首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spring filling of xylem vessels in wild grapevine   总被引:32,自引:2,他引:32       下载免费PDF全文
Xylem vessels in grapevines Vitis labrusca L. and Vitis riparia Michx. growing in New England contained air over winter and yet filled with xylem sap and recovered their maximum hydraulic conductance during the month before leaf expansion in late May. During this period root pressures between 10 and 100 kilopascals were measured. Although some air in vessels apparently dissolved in ascending xylem sap, results indicated that some is pushed out of vessels and then out of the vine. Air in the vessel network distal to advancing xylem sap was compressed at about 3 kilopascals; independent measurements indicated this was sufficient to push air across vessel ends, and from vessels to the exterior through dead vine tips, inflorescence scars, and points on the bark. Once wetted, vessel ends previously air-permeable at 3 kilopascals remained sealed against air at pressures up to 2 and 3 megapascals. Permeability at 3 kilopascals was restored by dehydrating vines below −2.4 megapascals. We suggest that the decrease in permeability with hydration is due to formation of water films across pores in intervascular pit membranes; this water seal can maintain a pressure difference of roughly 2 megapascals, and prevents cavitation by aspirated air at xylem pressures less negative than −2.4 megapascals.  相似文献   

2.
Zhu JJ  Beck E 《Plant physiology》1991,97(3):1146-1153
The evergreen herb Pachysandra terminalis becomes moderately frost-hardy in winter. The water relations of its frost-hardy leaves were studied during a freeze-thaw cycle. Leaf water potentials, measured by psychrometry at subfreezing temperatures, were identical with those of ice, indicating equilibrium freezing. Microscopic observations showed extracellular freezing of tissue water. As evidenced by thermal analysis, the freezing process starts with the crystallization of a minor volume which was identified as apoplasmic water. The following long-lasting exotherm indicated slow export of water from the protoplasts driven by extracellular crystallization. In partially frozen leaves, the fractions of liquid water were measured at several subfreezing temperatures by nuclear magnetic resonance spectroscopy. They were consistently greater than those calculated from the osmotic potentials of cellular fluid, and the differences increased with decreasing temperature. About 50% of the differences could be abolished by freeze-killing of the leaf and was thus ascribed to the effect of a (negative) pressure reinforcing the osmotic potential. The persistent part of the differences may have reflected a matric component. At −7°C, the absolute values of both potentials were −1.7 megapascals each. The water relations of Pachysandra leaves clearly indicate nonideal equilibrium freezing where negative pressures and matric potentials contribute to the leaf water potential and thus alleviate freeze-dehydration of the tissue.  相似文献   

3.
Sperry JS 《Plant physiology》1986,80(1):110-116
Xylem failure via gas embolism (cavitation) induced by water stress was investigated in the palm Rhapis excelsa (Thumb.) Henry. Xylem embolism in excised stems and petioles was detected using measurements of xylem flow resistance: a decrease in resistance after the removal of flow-impeding embolisms by a pressure treatment indicated their previous presence in the axis. Results supported the validity of the method because increased resistance in an axis corresponded with: (a) induction of embolism by dehydration, (b) increased numbers of cavitations as detected by acoustic means, (c) presence of bubbles in xylem vessels. The method was used to determine how Rhapis accommodates embolism; results suggested four ways. (a) Embolism was relatively rare because pressure potentials reach the embolism-inducing value of about −2.90 megapascals only during prolonged drought. (b) When embolism did occur in nature, it was confined to the relatively expendable leaf xylem; the stem xylem, which is critical for shoot survival, remained fully functional. (c) Even during prolonged drought, the extent of embolism is limited by complete stomatal closure, which occurred at the xylem pressure potential of −3.20 ± 0.18 megapascals. (d) Embolism is potentially reversible during prolonged rains, since embolisms dissolved within 5 h at a pressure potential of 0.00 megapascals (atmospheric), and xylem sap can approach this pressure during rain.  相似文献   

4.
Spatial distribution of turgor and root growth at low water potentials   总被引:29,自引:12,他引:17       下载免费PDF全文
Spatial distributions of turgor and longitudinal growth were compared in primary roots of maize (Zea mays L. cv FR27 × FRMo 17) growing in vermiculite at high (−0.02 megapascals) or low (−1.6 megapascals) water potential. Turgor was measured directly using a pressure probe in cells of the cortex and stele. At low water potential, turgor was greatly decreased in both tissues throughout the elongation zone. Despite this, longitudinal growth in the apical 2 millimeters was the same in the two treatments, as reported previously. These results indicate that the low water potential treatment caused large changes in cell wall yielding properties that contributed to the maintenance of root elongation. Further from the apex, longitudinal growth was inhibited at low water potential despite only slightly lower turgor than in the apical region. Therefore, the ability to adjust cell wall properties in response to low water potential may decrease with cell development.  相似文献   

5.
The pressure microprobe was used to determine whether the turgor pressure in tomato (Lycopersicon esculentum Mill., variety “Castelmart”) pericarp cells changed during fruit ripening. The turgor pressure of cells located 200 to 500 micrometers below the fruit epidermis was uniform within the same tissue (typically ± 0.02 megapascals), and the highest turgors observed (<0.2 megapascals) were much less than expected, based on tissue osmotic potential (−0.6 to −0.7 megapascals). These low turgor values may indicate the presence of apoplastic solutes. In both intact fruit and cultured discs of pericarp tissue, a small increase in turgor preceded the onset of ripening, and a decrease in turgor occurred during ripening. Differences in the turgor of individual intact fruit occurred 2 to 4 days before parallel differences in their ripening behavior were apparent, indicating that changes in turgor may reflect physiological changes at the cell level that precede expression of ripening at the tissue level.  相似文献   

6.
A method of measuring the water potential of stored potato tubers (Solanum tuberosum L.) was needed to investigate the relationship of bacterial soft rot in tubers to water potential. Pressure chamber measurements, while useful for tubers with functional stolons, cannot be made on stored tubers. Measurements could be made on excised tissue pieces in a hygrometer chamber and with hygrometers implanted into tubers. We report here our evaluation of these hygrometric methods using a comparison with the pressure chamber on tubers harvested with stolons intact.

In tubers of high water potential, measurements on excised tissue were as much as 0.5 megapascals lower than the pressure chamber, probably due to turgor-driven expansion of the sample when freed from constraints imposed by surrounding tissue. Good agreement (±0.05 megapascals) was found between the implanted hygrometer and the pressure chamber at potentials higher than −0.5 megapascals. At lower water potentials, both hygrometer measurements were higher than the pressure chamber. Respirational heating of the tissue contributed to the increase in the excised tissue samples, but not with the implanted hygrometers because of the hygrometer design. The osmotic pressure balanced the pressure chamber measurement of potential at −0.7 megapascals, but was too small to do so at lower potentials. At most, 25% of this discrepancy can be accounted for by dilution by apoplastic water. We believe that the pressure chamber measurement is too low at low water potentials and that the error is associated with air bubbles in the xylem. At low potentials air emerged from xylem vessels along with sap, and fewer xylem emitted sap as potentials decreased.

  相似文献   

7.
The interactions between freezing kinetics and subsequent storage temperatures and their effects on the biological activity of lactic acid bacteria have not been examined in studies to date. This paper investigates the effects of three freezing protocols and two storage temperatures on the viability and acidification activity of Lactobacillus delbrueckii subsp. bulgaricus CFL1 in the presence of glycerol. Samples were examined at −196°C and −20°C by freeze fracture and freeze substitution electron microscopy. Differential scanning calorimetry was used to measure proportions of ice and glass transition temperatures for each freezing condition tested. Following storage at low temperatures (−196°C and −80°C), the viability and acidification activity of L. delbrueckii subsp. bulgaricus decreased after freezing and were strongly dependent on freezing kinetics. High cooling rates obtained by direct immersion in liquid nitrogen resulted in the minimum loss of acidification activity and viability. The amount of ice formed in the freeze-concentrated matrix was determined by the freezing protocol, but no intracellular ice was observed in cells suspended in glycerol at any cooling rate. For samples stored at −20°C, the maximum loss of viability and acidification activity was observed with rapidly cooled cells. By scanning electron microscopy, these cells were not observed to contain intracellular ice, and they were observed to be plasmolyzed. It is suggested that the cell damage which occurs in rapidly cooled cells during storage at high subzero temperatures is caused by an osmotic imbalance during warming, not the formation of intracellular ice.  相似文献   

8.
Mechanism of water stress-induced xylem embolism   总被引:40,自引:4,他引:36       下载免费PDF全文
We investigated the hypothesis that water stress-induced xylem embolism is caused by air aspirated into functional vessels from neighboring embolized ones (e.g. embolized by physical damage) via pores in intervessel pit membranes. The following experiments with sugar maple (Acer saccharum Marsh.) support the hypothesis. (a) Most vessels in dehydrating stem segments embolized at xylem pressures < −3 megapascals; at this point the pressure difference across intervessel pits between air-filled vessels at the segment's ends and internal water-filled vessels was >3 megapascals. This same pressure difference was found to be sufficient to force air across intervessel pits from air injection experiments of hydrated stem segments. This suggests air entry at pits is causing embolism in dehydrating stems. (b) Treatments that increased the permeability of intervessel pits to air injection also caused xylem to embolize at less negative xylem pressures. Permeability was increased either by perfusing stems with solutions of surface tension below that of water or by perfusion with a solution of oxalic acid and calcium. The mechanism of oxalic-calcium action on permeability is unknown, but may relate to the ability of oxalate to chelate calcium from the pectate fraction of the pit membrane. (c) Diameter of pores in pit membranes measured with the scanning electron microscope were within the range predicted by hypothesis (≤0.4 micrometer).  相似文献   

9.
Two cultivars of soybean (Glycine max [L.] Merr.) were grown in solution with up to 100 millimolar NaCl. Leaf solute potential was −1.1 to −1.2 megapascals in both cultivars without NaCl. At 100 millimolar NaCl leaf solute potential was −3.1 to −3.5 megapascals in Bragg and −1.7 megapascals in Ransom. The decrease in solute potential was essentially proportional to the concentration of NaCl. In both salt susceptible Bragg and salt semitolerant Ransom, leaf proline was no more than 0.4 micromole per gram fresh weight at or below 20 millimolar NaCl. At 40 and 60 millimolar NaCl, Bragg leaf proline levels were near 1.2 and 1.9 micromoles per gram fresh weight, respectively. Proline did not exceed 0.5 micromole per gram fresh weight in Ransom even at 100 millimolar NaCl. Proline accumulated in Bragg only after stress was severe enough to induce injury; therefore proline accumulation is not a sensitive indicator of salt stress in soybean plants.  相似文献   

10.
The influence of osmoticum treatments on early kernel development of maize (Zea mays L.) was studied using an in vitro culture method. Kernels with subtending cob sections were placed in culture at 5 days after pollination. Sucrose (0.29, 0.44, or 0.58 molar) and sorbitol (0, 0.15, or 0.29 molar) were used to obtain six media with water potentials of −1.1, −1.6, or −2.0 megapascals. Kernel water potential declined in correspondence with the water potential of the medium; however, fresh weight growth was not significantly inhibited from 5 to 12 days after pollination. In stress treatments with media water potentials of −1.6 or −2.0 megapascals, endosperm tissue accumulated water and solutes from 10 and 12 days after pollination at a rate similar to or greater than that of the control (−1.1 megapascals). In contrast, endosperm cell division was inhibited in all treatments relative to control. At 10 days after pollination, endosperm sucrose concentration was greater in two of the −2.0 megapascal treatments with 0.44 or 0.58 molar media sucrose compared to control kernels cultured in 0.29 molar sucrose at −1.1 megapascals. Significant increases in abscisic acid content per gram of fresh weight were detected in two −2.0 megapascal treatments (0.29 molar sucrose plus 0.29 molar sorbitol and 0.58 molar sucrose) at 10 days after pollination. We conclude that in cultured maize kernels, endosperm cell division was more responsive than fresh weight accumulation to low water potential treatments. Data were consistent with mechanisms involving abscisic acid or lowered tissue water potential, or an interaction of the two factors.  相似文献   

11.
The purpose of this study was to examine cell viability after freezing. Two distinct ranges of temperature were identified as corresponding to stages at which yeast cell mortality occurred during freezing to −196°C. The upper temperature range was related to the temperature of crystallization of the medium, which was dependent on the solute concentration; in this range mortality was prevented by high solute concentrations, and the proportion of the medium in the vitreous state was greater than the proportion in the crystallized state. The lower temperature range was related to recrystallization that occurred during thawing. Mortality in this temperature range was increased by a high cooling rate and/or high solute concentration in the freezing medium and a low temperature (less than −70°C). However, a high rate of thawing prevented yeast mortality in this lower temperature range. Overall, it was found that cell viability could be conserved better under freezing conditions by increasing the osmotic pressure of the medium and by using an increased warming rate.  相似文献   

12.
Haplopappus gracilis and Acer saccharum tissue culture cells are extremely sensitive to freezing injury, and exhibit a decrease in survival from 98% at −1 C to 4% at −3 C (Haplopappus) and 92% at −3 C to 13% at −5 C (Acer) when suspended in distilled H2O, seeded at −1 C, and then cooled by 0.1 C/minute. Similar results are obtained when cells are suspended in growth medium. The extent of shrinkage of cells during freezing can be duplicated by exposure of the cells to plasmolyzing solutions of nonpenetrating substances (Δ Tf = 1.86 vm). Solutions of sucrose and glycerol that produce extensive plasmolysis cause a decrease in survival within 3 to 5 minutes at room temperature, and the higher the molality to which the cell is exposed the greater the injury. Also, the rate of rehydration of the plasmolyzed cell and of the frozen cell affects its survival, with the slower rate being more beneficial. The close correlation between the decrease in survival at subzero temperatures and the decrease in survival when cells are placed in solutions having osmolalities, which could produce the same extent of shrinkage as these killing temperatures, suggests that this shrinkage is related to freezing injury in tissue culture cells.  相似文献   

13.
Detection of Xylem Cavitation in Corn under Field Conditions   总被引:21,自引:1,他引:20       下载免费PDF全文
We report the detection of cavitation events in corn (Zea mays) plants growing under field conditions in Greeley, CO. To our knowledge this study reports the first successful attempt to monitor continuously for long periods the cavitation events of a crop plant using acoustic detection techniques. Cavitation events occur in corn plants using acoustic detection techniques. Cavitation events occur in corn plants irrigated daily when the xylem pressure potentials fall below about −1.0 megapascals. In unirrigated corn we estimate that approximately half of all vessels cavitate on any one day when xylem pressure potentials fall below about −1.8 megapascals. We postulate that root pressure developed every night in irrigated and unirrigated corn is adequate to rejoin cavitated water columns.  相似文献   

14.
The combined effects of subzero temperature and high pressure on the inactivation of Escherichia coli K12TG1 were investigated. Cells of this bacterial strain were exposed to high pressure (50 to 450 MPa, 10-min holding time) at two temperatures (−20°C without freezing and 25°C) and three water activity levels (aw) (0.850, 0.992, and ca. 1.000) achieved with the addition of glycerol. There was a synergistic interaction between subzero temperature and high pressure in their effects on microbial inactivation. Indeed, to achieve the same inactivation rate, the pressures required at −20°C (in the liquid state) were more than 100 MPa less than those required at 25°C, at pressures in the range of 100 to 300 MPa with an aw of 0.992. However, at pressures greater than 300 MPa, this trend was reversed, and subzero temperature counteracted the inactivation effect of pressure. When the amount of water in the bacterial suspension was increased, the synergistic effect was enhanced. Conversely, when the aw was decreased by the addition of solute to the bacterial suspension, the baroprotective effect of subzero temperature increased sharply. These results support the argument that water compression is involved in the antimicrobial effect of high pressure. From a thermodynamic point of view, the mechanical energy transferred to the cell during the pressure treatment can be characterized by the change in volume of the system. The amount of mechanical energy transferred to the cell system is strongly related to cell compressibility, which depends on the water quantity in the cytoplasm.  相似文献   

15.
Compartmentation of solutes and water in developing sugarcane stalk tissue   总被引:8,自引:2,他引:6  
Previous studies have suggested that the apoplast solution of sugarcane stalk tissue contains high concentrations of sucrose, but the accuracy of these reports has been questioned because sucrose leakage from damaged cells may have influenced the results. In this study, the solute potential of the apoplast and symplast of the second (immature), tenth, twentieth, thirtieth, and fortieth internodes of field-grown sugarcane (Saccharum spp. hybrid) stalk tissue was determined by two independent methods. Solute potential of the apoplast was measured either directly by osmometry from solution collected by centrifugation, or inferred from the initial water potential of fully hydrated tissue determined by thermocouple psychrometry before the tissue was progressively dehydrated for generation of water potential isotherms. Both methods produced nearly identical values ranging from −0.6 to −1.8 megapascals for immature and mature tissue, respectively. The solute potential of the symplast determined by either method ranged from −1.0 to approximately −2.2 megapascals for immature and mature internodes, respectively. Solute quantitation by HPLC agreed with concentrations inferred from osmometry. Washing thirtieth internode tissue in deionized water increased pressure potential from 0.29 to 1.96 megapascals. The apoplast of mature sugarcane stalk tissue is a significant storage compartment for sucrose containing as much as 25% of the total tissue water volume and as much as 21% of the stored sucrose.  相似文献   

16.
Isolated tomato (Lycopersicon esculentum var. Kc 146) fruit mitochondria could be stored successfully in the frozen state without a cryoprotective agent if the mitochondria were frozen quickly by immersion in liquid nitrogen and later thawed quickly at 30 C. Criteria of freezing damage were rate of respiration, adenosine diphosphate to oxygen ratio, and respiratory control ratio. Marked reduction in respiration and loss of respiratory control occurred when mitochondria were transferred from liquid nitrogen to −5, −10, or −18 C for 15 minutes prior to thawing at 30 C. Dimethylsulfoxide (5%) prevented freezing damage when mitochondria were incubated at −5 C but did not prevent freezing damage at −10 or −18 C. Isolated tomato mitochondria show promise as a model system for studying the nature of freezing damage and the mode of action of cryo-protective agents.  相似文献   

17.
Experiments were conducted with containerized `Tahiti' lime (Citrus latifolia Tan.) trees in order to define conditions needed to induce flowering. Cyclical or continuous water stress for 4 to 5 weeks induced flowering. Moderate (−2.25 megapascals, midday) or severe (−3.5 megapascals, midday) water stress as measured by leaf xylem pressure potential, for as little as 2 weeks induced flowering, but the response was more significant in severely stressed trees. Low temperature (18°C day/10°C night) induced a time dependent flowering response much like that of moderate water stress. Significantly negative leaf xylem pressure potentials as compared to controls were found only under water stress treatment, suggesting that a common stress-linked event, separate from low plant water potential is involved in floral induction. Leafless, immature cuttings from mature, field-grown trees were induced to flower by water stress treatment, suggesting that leaves are not essential for a flower inductive response.  相似文献   

18.
Tyree MT 《Plant physiology》1983,73(2):277-285
Sap flow rates and sap pressure changes were measured in dormant sugar maple trees (Acer saccharum Marsh.). In the forest, sap flow rates and pressure changes were measured from tap holes drilled into tree trunks in mature trees and sap flow rates were measured from the base of excised branches. Excised branches were also brought into the laboratory where air temperature could be carefully controlled in a refrigerated box and sap flow rates and sap pressures were measured from the cut base of the branches.

Under both forest and laboratory conditions, sap uptake occurred as the wood temperature declined but much more rapid sap uptake correlated with the onset of the freezing exotherm. When sap pressures were measured under conditions of negligible volume displacement, the sap pressure rapidly fell to −60 to −80 kilopascals at the start of the freezing exotherm. The volume of water uptake and the rate of uptake depended on the rate of freezing. A slow freezing rate correlated with a large volume of water uptake, a fast freezing rate induced a smaller volume of water uptake. The volume of water uptake ranged from 0.02 to 0.055 grams water per gram dry weight of sapwood. The volume of water exuded after thawing was usually less than the volume of uptake so that after several freezing and thawing cycles the sapwood water content increased from 0.7 to 0.8 grams water per gram dry weight.

These results are discussed in terms of a physical model of the mechanism of maple sap uptake and exudation first proposed by P. E. R. O'Malley. The proposed mechanism of sap uptake is by vapor distillation in air filled wood fiber lumina during the freezing of minor branches. Gravity and pressurized air bubbles (compressed during freezing) cause sap flow from the canopy down the tree after the thaw.

  相似文献   

19.
Cells of the terrestrial plant species bromegrass (Bromus inermis L.) are not naturally adapted to withstand the hydrostatic pressures encountered in aquatic environments. However, after treatment with the natural plant growth hormone abscisic acid (75 micromolar), bromegrass cells survived a hydrostatic pressure of 101.3 megapascals, approximating the limits of ocean depth (10,860 m). The increased resistance to hydrostatic pressure from 1 to 7 days of abscisic acid treatment paralleled the induced elevation of cell tolerance to freezing stress.  相似文献   

20.
One-year-old plants of the CAM leaf succulent Agave vilmoriniana Berger were grown outdoors at Riverside, California. Potted plants were acclimated to CO2-enrichment (about 750 microliters per liter) by growth for 2 weeks in an open-top polyethylene chamber. Control plants were grown nearby where the ambient CO2 concentration was about 370 microliters per liter. When the plants were well watered, CO2-induced differences in stomatal conductances and CO2 assimilation rates over the entire 24-hour period were not large. There was a large nocturnal acidification in both CO2 treatments and insignificant differences in leaf chlorophyll content. Well watered plants maintained water potentials of −0.3 to −0.4 megapascals. When other plants were allowed to dry to water potentials of −1.2 to −1.7 megapascals, stomatal conductances and CO2 uptake rates were reduced in magnitude, with the biggest difference in Phase IV photosynthesis. The minor nocturnal response to CO2 by this species is interpreted to indicate saturated, or nearly saturated, phosphoenolpyruvate carboxylase activity at current atmospheric CO2 concentrations. CO2-enhanced diurnal activity of ribulose bisphosphate carboxylase activity remains a possibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号