首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pollen grains have been a major focus of research mostly in temperate regions due to their effects on human health, especially allergies and asthma. The current study investigates a subtropical region characterized by a Mediterranean climate where Sharav conditions are experienced during the spring and autumn. The aim of the current study was to investigate whether Sharav conditions impacted airborne pollen concentrations of allergenic Amaranthaceae, Poaceae, Morus, Pinus, and Quercus more than standard Warm days during the main pollen seasons in the years 2010–2014 in Tel Aviv and Jerusalem (Israel). Slight variation was observed between the main pollen seasons in Tel Aviv compared to Jerusalem resulting from differences in temperature and relative humidity percentages. Additionally, more Sharav conditions occurred in Jerusalem than in Tel Aviv during the study period. The highest pollen concentrations occurred during Sharav days for Amaranthaceae, Poaceae, and Pinus but not for Morus and Quercus. Therefore, individuals who are allergic to Amaranthaceae, Poaceae, and Pinus pollen, and exposed to high pollen concentrations during Sharav days, might suffer more allergy symptoms than on Warm days.  相似文献   

2.
An investigation of airborne pollen in northern Mexico City was carried out for one year. A total of 24 taxa were identified and classified according to the growing form in pollen of trees, weeds and grasses. Pollen grains were recorded all year round with a peak in December. The trees group showed the highest quantity of pollen as well as taxa diversity, although its peak period was in the dry season. The weeds and grasses emitted a larger quantity of pollen in the rainy season. The dominant taxa wereAlnus, Casuarina, Compositae and Gramineae. As for their relation with meteorological parameters, we found that the increase of pollen concentration was related to high temperatures, low relative humidity and high wind speed, the latter causing an increase of airborne pollen with no dilution at all. The hours with the highest pollen concentration where from 16:00 to 18:00.  相似文献   

3.
An investigation of airborne pollen in northern Mexico City was carried out for one year. A total of 24 taxa were identified and classified according to the growing form in pollen of trees, weeds and grasses. Pollen grains were recorded all year round with a peak in December. The trees group showed the highest quantity of pollen as well as taxa diversity, although its peak period was in the dry season. The weeds and grasses emitted a larger quantity of pollen in the rainy season. The dominant taxa wereAlnus, Casuarina, Compositae and Gramineae. As for their relation with meteorological parameters, we found that the increase of pollen concentration was related to high temperatures, low relative humidity and high wind speed, the latter causing an increase of airborne pollen with no dilution at all. The hours with the highest pollen concentration where from 16:00 to 18:00.  相似文献   

4.
A survey of airborne pollen was conducted during 1984 in the coastal plain of Israel. The flora of that area is continuously changing due to urbanization and agriculture, thus affecting the airborne pollen spectrum.

Significant pollen counts were monitored throughout the year, with a seasonal peak during spring. Meteorological parameters, such as wind velocity, wind direction and temperature affected pollen content of the air. Under certain conditions, even pollen of insect-pollinated plant species was found in the air.

The most conspicuous among the airborne pollen were olive, cypress and pine trees as well as pollen grains from the Poaceae, Amaranthaccae, Chenopodiaceae, Asteraceae, Brassicaceae and Urticaccae.

Results indicate that most of the airborne pollen grains were of local origin and from cultivated trees. Thus, it is possible to reduce airborne pollen contaminants around human habitations by selection of the proper non-allergenic ornamental plants.  相似文献   

5.
An aeropalynological study during the years 2014–2015 was performed in Hatay, which is a unique sociocultural and phytogeographical area located on the border of Turkey and Syria on the eastern coast of the Mediterranean. The sampling was performed by a Hirst-type volumetric sampler (Lanzoni VPPS 2000), and pollen grains of 54 taxa were identified, of which 83.21% of the annual sum belonged to woody taxa. The highest pollen concentration was recorded in February, of which a large amount came from the Cupressaceae/Taxaceae families. The diversity of the pollen reflected the vegetation of the area and plantations of the city center, but pollen grains from Euro-Siberian elements specific to Mount Amanos could not be recorded. Pollen types found at more than 3% of the annual pollen index and considered dominant pollen types were as follows: Cupressaceae/Taxaceae (50.86%), Olea europaea (12.67%), Moraceae (7.20%), Poaceae (5.99%), Quercus (5.35%), Urticaceae (3.79%) and Pinus (3.70%); almost all dominant pollen types in the city atmosphere were previously stated to be allergic. The main pollen season starting dates of common pollen types found were one or two weeks earlier than those of the surroundings. Many statistically significant correlations were found between daily pollen concentrations and daily meteorological parameters, e.g., Cupressaceae/Taxaceae Poaceae and Urticaceae pollen correlated negatively with mean temperature in both years, and in the hindermost two families daily pollen amounts significantly correlated with wind speed in the second year. Daily Olea europaea pollen concentration showed a significant negative correlation with the amount of total daily rainfall in the second year.  相似文献   

6.
With a view to obtaining fuller information on airborne pollen content in the city of Havana, pollen sampling was carried out using a volumetric capture method, for the first time in Cuba. The study was conducted during 2 years (2011 and 2015). An annual pollen integral of 3414 grains was registered during the first year of study, whereas 5120 grains were observed along the 2015. Monthly maximum concentrations were recorded during April, June and July with total values close to 800 pollen grains. Of the 45 pollen types identified, Cecropia (38% of the total pollen identified in both years), Poaceae (18%), Urera type (9%) and Casuarina (6%) were particularly abundant. Although the main pollen types differed in terms of intradiurnal distribution, the highest concentrations were in all cases recorded between 0900 and 1300 hours. Maximum temperature was the variable most influencing airborne pollen counts in the air, with the exception of Casuarina. This paper sought to establish a methodological basis for the further development of aerobiological research in Cuba, thus helping to enhance the prevention and diagnosis of pollen allergies in the affected island population.  相似文献   

7.
Pollen and spores have been found as major biological sources of morbidity among individuals sensitive to respiratory disorders. The aim of the present study was to analyse the deposition rate of atmospheric pollen and fern spores at selected sites in Benue and Plateau states of the North-Central Nigeria between July 2015 and June 2016. This was accomplished by: (1) determining the pollen and fern spore content of each monitoring station; (2) establishing the relationship between total pollen count and meteorological parameters; and (3) comparing the recovered airborne pollen spectra with identified plants in the surrounding vegetation types of the sampling sites. The collection of atmospheric pollen was done using a modified Tauber sampler and plants in the surrounding environment of the sampling sites were enumerated. The residual solution was collected monthly and acetolysed, after which slide preparation and microscopy of the treated residue were done. Meteorological data were obtained from the Nigerian Meteorological Agency, Lagos. The results obtained reveal seasonal distribution patterns of various airborne pollen grains in the study locations. The most abundant pollen types recovered in Plateau State were produced by Syzygium guineense, Tridax procumbens, Alchornea sp., Terminalia sp., Poaceae and Amaranthaceae. Pollen types of Casuarina equisetifolia, Syzygium guineense, Tridax procumbens, Poaceae and Cyperaceae were preponderant in Benue State. Pteris sp., Nephrolepis sp. and a trilete fern spore were also represented in this study. The recovered airborne pollen spectra correspond favourably with some identified plants in the study locations. There was no significant correlation between monthly total pollen count and mean monthly values of meteorological parameters in Benue State. Air temperature and wind speed correlated significantly with monthly total pollen count in Plateau State. It is suggested that the allergenic effect of these abundant pollen types on humans should be further examined.  相似文献   

8.
The air that we inhale contains simultaneously a multiple array of allergenic pollen. It is well known that such allergens cause allergic reactions in some 15 of the population of the Western World. However little is known about the quantitative aspect of this phenomenon. What is the lowest concentration of pollen that might trigger allergic responses? As people are exposed to heterogeneous and variable environments, clarification of the partial contribution of each of the major airborne pollen allergens and determination of its role in invoking allergy are of prime importance. Objectives: (1) Assessment of a possible correlation between the concentration of airborne pollen and incidence of allergy. (2) Estimation of the lowest average concentrations for various species of airborne pollen that elicit allergic symptoms when exceeded. (3) Determination of the extent of the variations in manifestation of allergy symptoms that can be explained by fluctuations in the concentration of individual species of airborne pollen. Methods: The study was conducted during 14?months with a rural population in Israel. The participants completed a detailed questionnaire and were skin prick tested with the common airborne allergens. The appearance of clinical symptoms, i.e. nasal, bronchial, ocular or dermal, were reported daily by the patients. Concentrations of the airborne pollen and spores were monitored in the center of activity of the residents during one day every week, using three ‘Rotorod’ pollen traps. The pollen grains were identified by light microscopy. Results: The pollen spectrum was divided into time-blocks presenting the main pollination periods of the investigated species. The correlation between the concentration of airborne pollen of the relevant species and the clinical symptoms of the patients was determined for each time block. The correlation differed for different clinical symptoms and for different pollen allergens. Highest correlation with airborne pollen counts was found for patients with nasal and bronchial symptoms. The onset of the clinical symptoms by sensitive patients started, in each of the relevant groups, once the weekly average concentration of the airborne pollen crossed a threshold level. Under the limitations of the present study, this level was estimated to be 2–4 pollen m?3 air for olive, 3–5 pollen m?3 air for grasses, 4–5 pollen m?3 air for Artemisia, 10–20 pollen m?3 air for pecan and 50–60 pollen m?3 air for cypress. Conclusions: Fluctuations in specific airborne pollen grains explained up to 2/3 of the variation in clinical allergy responses. Those were: 69 of the variation for cypress (March–April), 66 for the grasses (March–April), 49 for the pecan (May–June) and 62 for Artemisia (Autumn).  相似文献   

9.
Pollen-related allergic diseases are a growing health problem. Thus, information on prevalence of airborne pollen may serve as guide for clinicians to accurately manage allergic diseases. In this study, an aeropalynological survey was conducted from November 2013 to October 2014 in Manila, Philippines, to determine the seasonal distribution of the most prevalent airborne pollen and correlate the influence of meteorological factors on their daily concentrations. A volumetric pollen trap was placed on a rooftop, 21 m above ground level. A total of 5677 pollen grains from 18 pollen types were identified, of which Urticaceae, Cannabaceae, Poaceae and Moraceae were the most prevalent. Other pollen types observed that represented 1 % of the total pollen concentration, in descending order, were Terminalia catappa, Myrtaceae, Muntingia calabura, Verbenaceae, Amaranthaceae, Cyperaceae, Caricaceae and Mimosa sp. Of the total airborne pollen, 87 % were obtained during the dry season (November–May). Pollen concentrations peaked (55 %) during the summer months (March–May), indicating a positive correlation (p < 0.01) between pollen concentration and temperature (maximum and mean). Alternatively, only 13 % of the pollen concentrations were obtained during the wet season (June–October). It was observed that pollen concentrations were negatively correlated (p < 0.01) with rainfall and humidity. As the pollen collection was done for one sampling year, only an approximation of the daily concentration of the pollen types was identified and correlated with meteorological factors. Further data collection is required to generate an accurate pollen calendar for use in allergy studies.  相似文献   

10.
This study has been focused on airborne pollen concentration in Northern Tunis. Pollen has been detected by a volumetric Hirst-type spore trap. This suction sampler was placed for two hydrologic years in the area of Mornag, northeastof Tunisia (36°40N; 10°17E). Fifty-two taxa were identified with heterogeneous daily pollen concentrations and a dominance of anemophilous plants. The main pollen types detected in the atmosphere were Olea europaea (38.7 and 20.75%), Cupressus (33.57 and 55.4%), Urticaceae (9.22 and 12.24%), Poaceae (3.55 and 3.32%), Mercurialis annua (2.96 and 1.6%) and Amaranthaceae (2.49 and 1.55%). The monthly pollen spectrum indicated a seasonal periodicity of airborne pollen with the main pollen season during spring. Two pollen seasons have been observed during these hydrologic years, due to both Cupressus and Amaranthaceae airborne pollen is represented during winter or spring, and also during autumn and late summer, respectively. Other pollen types represent a long pollen season, i.e., Urticaceae, starting in autumn and following until late spring. Daily pollen concentration showed a different behavior during the flowering season between both years, observing differences related to pollen index. Correlation between daily pollen concentrations of the dominant taxa showed a positive and significant correlation between airborne pollen concentrations of spring-pollinated taxa and mean temperature, but negative with maximum temperature, humidity and rainfall. In the case of minimum temperature, a different response, positive for trees and negative for herbaceous plants, has been observed.  相似文献   

11.
Volumetric data on airborne pollen have been gathered for two consecutive years at a neotropical location (Caracas). Among the 65 taxa which were identified, pollen from aCupressus species (introduced) and from aCecropia species (indigenous) were dominant. Less numerous but also abundant (daily averages ≥5 grains/m3 air) were pollen from Gramineae, Urticaceae,Alcalypha, Pinus, Piperaceae andMimosa. Pollen grains were recorded daily throughout the year. They increased in numbers during April–May and again during November–December. The first peak was contributed mainly by indigenous species, the second peak mainly by introduced species.  相似文献   

12.
In some areas, forests are being affected in diverse aspects such as structure, composition and biodiversity showing an increase or a decrease in the growth rates. Pinus is one of the most dominant genera in the forests of the Northern Hemisphere. This study analyzes the pine pollination patterns in 30 locations of Spain with an average of 21-year dataset. The aim is to evaluate possible changes in flowering intensity as well as in annual pollen production trends, according to the airborne pollen patterns. Annual Pollen Indices show three threshold values: (1) over 4000 grains per year in Catalonia, the Central System Mountains and Ourense (Galicia), (2) between 4000 and 1000 grains in central-south Spain and in the Balearic Islands, and (3) under 1000 in eastern Spain, Cartagena and the Canary Islands. Airborne pollen patterns were also influenced by Pinus species: The species located in the littoral and low land areas pollinated in the first pollination phase, from February to April, and the mountain pine species did in the second one, from April to June. The statistical analyses reveal increasing significant trends in 12 sites and significant decreasing trends in two. The Pinus flowering intensity is showing an earlier start and a delay in the end of the pollination period, thus a longer period of pollen in the air. This study suggests that the aerobiological monitoring is an interesting bio-indicator of changes happening in Pinus landscapes, and therefore explains the vulnerability of this genus in Spain.  相似文献   

13.
Grasses (Poaceae) pollen is a major cause for allergic diseases worldwide. Pollen monitoring in the atmosphere is of primary importance for symptoms interpretation and therapy planning. Microscopic pollen identification and counts do not allow the detection at species or genus level because of the stenopalynous nature of the family. Nevertheless, the assessment of the flowering phenology of different species would be important, because not all grass allergens are cross-reacting and allergic patients could be differentially sensitized. In this work, a phenological survey was carried out in five stations located on the urban territory of Perugia (Central Italy), from April to September 2015, recording the alternation between flowering phenophases of 19 grass species and estimating their contribution to the airborne pollen load of the area through the calculation of a Phenological Index. Moreover, pollen grains of the different species were collected and observed, confirming the impossibility to make a discrimination during microscope pollen counts. The prevailing grasses in terms of contribution to the pollen detection in the studied area resulted to be Dactylis glomerata and Lolium perenne during spring and early summer, and Cynodon dactylon during late summer. Data should be validated repeating the survey in successive years and possibly using biomolecular tools, but the obtained information could be relevant for diagnosis and treatment of grass pollen allergies.  相似文献   

14.
A 1-year study was conducted, with the aim to investigate the airborne allergens around the Dead Sea (DS), identify and quantify airborne pollen and spores in the DS region, and determine the different sensitization prevalence among various population groups to these aeroallergens. According to results, we also aimed to define “safe seasons” when there are no or only few aeroallergens in the atmosphere that surrounds the Dead Sea. A Rotorod and a Hirst trap were used for continuous monitoring of pollen and spores which were then identified. Sensitization to aeroallergens was assessed by skin prick tests (SPT) in three groups of allergic residents: foreign tourists, Israeli tourists, and local workers from the hotel industry. Air around the DS is by no means free of aeroallergens, 50 pollen and 43 mold types were identified. Pollen was from native plants, imported ornamentals, and others transported by winds from long distances. Overall pollen concentrations were lower around the Dead Sea than in the Tel Aviv region, but in certain months, they were higher around the DS. Marked seasonal variations in pollen and spore dispersal were observed. By SPT, hypersensitivity to Chenopodiaceae, Amaranthaceae, Cupressus, Solidago, Poaceae, Olea, Artemisia as well as molds such as Alternaria and Aspergillus, was found. As assessed by SPT, some of tourists and permanent residents are allergic to pollen, molds, and house dust mites. The presented study enables one to denote “safe” seasons when the concentration of airborne allergens is below “allergenic risk”: June–August and November–February. These seasons are the most suitable for allergic medical tourists.  相似文献   

15.
In this paper, airborne dispersion of the pollen ofCecropia peltata L. (Moraceae) in a location close to the Equator is described. The Cecropias are fast-growing pioneer trees unique to the Neotropics, where they grow within a large altitude range, from Mexico to Brazil.Cecropia pollen was the most abundant grain throughout the year. The highest recovery occurred during April–May. As widely distributed members of the Moraceae family and because of their small pollen size, the Cecropias are prime suspects for being the source of inhalant allergens. The numbers ofCecropia airborne pollen grains that were recorded are well above those deemed necessary for human sensitization.  相似文献   

16.
Pollen grains are abundant micro-organisms in the summer or dry season outdoor atmosphere. Moreover, they are fragile organisms, living for only a few days and their constant chemical interactions with their surrounding environment makes them prime candidates as biological indicators of ambient conditions. Volumetric samples were taken at different altitudes (3900–4400 m) on the Popocatepetl volcano (5452 m), 70 km south-east of Mexico City (2240 m). Results from September–October 1992 show that: (1) Local airborne pollen emission is negligible, most plant species found along the altitudinal transect being entomophilous. Indeed, maximum in vivo pollen viability was found at 4100 m a.s.l., where very few total airborne pollens were collected. (2) Regional pollen transport is found under 4000 m a.s.l., where pollen viability is discontinuous, being either below 50% or over 75%. (3) There is a long distance transport layer of pollen and spore dispersal below Mean Cloud Base, but over maximum wind speed, at a height of 4200–4300 m a.s.l., where pollen were found highly viable (>80%). (4) Pollen concentration or viability were not correlated with wind speed, relative humidity or temperature. However, the same factors were all significant regarding spore concentrations.  相似文献   

17.
Although the number of studies of pollen concentrations inside and outside buildings is increasing, little is known about the efficiency of penetration of pollen from outdoor to indoor air, and further. We studied indoor and outdoor pollen concentrations in the town of Lappeenranta and in the municipality of Rautjärvi in SE Finland from May 3–23, 2004, i.e. throughout the Betula pollen season, and assessed the risk of exposure to pollen grains. Pollen concentrations were measured inside and outside a block of flats, a detached house, and the regional central hospital, using rotorod-type samplers; in the town of Joutseno data were compared with Burkard counts. Outdoor concentrations of Betula pollen grains ranged between low and abundant (0–855 grains m?3). The corresponding indoor concentrations near the main front doors varied from low to moderate (0–17 grains m?3) in the central hospital and were low (<10 grains m?3) in both residential buildings. Indoor concentrations further from the main front door were low (<10 grains m?3) at all study sites. The concentrations of Betula pollen decreased substantially from outdoors to indoors, and further toward the centre of the building, probably indicating relatively poor penetrating properties of the pollen grains and/or the short-lived presence of pollen grains in indoor air. The concentrations of Betula pollen inside the buildings during the peak flowering period were mostly at a level barely inducing reactions even in the most sensitive persons.  相似文献   

18.
Fungal spores of Alternaria and Cladosporium are ubiquitous components of both indoor and outdoor air samples and are the main causes of human respiratory allergies. Monitoring these airborne fungal spores during 2009–2014 was carried out by means of Hirst-type spore trap to investigate their airborne spore concentrations with respect to annual load, seasonality and overall intradiurnal pattern. Alternaria and Cladosporium spores are present throughout the year in the atmosphere of Tétouan, although they show seasonal variations. Despite important differences between years, their highest levels presented a first peak during spring and a higher second peak in summer or autumn depending on the year. The spore concentrations were homogeneously distributed throughout the day with slight increase of 7.6 and 3.7% on average between 12–14 and 14–16 h for Alternaria and Cladosporium, respectively. The borderline of 3000 sp/m3 of Cladosporium linked to the occurrence of allergic diseases was exceeded between 13 and 31 days. Airborne spores of Alternaria overcame the threshold value of 100 sp/m3 up to 95 days, suggesting that Cladosporium and Alternaria could be clinically significant aeroallergens for atopic patients.  相似文献   

19.
Pollen of 12 species of the genus Spirea L. growing in different regions of Siberia and the Far East was investigated. The ultrasculpture of pollen grains is described. On the basis of aperture morphology and exine sculpture, pollen grains are typified, with key indices given for their identification. The species of the Spiraria section are distinguished by large grains. Pollen grains of S. media and S. alpina considerably vary in size. The level of natural polymorphism of palynological indices has been established.  相似文献   

20.
V. D. Savitsky  V. N. Kobzar 《Grana》2013,52(5):314-318
Aerobiological investigations of the last ten years in the former USSR emphasised, preferentially the following problems: content of pollen in the air, pollen transport, and impact of pollen on the health of the human. Pollen grains which cause various allergic diseases have been the main object of extensive aerobiological studies. Ado and his collaborators have made valuable contributions to Aerobiology in the former USSR (Ado 1978, 1980, 1989, 1990; Ado & Gubankova, 1979 a, b). Their investigations confirmed the existence of a correlation between the number of allergic patients and the concentration of pollen grains in the atmosphere, and some peculiarities of the allergic diseases prevalent in towns.

Later, aerobiology was elaborated by the investigations of Kobzar (1987), Kobzar & Kharitonova (1990), Kobzar et al. (1990, 1991), etc. The possibility of airborne pollen grains as indicators of environmental contamination and pollution levels was demonstrated. Various data show the periods during which pollen grains are present in atmosphere, their peaks and the levels of concentration which are able to cause allergies in the territory of the former USSR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号