and inorganic copper (CuSO4), in concentrations inhibiting NADPH: cytochrome P -450 reductase, were re-examined on benzo(a)pyrene metabolism in mouse liver uninduced microsomes.
- 2.2. It was found that all these compounds decrease production of the two-electron oxygenation products of benzo(a)pyrene (monophenoles, diols) and the amounts of glucuronides in a manner parallel to their inhibitory potency against NADPH: cytochrome P-450 reductase.
- 3.3. No correlation was found between amounts of one-electron oxidation products of benzo(a)pyrene and inhibition of NADPH: cytochrome P-450 reductase.
- 4.4. Without added UDPGA the compounds studied decreased protein associated benzo(a)pyrene metabolites in parallel to the decreased overall metabolism of this polyaromatic hydrocarbon.
- 5.5. The mode of action of the studied compounds is discussed.
16.
17.
Delmont Eberhart Kathleen Fitzgerald Andrew Parkinson 《Journal of biochemical and molecular toxicology》1992,7(1):53-64
The preceding paper (B. Gemzik, D. Greenway, C. Nevins, and A. Parkinson (1992). Regulation of two electrophoretically distinct proteins recognized by antibody against rat liver cytochrome P450 3A1. J. Biochem. Toxicol, 7 (43–52).) described the regulation of two rat liver microsomal proteins (50- and 51-kDa) recognized by antibody against P450 3A1. It was also shown that changes in the levels of the 51-kDa 3A protein were usually paralleled by changes in the rate of testosterone 2β-, 6β-, and 15β-hydroxylation. The present study demonstrates that age- and sex-dependent changes in the 50-kDa protein were paralleled by changes in the rate of digitoxin oxidation to digitoxigenin bisdigitoxoside. Induction or suppression of the 50-kDa protein by treatment of rats with various xenobiotics were also paralleled by changes in the rate of digitoxin oxidation. These results suggest that, contrary to previous assumptions, the conversion of digitoxin to digitoxigenin bisdigitoxoside and the conversion of testosterone to 2β-, 6β- and 15β-hydroxytestosterone are primarily catalyzed by different forms of P450 3A. Further evidence for this coclusion was obtained from studies in which the suicide inhibitor, chloramphenicol, was administered to mature female rats previously treated with pregnenolone-16α-carbonitrile (PCN), which induces both the 50-kDa and the 51-kDa protein. Treatment of mature female rats with PCN alone caused a marked increase (16- to 18-fold) in the 6β-hydroxylation of testosterone and the rate of digitoxin oxidation. Treatment of PCN-induced rats with chloramphenicol caused a ~70% decrease in liver microsomal testosterone 6β-hydroxylation, but had no effect on the rate of conversion of digitoxin to digitoxigenin bisdigitoxoside. The oxidation of testosterone by purified 3A1 (a 51-kDa protein) was also inhibited by chloramphenicol in a time- and reduced nicotinamite adenine dinucleotide phosphate (NADPH)-dependent manner. In addition to testosterone and chloramphenicol, purified 3A1 also metabolized trole-andomycin, but it was unable to convert digitoxin to digitoxigenin bisdigitoxoside. Testosterone inhibited the microsomal oxidation of digitoxin, but digitoxin did not inhibit testosterone oxidation. This suggests that testosterone is a substrate for the 3A enzyme that metabolizes digitoxin, but that this form of P450 3A does not contribute significantly to testosterone oxidation by rat liver microsomes. We propose that the 2SbT-, 6β-, and 15β-hydroxylation of testosterone by rat liver microsomes is primarily catalyzed by the 51-kDa 3A proteins (either 3A1 or 3A2 depending on the source of microsomes), whereas digitoxin oxidation is primarily catalyzed by the 50-kDa protein. 相似文献
18.
Administration of pregnenolone-16 alpha-carbonitrile (PCN) to adult female rats caused a 2-fold increase in total liver microsomal cytochrome P-450 along with 5-7-fold increases in four in vitro monooxygenase activities considered diagnostic for the major PCN-inducible cytochrome P-450 isozyme. However, upon administration of chloramphenicol to PCN-treated rats, these monooxygenase activities could be resolved into three groups. Thus, the ability of the microsomes to convert triacetyloleandomycin to a metabolite that forms a spectral complex with the reduced heme iron was decreased by 80% by chloramphenicol, whereas only a 50% decrease was observed in the rate of conversion of (R)-warfarin to its 9,10-dehydro metabolite and in the rate of 6 beta-hydroxylation of androstenedione. More strikingly, the 10-hydroxylation of (R)-warfarin was actually enhanced 2-fold by the chloramphenicol treatment. Fractionation studies were carried out on liver microsomes from PCN-treated adult male rats, and two highly purified cytochromes P-450, referred to as PCNa and PCNb, were recovered. PCNb was found to be identical in the sequence of the first 15 amino acid residues with a PCN-inducible isozyme, the complete amino acid sequence of which has recently been deduced in another laboratory [Gonzalez, F. J., Nebert, D. W., Hardwick, J. P., & Kasper, C. B. (1985) J. Biol. Chem. 260, 7435-7441]. The other isozyme, PCNa, differed in amino acid sequence in three of the first 15 positions from PCNb. Upon immunoblot analysis, polyclonal antibodies raised to PCNb also recognized PCNa. Thus, the PCN-inducible family of rat liver cytochrome P-450 comprises at least two separate proteins. 相似文献
19.
K V?h?kangas H Raunio M Pasanen P Sivonen S S Park H V Gelboin O Pelkonen 《Journal of biochemical toxicology》1989,4(2):79-86
The involvement of cytochrome P-450 isozymes in the activation of benzo[a]pyrene (BP) by human placental and liver microsomes was studied in vitro using monoclonal antibodies (Mab) toward the major 3-methylcholanthrene (MC)-inducible and phenobarbital-inductible rat liver P-450 isozymes (Mab 1-7-1 and Mab 2-66-3, respectively). Microsomes from human placenta and liver and rat liver were incubated with BP and DNA, and BP-diolepoxide-DNA (BPDE-DNA) adducts were measured by synchronous fluorescence spectrophotometry (SFS). The only BP metabolite giving the same fluorescence peak as chemically modified BPDE-DNA was BP-7,8-dihydrodiol. Five (smokers) out of 29 human placentas (smokers and nonsmokers), and five out of nine human livers were able to metabolically activate BP to BPDE-DNA adducts in this system. The Mab 1-7-1 totally inhibited the formation of BPDE-DNA adducts in placental microsomal incubations. Inhibition using rat or human liver microsomes was 50-60% and about 90%, respectively. The Mab 2-66-3 had no effect in any of the microsome types. Adduct formation was inhibited more strongly and at lower concentrations of Mab 1-7-1 compared with the inhibition of AHH activity. This study is a clear indication of the major role of P-450IA1 (P-450c) in human placenta and probably P-450IA2 (P-450d) in human liver in BP activation, while other isozymes also take part in the activation in rat liver. Furthermore, this clearly indicates that AHH activity and BP activation are not necessarily associated. 相似文献
20.
The preceding paper (B. Gemzik, D. Greenway, C. Nevins, and A. Parkinson (1992). Regulation of two electrophoretically distinct proteins recognized by antibody against rat liver cytochrome P450 3A1. J. Biochem. Toxicol., 7 (43-52).) described the regulation of two rat liver microsomal proteins (50- and 51-kDa) recognized by antibody against P450 3A1. It was also shown that changes in the levels of the 51-kDa 3A protein were usually paralleled by changes in the rate of testosterone 2 beta-, 6 beta-, and 15 beta-hydroxylation. The present study demonstrates that age- and sex-dependent changes in the 50-kDa protein were paralleled by changes in the rate of digitoxin oxidation to digitoxigenin bisdigitoxoside. Induction or suppression of the 50-kDa protein by treatment of rats with various xenobiotics were also paralleled by changes in the rate of digitoxin oxidation. These results suggest that, contrary to previous assumptions, the conversion of digitoxin to digitoxigenin bisdigitoxoside and the conversion of testosterone to 2 beta-, 6 beta-, and 15 beta-hydroxytestosterone are primarily catalyzed by different forms of P450 3A. Further evidence for this conclusion was obtained from studies in which the suicide inhibitor, chloramphenicol, was administered to mature female rats previously treated with pregnenolone-16 alpha-carbonitrile (PCN), which induces both the 50-kDa and the 51-kDa protein. Treatment of mature female rats with PCN alone caused a marked increase (16- to 18-fold) in the 6 beta-hydroxylation of testosterone and the rate of digitoxin oxidation. Treatment of PCN-induced rats with chloramphenicol caused a approximately 70% decrease in liver microsomal testosterone 6 beta-hydroxylation, but had no effect on the rate of conversion of digitoxin to digitoxigenin bisdigitoxoside. The oxidation of testosterone by purified 3A1 (a 51-kDa protein) was also inhibited by chloramphenicol in a time- and reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent manner. In addition to testosterone and chloramphenicol, purified 3A1 also metabolized troleandomycin, but it was unable to convert digitoxin to digitoxigenin bisdigitoxoside. Testosterone inhibited the microsomal oxidation of digitoxin, but digitoxin did not inhibit testosterone oxidation. This suggests that testosterone is a substrate for the 3A enzyme that metabolizes digitoxin, but that this form of P450 3A does not contribute significantly to testosterone oxidation by rat liver microsomes.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献