首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipophilin, a hydrophobic protein purified from the proteolipid of normal hupid and protein in 2-chloro-ethanol followed by dialysis against buffer. This method resulted in homogeneous incorporation of the protein into lipid vesicles as judged by sedimentation on a sucrose gradient and freeze fracture electreter and the freeze fracture faces contained intramembrane particles. The effect of lipophilin on the organization of the lipid was studied by use of spin label probes. Two distinct components were present in the spectrum of fatty acid spin labels in the lipid-protein vesicles. One was immobilized presumably due to the presence of boundary lipid around the protein and the second component waicles and probably due to a lamellar phase but with a slightly greater order parameter. Lipophilin was found to increase the order parameter linearly with increasing concentration of protein incorporated into the vesicles. However, the phase transition temperature as measured from the 2,2,6,6-tetramethyl piperidine-1-oxyl (TEMPO) solubility parameter was unchanged.  相似文献   

2.
Lipophilin, a hydrophobic myelin protein, was incorporated into phosphatidylcholine vesicles by dialysis from 2-chloroethanol which has been shown to produce single-layered lipid-protein vesicles. These vesicles were labeled with a nonpenetrating surface-labeling reagent, 4,4-diisothiocyano-2,2-ditritiostilbene disulfonic acid, ([3H]DIDS), in order to determine if the protein completely spans the bilayer. After labeling the vesicles, lipophilin was isolated. At least 88% of the protein was labeled with [3H]DIDS. Dextran (mol wt 250,000–275,000) was converted to the dialdehyde form and reacted with lipophilin-PC vesicles. In this case greater than 90% of the protein was complexed to the dextran. The high degree of labeling obtained with both compounds was consistent with a model in which lipophilin was considered to span the bilayer completely.  相似文献   

3.
The secondary structure of a hydrophobic myelin protein (lipophilin), reconstituted with dimyristoylphosphatidylcholine or dimyristoylphosphatidylglycerol, was investigated by Fourier-transform infrared spectroscopy. Protein infrared spectra in the amide I region were analyzed quantitatively using resolution enhancement and band fitting procedures. Lipophilin in a phospholipid environment adopts a highly ordered secondary structure which at room temperature consists predominantly of alpha-helix (approximately 55%) and beta-type conformations (36%). The secondary structure of the protein is not affected by the lipid gel to liquid crystalline phase transition. Heating of the lipid-protein complex above approximately 35 degrees C results in a gradual decrease in alpha-helical content, accompanied by an increase in the amount of beta-structures. Lipophilin dissolved in 2-chloroethanol is, compared to the protein in a lipid environment, richer in the alpha-helical conformation but still contains a sizable amount of beta-structure.  相似文献   

4.
Transfer of phosphatidylcholine molecules between different membrane fractions of Tetrahymena pyriformis cells grown at 15, 27 and 39.5°C was studied by electron spin resonance (ESR). Microsomes were labeled densely with a phosphatidylcholine spin label and the spin-labeled microsomes were incubated with non-labeled cilia, pellicles or microsomes. The transfer of the phosphatidylcholine spin labels was measured by decrease in the exchange broadening of the electron spin resonance spectrum. In one experiment, the lipid transfer was measured between 32P-labeled microsomes and non-labeled pellicles by use of their radioactivity. The result was in good agreement with that by ESR. The fluidity of the membrane was estimated using a fatty-acid spin label incorporated into the membranes. Transfer between lipid vesicles was also studied. The results obtained were as follows: (1) The transfer between sonicated vesicles of egg- or dipalmitoyl phosphatidylcholine occurred rapidly in the liquid crystalline phase, with an activation energy of 20 kcal/mol, whereas it hardly occurred in the solid crystalline phase. (2) The transfer rate between microsomal membranes increased with temperature, and an activation energy of the reaction was 17.8 kcal/mol. (3) The transfer from the spin-labeled microsomes to subcellular membranes of the cells grown at 15°C was larger than that to the membranes of the cells grown at 39.5°C. The membrane fluidity was larger for the cells grown at lower temperature. (4) Similar tendency was observed for the transfer between microsomal lipid vesicles prepared from the cells grown at 15°C and at 39.5°C. (5) The transfer from microsomes to various membrane fractions increased in the order, cilia < pellicles < microsomes. The order of increase in the membrane fluidity was cilia < microsomes < pellicles, although the difference between microsomes and pellicles was slight. These results indicate a crucial role of the membrane fluidity in the transfer reaction. (6) Some evidence supported the idea that the lipid transfer between these organelles occurred through the lipid exchange rather than through the fusion.  相似文献   

5.
We report here on a series of studies aimed at characterization of the structural and dynamical properties of the synthetic lipid diphytanoyl phosphatidylcholine, in multilamellar dispersions and vesicle suspensions.This lipid exhibits no detectable gel to liquid crystalline phase transition over a large temperature range (?120°C to +120°C).Examination of proton nuclear magnetic resonance (NMR) free induction decays obtained from multilayer dispersions of diphytanoyl phosphatidylcholine provided an estimate of the methylene proton order parameter. The estimated magnitude of 0.21 is comparable to those determined for other phospholipids.Sonication of aqueous dispersions of diphytanoyl phosphatidylcholine led to formation of bilayer vesicles as determined by the measurement of the outer/inner choline methyl proton resonances, vesicle sizes in electron micrographs, and comparison of proton NMR linewidths between multilayer and sonicated dispersions. Ultracentrifugation studies of diphytanoyl phosphatidylcholine vesicles in H2O and 2H2O media yielded a value of 1.013 ± 0.026 ml/g for the partial specific volume of this lipid.We have measured spin lattice relaxation rates for the methyl and methylenemethyne protons of the hydrocarbon chains of diphytanoyl phosphatidylcholine in bilayer vesicles over a range of temperatures and at two NMR frequencies (100 and 220 MHz). The observed relaxation rates for the methylene protons in this system were approximately twice those previously reported for dipalmitoyl phosphatidylcholine at comparable temperatures and resonance frequencies, whereas the relaxation rates measured for the methyl protons were greater than those of the straight chain lipid by an order of magnitude.Measurement of the spin lattice relaxation rates of the hydrocarbon protons of the diphytanoyl phosphatidylcholine in a 10 mol% mixture of the branched-chain lipid in a deuterated host lipid, diperdeuteropalmitoyl phosphatidylcholine, showed a discontinuity in the temperature dependence of the proton NMR longitudinal relaxation rates of the branched-chain lipid in the region of the gel to liquid crystalline phase transition temperature of the deuterated dipalmitoyl phosphatidylcholine host lipid. This result may be taken as evidence of lateral phase separation of a liquid cyrstalline phase enriched in diphytanoyl phosphatidylcholine from a gel phase enriched in diperdeuteropalmitoyl phosphatidylcholine at temperatures below the phase transition temperature of deuterated host lipid. This conclusion is supported by the observation of an abrupt change in the hydrocarbon methylene linewidth (at 100 MHz) of 10 mol% diphytanoyl phosphatidylcholine in diperdeuteropalmitoyl phosphatidylcholine over the temperature range where lateral phase separation is taking place according to differential thermograms.  相似文献   

6.
The microwave saturation properties of various spin-labeled lipids in reconstituted complexes of the myelin proteolipid protein with dimyristoyl phosphatidylcholine have been studied both by conventional and saturation transfer electron spin resonance (ESR) spectroscopy. In the fluid phase, the conventional ESR spectra consist of a fluid and a motionally restricted (i.e., protein-associated) component, whose relative proportions can be determined by spectral subtractions and depend on the selectivity of the particular spin-labeled lipid for the protein. At 4 degrees C when the bulk lipid is in the gel phase, the integrated intensity of the saturation transfer ESR spectra displays a linear dependence on the fraction of motionally restricted lipid that is deduced from the conventional ESR spectra in the fluid phase, indicating the presence of distinct populations of free and protein-interacting lipid with no exchange between them on the saturation transfer ESR time scale in the gel phase. At 30 degrees C when the bulk lipid is in the fluid phase, the saturation transfer integral displays a nonlinear dependence on the fraction of motionally restricted lipid, consistent with exchange between the two lipid populations on the saturation transfer ESR time scale in the fluid phase. For lipid spin labels with different selectivities for the protein in complexes of fixed lipid/protein ratio, the data in the fluid phase are consistent with a constant (diffusion-controlled) on-rate for exchange at the lipid-protein interface. Values ranging between 1 and 9 x 10(6) s-1 are estimated for the intrinsic off-rates for exchange of spin-labeled stearic acid and phosphatidylcholine, respectively, at 30 degrees C. Conventional continuous wave saturation experiments lead to similar conclusions regarding the lipid exchange rates in the fluid and gel phases of the lipid/protein recombinants. The ESR saturation studies therefore demonstrate exchange on the time scale of the nitroxide spin-lattice relaxation at the lipid-protein interface of myelin proteolipid/dimyristoyl phosphatidylcholine complexes in the fluid phase but not in the gel phase.  相似文献   

7.
We report here on a series of studies aimed at characterization of the structural and dynamical properties of the synthetic lipid diphytanoyl phosphatidylcholine, in multilamellar dispersions and vesicle suspensions. The lipid exhibits no detectable gel to liquid crystalline phase transition over a large temperature range (-120 degrees C to +120 degrees C). Examination of proton nuclear magnetic resonance (NMR) free induction decays obtained from multilayer dispersions of diphytanoyl phosphatidylcholine provided an estimate of the methylene proton order parameter. The estimated magnitude of 0.21 is comparable to those determined for other phospholipids. Sonication of aqueous dispersions of diphytanoyl phosphatidylcholine led to formation of bilayer vesicles as determined by the measurement of the outer/inner choline methyl proton resonances, vesicle sizes in electron micrographs, and comparison of proton NMR linewidths between multilayer and sonicated dispersions. Ultracentrifugation studies of diphytanoyl phosphatidylcholine vesicles in H2O and 2H2O media yielded a value of 1.013 +/- 0.026 ml/g for the partial specific volume of this lipid. We have measured spin lattice relaxation rates for the methyl and methylenemethyne protons of the hydrocarbon chains of diphytanoyl phosphatidylcholine in bilayer vesicles over a range of temperatures and at two NMR frequencies (100 and 220 MHz). The observed relaxation rates for the methylene protons in this system were approximately twice those previously reported for dipalmitoyl phosphatidylcholine at comparable temperatures and resonance frequencies, whereas the relaxation rates measured for the methyl protons were greater than those of the straight chain lipid by an order of magnitude. Measurement of the spin lattice relaxation rates of the hydrocarbon protons of the diphytanoyl phosphatidylcholine in a 10 mol% mixture of the branched-chain lipid in a deuterated host lipid, diperdeuteropalmitoyl phosphatidylcholine, showed a discontinuity in the temperature dependence of the proton NMR longitudinal relaxation rates of the branched-chain lipid in the region of the gel to liquid crystalline phase transition temperature of the deuterated dipalmitoyl phosphatidylcholine host lipid. This result may be taken as evidence of lateral phase separation of a liquid cyrstalline phase enriched in diphytanoyl phosphatidylcholine from a gel phase enriched in diperdeuteropalmitoyl phosphatidylcholine at temperatures below the phase transition temperature of deuterated host lipid. This conclusion is supported by the observation of an abrupt change in the hydrocarbon methylene linewidth (at 100 MHz) of 10 mol% diphytanoyl phosphatidylcholine in diperdeuteropalmitoyl phosphatidylcholine over the temperature range where lateral phase separation is taking place according to differential thermograms.  相似文献   

8.
9.
PDC-109, the major heparin-binding protein of bull seminal plasma, binds specifically to sperm choline lipids at ejaculation and mediates capacitation by stimulating cholesterol and phospholipid efflux. We carried out a biophysical study to investigate the membrane perturbation effect caused by PDC-109. Binding of PDC-109 to phosphatidylcholine model membranes was maximal at a 12:1 phosphatidylcholine to protein molar ratio. The process was independent of the membrane structure and involved a slight conformational change of the protein, compatible with an increased exposure to the solvent. PDC-109 binding to dimyristoylphosphatidylcholine prevented lipid molecules from participating in the gel-to-liquid phase transition, due to enhancement of both acyl chain disorder and interfacial hydration. Visualization of the lipid-protein complexes by electron microscopy showed surface irregularities and the presence of 10-nm particles. Permeability assays confirmed the PDC-109-induced disruption of the vesicles. This effect was not modified by heparin. However, presence of cholesterol inhibited the process in a concentration-dependent manner.  相似文献   

10.
M B Sankaram  P J Brophy  D Marsh 《Biochemistry》1989,28(25):9699-9707
The selectivity of interaction between bovine spinal cord myelin basic protein (MBP) and eight different spin-labeled lipid species in complexes with dimyristoylphosphatidylglycerol (DMPG) and between spin-labeled phosphatidylglycerol and spin-labeled phosphatidylcholine in complexes of MBP with various mixtures of DMPG and dimyristoylphosphatidylcholine (DMPC) has been studied by electron spin resonance (ESR) spectroscopy. In DMPC/DMPG mixtures, the protein binding gradually decreased with increasing mole fraction of DMPC in a nonlinear fashion. The lipid-protein binding assays indicated a preferential binding of the protein to phosphatidylglycerol relative to phosphatidylcholine without complete phase separation of the two lipids. The outer hyperfine splittings (2Amax) of both phosphatidylglycerol and phosphatidylcholine labeled at C-5 of the sn-2 chain (5-PGSL and 5-PCSL, respectively) were monitored in the lipid-protein complexes as a function of the mole fraction of DMPC. The increases in the value of Amax induced on binding of the protein were larger for 5-PGSL than for 5-PCSL, up to 0.25 mole fraction of DMPC. Beyond this mole fraction the spectral perturbations induced by the protein were similar for both lipid labels. The ESR spectra of phosphatidylglycerol and phosphatidylcholine labeled at C-12 of the sn-2 chain were two component in nature, indicating indicating a direct interaction of the protein with the lipid chains, at mole fractions of DMPC up to 0.25. Quantitation of the motionally restricted spin-label population by spectral subtraction again indicated a preferential interaction of the protein with phosphatidylglycerol relative to phosphatidylcholine. Up to DMPC mode fractions of 0.25, the microenvironment of the protein was enriched in DMPG.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
N J Ryba  D Marsh 《Biochemistry》1992,31(33):7511-7518
Bovine rhodopsin has been reconstituted in seven different saturated diacylphosphatidylcholine species of odd and even chain lengths from C-12 to C-18 at a lipid/protein ratio (60:1 mol/mol) comparable to that in the native rod outer segment disk membrane. All recombinants were found to be photochemically active, in that optical bleaching produced a temperature- and lipid chain-length-dependent mixture of species absorbing at 480 and 380 nm. Both the rotational diffusion of rhodopsin and lipid-protein interactions in the various recombinants were studied by saturation transfer and conventional electron spin resonance spectroscopy of spin-labeled rhodopsin and of spin-labeled phosphatidylcholine, respectively. In the fluid lipid phase, the rotational diffusion rate of rhodopsin was found to be dependent on the lipid chain length of the different recombinants in a nonmonotonic manner. The diffusion rate in dilauroylphosphatidylcholine was found to be very slow, indicating extensive protein aggregation, whereas that in dipentadecanoylphosphatidylcholine was rapid (effective correlation time ca. 7 microseconds), consistent with the presence of monomeric protein. For recombinants with longer lipid chain lengths, the rotational diffusion rate again decreased, indicating the presence of di- or oligomeric protein. The fraction of lipid motionally restricted at temperatures in the fluid phase was also dependent on the chain length of the phosphatidylcholine used in the reconstitution.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The interaction of (+)-catechin with a lipid bilayer was examined by the spin probe method. The spin probe, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), was dissolved in an aqueous dipalmitoylphosphatidylcholine (DPPC) dispersion containing (+)-catechin. The temperature dependence of the TEMPO parameter was measured. The increase of this parameter due to pretransition was eliminated by the addition of (+)-catechin, suggesting that it was adsorbed to the lipid membrane surface in the gel state, which hindered the change of the membrane from a flat to wavy structure. In the temperature region of the main transition, the TEMPO parameter increased rapidly, then gradually with increasing temperature, which could be explained by the eutectic phase diagram. The rotational correlation time of a spin probe 16-doxylstearic acid and the order parameter of 5-doxylstearic acid in the aqueous dispersion system of egg yolk phosphatidylcholine revealed that the motion of the alkyl chain in the liquid crystal state was hindered in the center of the membrane as well as near the surface by the adsorption of (+)-catechin.  相似文献   

13.
E J Bolen  J J Sando 《Biochemistry》1992,31(25):5945-5951
To examine the hypothesis that physical features of the membrane contribute to protein kinase C activation, phosphatidylcholine/phosphatidylserine/diolein (70:25:5) vesicles of defined acyl chain composition were tested for their ability to activate the enzyme. Maximal activation was found to correlate with the mole percent unsaturation in the system. Unsaturation could be provided by either the phosphatidylserine or the phosphatidylcholine component. Vesicles containing 5 mol% diolein but lacking any unsaturation in the phospholipid did not support activity, indicating that acidic head groups alone are not sufficient for activity. The saturated lipid vesicles could be rendered effective but only at very high (25 mol%) concentrations of diolein. The degree of acyl chain unsaturation and the positioning of the double bond had little effect on the activity, suggesting that the effect of the unsaturation is due to some physical property of the lipid rather than to a specific lipid-protein interaction. Addition of cholesterol to both saturated and unsaturated systems indicated that fluidity, as assessed by fluorescence anisotropy, did not correlate with activity. These results suggest that a physical property of the membrane other than fluidity is important for the activation of protein kinase C. A model for protein kinase C activation involving phase separation and/or head group spacing is discussed.  相似文献   

14.
15.
Summary Glycophorin A, a major glycoprotein of the erythrocyte membrane, has been incorporated into small unilamellar vesicles composed of a variety of pure and mixed phospholipids. Nuclear spin labels including31P and19F have been used at natural abundance or have been synthetically incorporated in lipids to act as probes of lipid-protein interaction. Interactions produce broadening of resonances in several cases and it can be used to demonstrate preferential interaction of certain lipids with glycophorin.31P and19F probes show a strong preferential interaction of glycophorin with phosphatidylserine over phosphatidylcholine. There is some evidence that interactions are more pronounced at the inner surface of the bilayer and these results are rationalized in terms of the asymmetric distribution of protein and lipid.  相似文献   

16.
Lipid spin labels have been used to study lipid-protein interactions in bovine and frog rod outer segment disc membranes, in (Na+, K+)-ATPase membranes from shark rectal gland, and in yeast cytochrome oxidase-dimyristoyl phosphatidylcholine complexes. These systems all display a two component ESR spectrum from 14-doxyl lipid spin-labels. One component corresponds to the normal fluid bilayer lipids. The second component has a greater degree of motional restriction and arises from lipids interacting with the protein. For the phosphatidylcholine spin label there are effectively 55 +/- 5 lipids/200,000-dalton cytochrome oxidase, 58 +/- 4 mol lipid/265,000 dalton (Na+, K+)-ATPase, and 24 +/- 3 and 22 +/- 2 mol lipid/37,000 dalton rhodopsin for the bovine and frog preparations, respectively. These values correlate roughly with the intramembrane protein perimeter and scale with the square root of the molecular weight of the protein. For cytochrome oxidase the motionally restricted component bears a fixed stoichiometry to the protein at high lipid:protein ratios, and is reduced at low lipid:protein ratios to an extent which can be quantitatively accounted for by random protein-protein contacts. Experiments with spin labels of different headgroups indicate a marked selectivity of cytochrome oxidase and the (Na+, K+)-ATPase for stearic acid and for cardiolipin, relative to phosphatidylcholine. The motionally restricted component from the cardiolipin spin label is 80% greater than from the phosphatidylcholine spin label for cytochrome oxidase (at lipid:protein = 90.1), and 160% greater for the (Na+, K+)-ATPase. The corresponding increases for the stearic acid label are 20% for cytochrome oxidase and 40% for (Na+, K+)-ATPase. The effective association constant for cardiolipin is approximately 4.5 times greater than for phosphatidylcholine, and that for stearic acid is 1.5 times greater, in both systems. Almost no specificity is found in the interaction of spin-labeled lipids (including cardiolipin) with rhodopsin in the rod outer segment disc membrane. The linewidths of the fluid spin-label component in bovine rod outer segment membranes are consistently higher than those in bilayers of the extracted membrane lipids and provide valuable information on the rate of exchange between the two lipid components, which is suggested to be in the range of 10(6)-10(7) s-1.  相似文献   

17.
The electron spin resonance spectra of spin-label positional isomers of stearic acid (n-SASL) incorporated into nicotinic acetylcholine receptors (nAcChoR) reconstituted into dioleoylphosphatidylcholine (DOPC) were deconvoluted into bilayer- and protein-associated components by subtraction under conditions of slow exchange. The selectivity of n-SASL (n = 6, 9, 12, and 14) for the lipid-protein interface of the nAcChoR was threefold greater than that of DOPC and independent of the spin label position. The temperature at which exchange became apparent as judged from lineshape broadening of the mobile lipid component spectrum was dependent upon the position of the spin-label moiety; near the bilayer center, exchange broadening occurred at lower temperatures than it did closer to the lipid headgroup. This suggests that the lipid headgroup region of boundary lipids is relatively fixed, whereas its acyl chain whips on and off the protein with increasing frequency near the bilayer center. Motions on the microsecond time scale were examined by microwave power saturation. Each n-SASL saturated more readily when incorporated into vesicles containing the nAcChoR than when in pure DOPC liposomes. Therefore, lipid mobility is perturbed by the nAcChoR on the microsecond time scale with an apparent magnitude that is relatively modest, probably due to exchange on this time scale.  相似文献   

18.
Sonicated vesicles of phosphatidylserine and phosphatidylserine/phosphatidylcholine mixtures were recombined with spectrin-actin from human erythrocyte ghosts. Morphological properties and physicochemical characteristics of the recombinates were studied with freeze etch electron microscopy, 31P NMR and differential scanning calorimetry. Sonicated dimyristoyl phosphatidylserine vesicles show a decrease in enthalpy change of the lipid phase transition upon addition of spectrin-actin. These vesicles collapse and fuse, into multilamellar structures in the presence of spectrin-actin, as demonstrated by freeze fracturing and NMR. Spectrin-actin cannot prevent the salt formation between phosphatidylserine and Ca2+, all phosphatidylserine is withdrawn from the lipid phase transition. In contrast a protection against the action of Mg2+ could be observed. Mixed bilayers of dimyristoyl phosphatidylserine/dimyristoyl phosphatidylcholine show phase separations at molar ratios above 1/1 (van Dijck, P.W.M., de Kruijff, B., Verkleij, A.J., van Deenen, L.L.M. and de Gier, J. (1978) Biochim. Biophys. Acta 512, 84--96). These phase spearations can be prevented by spectrin-actin. Ca2+-induced lateral phase separations in cocrystallizing phosphatidylserine/phosphatidylcholine mixtures, can be reduced by spectrin-actin. Formation of the Ca2+-phosphatidylserine salt, occurring in addition to lateral phase separation when mixtures contain more than 30 mol % phosphatidylserine, cannot be prevented by spectrin-actin.  相似文献   

19.
Interactions of proteins and cholesterol with lipids in bilayer membranes.   总被引:6,自引:0,他引:6  
Mixtures of lipids and protein, the ATPase from rabbit sarcoplasmic reticulum, were studied by freeze-fracture electron microscopy and by measurement of the amount of fluid lipid with the spin label 2,2,6,6-tetramethylpiperidine-1-oxyl (TEM-PO). In dimyristoyl phosphatidylcholine vesicles the protein molecules were randomly distributed above the transition temperature, Tt, of the lipid and aggregated below Tt. For mixtures of dimyristoyl and dipalmitoyl phosphatidylcholine the existence of fluid and solid domains were shown in the temperature interval predicted from earlier TEMPO measurements. When protein was incorporated into this lipid mixture, freeze-fracture particles were randomly distributed in fluid lipids, or aggregated when only solid lipids were present. In mixtures of dimyristoyl phosphatidylcholine with cholesterol the protein was distributed randomly above the transition temperature of the phosphatidylcholine. Below that transition temperature the protein was excluded from a banded phase of solid lipid in the case of 10 mol% cholesterol. In mixtures containing 20 mol% cholesterol, protein molecules formed linear arrays, 50-200 nm in length, around smooth patches of lipid. Phase diagrams for lipid/cholesterol and lipid/protein systems are proposed which account for many of the available data. A model for increasing solidification of lipid around protein molecules or cholesterol above the transition temperature of the lipid is discussed.  相似文献   

20.
The ESR spectra of six different positional isomers of a stearic acid and three of a phosphatidylcholine spin label have been studied as a function of temperature in chromaffin granule membranes from the bovine adrenal medulla, and in bilayers formed by aqueous dispersion of the extracted membrane lipids. Only minor differences were found between the spectra of the membranes and the extracted lipid, indicating that the major portion of the membrane lipid is organized in a bilayer arrangement which is relatively unperturbed by the presence of the membrane protein. The order parameter profile of the spin label lipid chain motion is less steep over the first half of the chain than over the section toward the terminal methyl end of the chain. This ‘stiffening’ effect is attributed to the high proportion of cholesterol in the membrane and becomes less marked as the temperature is raised. The isotropic hyperfine splitting factors of the various positional isomers display a profile of decreasing polarity as one penetrates further into the interior of the membrane. No marked differences are observed between the effective polarities in the intact membranes and in bilayers of the extracted membrane lipids. The previously observed temperature-induced structural change occurring in the membranes at approx. 35°C was found also in the extracted lipid bilayers, showing this to be a result of lipid-lipid interactions and not lipid-protein interactions in the membrane. A steroid spin label indicated a second temperature-dependent structural change occurring in the lipid bilayers at lower temperatures. This corresponds to the onset of a more rapid rotation about the long axis of the lipid molecules at a temperature of approx. 10°C. The lipid bilayer regions probed by the spin labels used in this study may be involved in the fusion of the chromaffin granule membrane leading to hormone release by exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号