首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crude extracts of Crithidia fasciculata catalyse the formation of 4-mercapto-L-histidine, an intermediate in the biosynthesis of ovothiol A (N1-methyl-4-mercaptohistidine), in the presence of histidine, cysteine, Fe2+ and pyridoxal phosphate. This activity was present in a 35-55% ammonium sulfate fraction that was shown to produce a transsulfuration intermediate in the absence of pyridoxal phosphate. The transsulfuration intermediate was isolated and identified as S-(4'-L-histidyl)-L-cysteine sulfoxide. The synthase activity, partially purified by anion-exchange chromatography, was shown to require oxygen and could be used to synthesize a number of isotopically labeled S-(4'-L-histidyl)-L-cysteine sulfoxides. Sulfoxide lyase activity was partially resolved from the synthase by anion-exchange chromatography. The phenylhydrazone of the product derived from the cysteine moiety of the sulfoxide coeluted with the phenylhydrazone of pyruvate on HPLC, but this assignment could not be confirmed by mass spectral analysis. S-(4'-[14C]L-histidyl)-[U-13C3,15N]L-cysteine sulfoxide was synthesized and converted to products of the lyase reaction in the presence of lactate dehydrogenase and NADH. The 13C-labeled product was identified by 13C-NMR spectroscopy as lactate and the primary product of the lyase reaction is therefore pyruvate. With S-(4'[3H]L-histidyl)-[14C]L-cysteine sulfoxide as the substrate [14C]lactate, [14C]cysteine and [3H]4-mercaptohistidine could be detected as products of the lyase reaction, but the sum of the two thiol species exceeded the amount of sulfoxide substrate used. Evidence is presented that this anomaly was due to the utilization of sulfur from dithiothreitol for the formation of cysteine.  相似文献   

2.
Serine sulphhydrase from chicken liver and cysteine lyase from chicken-embryo yolk sac catalyse the exchange of alpha-H atoms of the amino acid substrate with 3-H-2O. The degree of labelling of the unreacted substrate approaches a maximum of one atom per mol of amino acid. In the absence of replacing agent there is practically no H-exchange in the substrate. The alpha-H of the accumulating beta-substitution product is completely replaced by the labelled hydrogen of the solvent water, irrespective of the duration of incubation. The amount of labelled alpha-hydrogen incorporated into excess (unreacted) amino acids substrate within 3.5-h incubation is somewhat less than the amount incorporated into the product of the complete enzymic beta-replacement reaction. Within the sensitivity limits of detection, the enzymes do not induce any isotopic exchange either of b-H atoms in the amino substrate or of 18-O-labelled beta-HO groups, in the case of L-serine. Neither serine sulphhydrase nor cysteine lyase will catalyse alpha-hydrogen exchange in close structural analogues of their substrates, e.g. L-alanine, D-serine, threonin, 3-phosphoserine. A special case is the interaction of cysteine lyase with the competitive inhibitor, L-serine (whose inhibitor constant, K-i, is equal to the Michaelis constant, K-m, of L-cysteine): the lyase catalyses, only in presence of a cosubstrate thiol, alpha-H exchange in L-serine at approximately the same rate as in L-cysteine. The present data concerning isotopic alpha-H exchange in substrate amino acids, and evidence published earlier, suggest that the catalytic mechanism of replacement-specific beta-lyases may significantly differ from that of the eliminating or ambivalent (mixed-function) lyases. Formation of alpha, beta-unsaturated pyridoxylidene aldimines as real reaction intermediates is unlikely in the case of lyases specifically catalysing beta-replacement reactions; these may proceed by some alternative mechanism of the type suggested in this paper.  相似文献   

3.
DL-2-amino-Delta(2)-thiazolin-4-carbonic acid (DL-ATC) is a substrate for cysteine synthesis in some bacteria, and this bioconversion has been utilized for cysteine production in industry. We cloned a DNA fragment containing the genes involved in the conversion of L-ATC to L-cysteine from Pseudomonas sp. strain BS. The introduction of this DNA fragment into Escherichia coli cells enabled them to convert L-ATC to cysteine via N-carbamyl-L-cysteine (L-NCC) as an intermediate. The smallest recombinant plasmid, designated pTK10, contained a 2.6-kb insert DNA fragment that has L-cysteine synthetic activity. The nucleotide sequence of the insert DNA revealed that two open reading frames (ORFs) encoding proteins with molecular masses of 19.5 and 44.7 kDa were involved in the L-cysteine synthesis from DL-ATC. These ORFs were designated atcB and atcC, respectively, and their gene products were identified by overproduction of proteins encoded in each ORF and by the maxicell method. The functions of these gene products were examined using extracts of E. coli cells carrying deletion derivatives of pTK10. The results indicate that atcB and atcC are involved in the conversion of L-ATC to L-NCC and the conversion of L-NCC to cysteine, respectively. atcB was first identified as a gene encoding an enzyme that catalyzes thiazolin ring opening. AtcC is highly homologous with L-N-carbamoylases. Since both enzymes can only catalyze the L-specific conversion from L-ATC to L-NCC or L-NCC to L-cysteine, it is thought that atcB and atcC encode L-ATC hydrolase and N-carbamyl-L-cysteine amidohydrolase, respectively.  相似文献   

4.
Selenocysteine lyase is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the exclusive decomposition of L-selenocysteine to L-alanine and elemental selenium. An open reading frame, named csdB, from Escherichia coli encodes a putative protein that is similar to selenocysteine lyase of pig liver and cysteine desulfurase (NifS) of Azotobacter vinelandii. In this study, the csdB gene was cloned and expressed in E. coli cells. The gene product was a homodimer with the subunit Mr of 44,439, contained 1 mol of PLP as a cofactor per mol of subunit, and catalyzed the release of Se, SO2, and S from L-selenocysteine, L-cysteine sulfinic acid, and L-cysteine, respectively, to yield L-alanine; the reactivity of the substrates decreased in this order. Although the enzyme was not specific for L-selenocysteine, the high specific activity for L-selenocysteine (5.5 units/mg compared with 0.019 units/mg for L-cysteine) supports the view that the enzyme can be regarded as an E. coli counterpart of mammalian selenocysteine lyase. We crystallized CsdB, the csdB gene product, by the hanging drop vapor diffusion method. The crystals were of suitable quality for x-ray crystallography and belonged to the tetragonal space group P43212 with unit cell dimensions of a = b = 128.1 A and c = 137.0 A. Consideration of the Matthews parameter Vm (3.19 A3/Da) accounts for the presence of a single dimer in the crystallographic asymmetric unit. A native diffraction dataset up to 2.8 A resolution was collected. This is the first crystallographic analysis of a protein of NifS/selenocysteine lyase family.  相似文献   

5.
1. The enzymes citrate lyase and isocitrate lyase catalyse similar reactions in the cleavage of citrate to acetate plus oxaloacetate and of isocitrate to succinate plus glyoxylate, respectively. 2. Nevertheless, the mechanism of action of each enzyme appears to be different from each other. Citrate lyase is an acyl carrier protein-containing enzyme complex whereas isocitrate lyase is not. The active form of citrate lyase is an acetyl-S-enzyme but that of isocitrate lyase is not a corresponding succinyl-S-enzyme. 3. In contrast to citrate lyase, the isocitrate enzyme is not inhibited by hydroxylamine nor does it acquire label if treated with appropriately labelled radioactive substrate. 4. Isotopic exchange experiments performed in H18-2O with isocitrate as a substrate produced no labelling in the product succinate. This was shown by mass-spectrometric analysis. 5. The conclusion drawn from these results is that no activation of succinate takes place on the enzyme through transient formation of succinic anhydride or a covalently-linked succinyl-enzyme, derived from this anhydride.  相似文献   

6.
An enzyme with at least dual activities, lipoxygenase and fatty acid lyase, has been isolated from Vicia sativa seeds. The enzyme utilizes directly linoleic acid as substrate. The enzyme had a pH optimum at 5.8 for the two activities and converted linoleic acid into two products: 9-hydroperoxylinoleic acid and trans-2, cis-4 decadienal. The enzyme does not act on 13- or 9- fatty acid hydroperoxide isomers. An enzymatic reaction for the biogenesis of trans-2, cis-4- decadienal is proposed. This involves the synthesis of an intermediate peroxyl radical due to oxygen insertion in carbon 9 of linoleic acid. This intermediate peroxyl radical may be converted into 9-HPOD and 2,4-decadienal.  相似文献   

7.
Rat liver cysteine dioxygenase has been purified to homogeneity. It is a single subunit protein having a molecular weight of 22,500 +/- 1,000, with a pI of 5.5. The enzyme purified was catalytically inactive and activated by anaerobic incubation with either L-cysteine or its analogues such as carboxymethyl-L-cysteine, carboxyethyl-L-cysteine, S-methyl-L-cysteine, D-cysteine, cysteamine, N-acetyl-L-cysteine, and DL-homocysteine. The enzyme thus activated with L-cysteine was rapidly inactivated under aerobic condition. This rapid inactivation was observed at 0 degrees C where no formation of either the reaction product cysteine sulfinate or the autoxidation product of cysteine, cystine, was detected. Further analysis shows that the inactivation of the activated enzyme was due to oxygen but unrelated to either the presence of substrate, enzyme turnover or accumulation of inhibitor produced during assay. A distinct rat liver cytoplasmic protein, called protein-A, could completely prevented the enzyme from the aerobic inactivation. The loss of activity during assay in the absence of protein-A was shown to be a first order decay process. From the plots of log(deltaproduct/min) versus time, the initial velocity (VO) and the velocity at 7 min (V7) were obtained. The apparent Km value for L-cysteine in the absence of protein-A was calculated from the initial velocity as 4.5 X 10(-4)M. Protein-A did not alter the apparent Km value for L-cysteine. The chelating agents such as o-phenanthroline, alpha,alpha'-dipyridyl, bathophenanthroline, 8-hydroxyquinoline, EGTA, and EDTA strongly inhibited the enzyme activity when these chelating agents were added before preactivation. The purified cystein dioxygenase contains 1 atom of iron per mol of enzyme protein. By the activation procedure, the enzyme became less susceptible to the heat denaturation, the inhibitory effects of chelating agents and the tryptic digestion.  相似文献   

8.
The protein phosphatase activities involved in regulating the major pathways of intermediary metabolism can be explained by only four enzymes which can be conveniently divided into two classes, type-1 and type-2. Type-1 protein phosphatases dephosphorylate the beta-subunit of phosphorylase kinase and are potently inhibited by two thermostable proteins termed inhibitor-1 and inhibitor-2, whereas type-2 protein phosphatases preferentially dephosphorylate the alpha-subunit of phosphorylase kinase and are insensitive to inhibitor-1 and inhibitor-2. The substrate specificities of the four enzymes, namely protein phosphatase-1 (type-1) and protein phosphatases 2A, 2B and 2C (type-2) have been investigated. Eight different protein kinases were used to phosphorylate 13 different substrate proteins on a minimum of 20 different serine and threonine residues. These substrates include proteins involved in the regulation of glycogen metabolism, glycolysis, fatty acid synthesis, cholesterol synthesis, protein synthesis and muscle contraction. The studies demonstrate that protein phosphatase-1 and protein phosphatase 2A have very broad substrate specificities. The major differences, apart from the site specificity for phosphorylase kinase, are the much higher myosin light chain phosphatase and ATP-citrate lyase phosphatase activities of protein phosphatase-2A. Protein phosphatase-2C (an Mg2+-dependent enzyme) also has a broad specificity, but can be distinguished from protein phosphatase-2A by its extremely low phosphorylase phosphatase and histone H1 phosphatase activities, and its slow dephosphorylation of sites (3a + 3b + 3c) on glycogen synthase relative to site-2 of glycogen synthase. It has extremely high hydroxymethylglutaryl-CoA (HMG-CoA) reductase phosphatase and HMG-CoA reductase kinase phosphatase activity. Protein phosphatase-2B (a Ca2+-calmodulin-dependent enzyme) is the most specific phosphatase and only dephosphorylated three of the substrates (the alpha-subunit of phosphorylase kinase, inhibitor-1 and myosin light chains) at a significant rate. It is specifically inhibited by the phenathiazine drug, trifluoperazine. Examination of the amino acid sequences around each phosphorylation site does not support the idea that protein phosphatase specificity is determined by the primary structure in the immediate vicinity of the phosphorylation site.  相似文献   

9.
In Escherichia coli, the enzyme called cysteine desulfhydrase (CD), which is responsible for L-cysteine degradation, was investigated by native-PAGE and CD activity staining of crude cell extracts. Analyses with gene-disrupted mutants showed that CD activity resulted from two enzymes: tryptophanase (TNase) encoded by tnaA and cystathionine beta-lyase (CBL) encoded by metC. It was also found that TNase synthesis was induced by the presence of L-cysteine. The tnaA and metC mutants transformed with the plasmid containing the gene for feedback-insensitive serine acetyltransferase exhibited higher L-cysteine productivity than the wild-type strain carrying the same plasmid. These results indicated that TNase and CBL did act on L-cysteine degradation in E. coli cells.  相似文献   

10.
Catalysis by purified avian 3-hydroxy-3-methylglutaryl-CoA lyase is critically dependent on the reduction state of the enzyme, with less than 1% of optimal activity being observed with the air-oxidized enzyme. The enzyme is irreversibly inactivated by sulfhydryl-directed reagents with the rate of this inactivation being highly dependent upon the redox state of a critical cysteine. Methylation of reduced avian lyase with 1 mM 4-methylnitrobenzene sulfonate results in rapid inactivation of the enzyme with a k(inact) of 0.178 min-1. The oxidized enzyme is inactivated at a sixfold slower rate (k(inact) = 0.028 min-1). Inactivation of the enzyme with the reactive substrate analog 2-butynoyl-CoA shows a similar dependence upon the enzyme's redox state, with a sevenfold difference in k(inact) observed with oxidized vs. reduced forms of the enzyme. Chemical cross-linking of the reduced enzyme with stoichiometric amounts of the bifunctional reagents 1,3-dibromo-2-propanone (DBP) or N,N'-ortho-phenylene-dimaleimide (PDM) coincides with rapid inactivation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of enzyme treated with bifunctional reagent reveals a band of twice the molecular weight of the lyase monomer, indicating that an intersubunit cross-link has been formed. Differential labeling of native and cross-linked protein with [1-14C]iodoacetate has identified as the primary cross-linking target a cysteine within the sequence VSQAACR, which maps at the carboxy-terminus of the cDNA-deduced sequence of the avian enzyme (Mitchell, G.A., et al., 1991, Am. J. Hum. Genet. 49, 101). In contrast, bacterial HMG-CoA lyase, which contains no corresponding cysteine, is not cross-linked by comparable treatment with bifunctional reagent. These results provide evidence for a potential regulatory mechanism for the eukaryotic enzyme via thiol/disulfide exchange and identify a cysteinyl residue with the reactivity and juxtaposition required for participation in disulfide formation.  相似文献   

11.
Sugiarto G  Lau K  Yu H  Vuong S  Thon V  Li Y  Huang S  Chen X 《Glycobiology》2011,21(3):387-396
Sialyl Lewis(x) (SLe(x), Siaα2-3Galβ1-4(Fucα1-3)GlcNAcβOR) is an important sialic acid-containing carbohydrate epitope involved in many biological processes such as inflammation and cancer metastasis. In the biosynthetic process of SLe(x), α2-3-sialyltransferase-catalyzed sialylation generally proceeds prior to α1-3-fucosyltransferase-catalyzed fucosylation. For the chemoenzymatic synthesis of SLe(x) containing different sialic acid forms, however, it would be more efficient if diverse sialic acid forms are transferred in the last step to the fucosylated substrate Lewis(x) (Le(x)). An α2-3-sialyltransferase obtained from myxoma virus-infected European rabbit kidney RK13 cells (viral α2-3-sialyltransferase (vST3Gal-I)) was reported to be able to tolerate fucosylated substrate Le(x). Nevertheless, the substrate specificity of the enzyme was only determined using partially purified protein from extracts of cells infected with myxoma virus. Herein we demonstrate that a previously reported multifunctional bacterial enzyme Pasteurella multocida sialyltransferase 1 (PmST1) can also use Le(x) as an acceptor substrate, although at a much lower efficiency compared to nonfucosylated acceptor. In addition, N-terminal 30-amino-acid truncated vST3Gal-I has been successfully cloned and expressed in Escherichia coli Origami? B(DE3) cells as a fusion protein with an N-terminal maltose binding protein (MBP) and a C-terminal His(6)-tag (MBP-Δ30vST3Gal-I-His(6)). The viral protein has been purified to homogeneity and characterized biochemically. The enzyme is active in a broad pH range varying from 5.0 to 9.0. It does not require a divalent metal for its α2-3-sialyltransferase activity. It has been used in one-pot multienzyme sialylation of Le(x) for the synthesis of SLe(x) containing different sialic acid forms with good yields.  相似文献   

12.
Ruffet ML  Droux M  Douce R 《Plant physiology》1994,104(2):597-604
Serine acetyltransferase, a key enzyme in the L-cysteine biosynthetic pathway, was purified over 300,000-fold from the stroma of spinach (Spinacia oleracea) leaf chloroplasts. The purification procedure consisted of ammonium sulfate precipitation, anion-exchange chromatography (Trisacryl M DEAE and Mono Q HR10/10), hydroxylapatite chromatography, and gel filtration (Superdex 200). The purified enzyme exhibited a specific activity higher than 200 units mg-1 and a subunit molecular mass of about 33 kD upon polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Moreover, the purified serine acetyltransferase appeared to be essentially free of O-acetyleserine(thiol)lyase, another enzyme component in the L-cysteine biosynthetic pathway. A steady-state kinetic analysis indicated that the mechanism of the enzyme-catalyzed reaction involves a double displacement. The apparent Km for the two substrates, L-serine and acetyl-coenzyme A, were 2.29 [plus or minus] 0.43 and 0.35 [plus or minus] 0.02 mM, respectively. The rate of L-cysteine synthesis in vitro was measured in a coupled enzyme assay using extensively purified O-acetylserine(thiol)lyase and serine acetyltransferase. This rate was maximum when the assay contained approximately a 400-fold excess of O-acetylserine(thiol)lyase over serine acetyltransferase. Measurements of the relative level of O-acetylserine(thiol)lyase and serine acetyltransferase activities in the stroma indicated that the former enzyme was present in much larger quantities than the latter. Thus, the activity ratio for these two enzymes [O-acetylserine(thiol)lyase activity/serine acetyltransferase activity] measured in the stromal protein extract was 345. This strongly suggested that all the O-acetylserine(thiol)lyase and serine acetyltransferase activities in the stroma are involved in bringing a full synthesis of L-cysteine in the chloroplast.  相似文献   

13.
Cysteine oxidase (cysteine dioxygenase, EC 1.13.11.20) was purified approximately 1000-fold from rat liver. The purified enzyme (protein-B) was obtained as an inactive form, which was activated by anaerobic preincubation with L-cysteine. The active form of protein-B was inactivated during aerobic incubation to produce cysteine sulfinate. This inactivation of protein-B was protected by a distinct protein in rat liver cytoplasm, namely stabilizing protein (protein-A). The Ka and Km values for L-cysteine were 0.8-10(-3) M and 1.3-10(-3) M respectively. The enzyme was strongly inhibited by Cu+ and/or Fe2+ chelating agents but not by Cu2+ chelating agent. The optimum pH of enzyme reaction was 8.5-9.5 while that of enzyme activation was 6.8-9.5, with a broad peak.  相似文献   

14.
Two crystal structures of the C123S mutant of 2-methylisocitrate lyase have been determined, one with the bound reaction products, Mg(2+)-pyruvate and succinate, and the second with a bound Mg(2+)-(2R,3S)-isocitrate inhibitor. Comparison with the structure of the wild-type enzyme in the unbound state reveals that the enzyme undergoes a conformational transition that sequesters the ligand from solvent, as previously observed for two other enzyme superfamily members, isocitrate lyase and phosphoenolpyruvate mutase. The binding modes reveal the determinants of substrate specificity and stereoselectivity, and the stringent specificity is verified in solution using various potential substrates. A model of bound 2-methylisocitrate has been developed based on the experimentally determined structures. We propose a catalytic mechanism involving an alpha-carboxy-carbanion intermediate/transition state, which is consistent with previous stereochemical experiments showing inversion of configuration at the C(3) of 2-methylisocitrate. Structure-based sequence analysis and phylogenic tree construction reveal determinants of substrate specificity, highlight nodes of divergence of families, and predict enzyme families with new functions.  相似文献   

15.
IscS from Escherichia coli is a cysteine desulfurase that has been shown to be involved in Fe-S cluster formation. The enzyme converts L-cysteine to L-alanine and sulfane sulfur (S(0)) in the form of a cysteine persulfide in its active site. Recently, we reported that IscS can donate sulfur for the in vitro biosynthesis of 4-thiouridine (s(4)U), a modified nucleotide in tRNA. In addition to IscS, s(4)U synthesis in E. coli also requires the thiamin biosynthetic enzyme ThiI, Mg-ATP, and L-cysteine as the sulfur donor. We now report evidence that the sulfane sulfur generated by IscS is transferred sequentially to ThiI and then to tRNA during the in vitro synthesis of s(4)U. Treatment of ThiI with 5-((2-iodoacetamido)ethyl)-1-aminonapthalene sulfonic acid (I-AEDANS) results in irreversible inhibition, suggesting the presence of a reactive cysteine that is required for binding and/or catalysis. Both ATP and tRNA can protect ThiI from I-AEDANS inhibition. Finally, using gel shift and protease protection assays, we show that ThiI binds to unmodified E. coli tRNA(Phe). Together, these results suggest that ThiI is a recipient of S(0) from IscS and catalyzes the ultimate sulfur transfer step in the biosynthesis of s(4)U.  相似文献   

16.
An active preparation of cystine lyase (EC 4.4.1.-) was prepared from turnip roots and its substrate specificity examined. Only L-cysteine, cysteine-S-SO3, and the sulphoxides of L-djenkolic acid, S-methyl-and S-ethyl-L-cysteine were substrates. L-Cystathione, L-djenkolic acid, S-methyl-and S-ethyl-cysteines were not cleaved by this enzyme. The Km for L-cystine was 1.3 mM and L-cystathionine acted as an effective competitive inhibitor with a Ki of 0.7 mM. After dialysis against 10 mM potassium phosphate buffer pH 7.5, added pyridoxal phosphate was absolutely necessary for activity. In addition a marked stimulation was observed in the presence of ammonium sulphate. The products of the reaction were cysteine persulphide, pyruvate and presumably ammonia. The persulphide was easily demonstrated by cleavage with CN? to yield SCN? under conditions in which elemental sulphur was unreactive.  相似文献   

17.
We have found a novel enzyme that exclusively decomposes L-selenocysteine into L-alanine and H2Se in various mammalian tissues, and have named it selenocysteine lyase. The enzyme from pig liver has been purified to homogeneity. It has a molecular weight of approximately 85,000, and contains pyridoxal 5'-phosphate as a coenzyme. Its maximum reactivity is at about pH 9.0. Balance studies showed that 1 mol of selenocysteine is converted to equimolar amounts of alanine and H2Se. The following amino acids are insert: L-cysteine, L-serine, L-cysteine sulfinate, selenocysteamine, Se-ethyl-DL-selenocysteine, and L-selenohomocysteine. L-Cysteine (Ki, 1.0 mM) competes with L-selenocysteine (Km, 0.83 mM) to inhibit the enzyme reaction. The enzyme is the first proven enzyme that specifically acts on selenium compounds.  相似文献   

18.
Two monomethyl esters of alpha-(1-4)-linked D-galacturonic dimers and three monomethyl esters of alpha-(1-4)-linked D-galacturonic acid trimers were synthesized chemically and further used as substrates in order to establish the substrate specificity of six different endopolygalacturonases from Aspergillus niger, one exopolygalacturonase from Aspergillus tubingensis, and four selected Erwinia chrysanthemi pectinases; exopolygalacturonan hydrolase X (PehX), exopolygalacturonate lyase X (PelX), exopectate lyase W (PelW), and oligogalacturonan lyase (Ogl). All A. niger endopolygalacturonases (PGs) were unable to hydrolyze the two monomethyldigalacturonates and 2-methyltrigalacturonate, whereas 1-methyltrigalacturonate was only cleaved by PGI, PGII, and PGB albeit at an extremely low rate. The hydrolysis of 3-methyltrigalacturonate into 2-methyldigalacturonate and galacturonate by all endopolygalacturonases demonstrates that these enzymes can accommodate a methylgalacturonate at subsite -2. The A. tubingensis exopolygalacturonase hydrolyzed the monomethyl-esterified digalacturonates and trigalacturonates although at lower rates than for the corresponding oligogalacturonates. 1-Methyltrigalacturonate was hydrolyzed at the same rate as trigalacturonate which demonstrates that the presence of a methyl ester at the third galacturonic acid from the nonreducing end does not have any effect on the performance of exopolygalacturonase. Of the four E. chrysanthemi pectinases, Ogl was the only enzyme able to cleave digalacturonate, whereas all four enzymes cleaved trigalacturonate. Ogl does not cleave monomethyl-esterified digalacturonate and trigalacturonate in case the second galacturonic acid residue from the reducing end is methyl-esterified. PehX did not hydrolyze any of the monomethyl-esterified trigalacturonates. The two lyases, PelX and PelW, were both only able to cleave 1-methyltrigalacturonate into Delta4,5-unsaturated 1-methyldigalacturonate and galacturonate.  相似文献   

19.
All DNA (cytosine-5)-methyltransferases contain a single conserved cysteine. It has been proposed that this cysteine initiates catalysis by attacking the C6 of cytosine and thereby activating the normally inert C5 position. We show here that substitutions of this cysteine in the E. coli methylase M. EcoRII with either serine or tryptophan results in a complete loss of ability to transfer methyl groups to DNA. Interestingly, mutants with either serine or glycine substitution bind tightly to substrate DNA. These mutants resemble the wild-type enzyme in that their binding to substrate is not eliminated by the presence of non-specific DNA in the reaction, it is sensitive to methylation status of the substrate and is stimulated by an analog of the methyl donor. Hence the conserved cysteine is not essential for the specific stable binding of the enzyme to its substrate. However, substitution of the cysteine with the bulkier tryptophan does reduce DNA binding. We also report here a novel procedure for the synthesis of DNA containing 5-fluorocytosine. Further, we show that a DNA substrate for M. EcoRII in which the target cytosine is replaced by 5-fluorocytosine is a mechanism-based inhibitor of the enzyme and that it forms an irreversible complex with the enzyme. As expected, this modified substrate does not form irreversible complexes with the mutants.  相似文献   

20.
A novel type of heparinase (heparin lyase, no EC number) has been purified from Bacteroides stercoris HJ-15, isolated from human intestine, which produces three kinds of heparinases. The enzyme was purified to apparent homogeneity by a combination of QAE-cellulose, DEAE-cellulose, CM-Sephadex C-50, hydroxyapatite, and HiTrap SP chromatographies with a final specific activity of 19.5 mmol/min/mg. It showed optimal activity at pH 7.2 and 45 degrees C and the presence of 300 mM KCl greatly enhanced its activity. The purified enzyme activity was inhibited by Cu(2+), Pb(2+), and some agents that modify histidine and cysteine residues, and activated by reducing agents such as dithiothreitol and 2-mercaptoethanol. This purified Bacteroides heparinase is an eliminase that shows its greatest activity on bovine intestinal heparan sulfate, and to a lesser extent on porcine intestinal heparan sulfate and heparin. This enzyme does not act on acharan sulfate but de-O-sulfated acharan sulfate and N-sulfoacharan sulfate were found to be poor substrates. The substrate specificity of this enzyme is similar to that of Flavobacterial heparinase II. However, an internal amino acid sequence of the purified Bacteroides heparinase shows significant (73%) homology to Flavobacterial heparinase III and only 43% homology to Flavobacterial heparinase II. These findings suggest that the Bacteroidal heparinase is a novel enzyme degrading GAGs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号