首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bovine casein components (αsl-, β-, and κ-caseins) were chemically phosphorylated and the properties of the modified components were compared with those of the native to clarify the function of the intrinsic phosphate groups of casein components in casein micelle formation. The calcium binding ability of casein components increased after chemical phosphorylation. The concentrations of calcium chloride required to precipitate modified αsl- and β-caseins were higher than those for native components. However, phosphorylation of αsl- and β-caseins did not affect their properties of forming micelles through interaction with κ-casein. The stabilizing ability of κ-casein for αsl- and β caseins was impaired by its phosphorylation, but the stability was recovered by treating phosphorylated κ-casein with phosphoprotein phosphatase. The results show that the phosphate content of κ-casein must be low to form a stable casein micelle. The results also explain why the specific phosphorylation of casein components in the mammary gland is required.  相似文献   

2.
The primary structure of water buffalo αs1-casein and of β-casein A and B variants has been determined using a combination of mass spectrometry and Edman degradation procedures. The phosphorylated residues were localized on the tryptic phosphopeptides after performing a β-elimination/thiol derivatization. Water buffalo αs1-casein, resolved in three discrete bands by isoelectric focusing, was found to consist of a single protein containing eight, seven, or six phosphate groups. Compared to bovine αs1-casein C variant, the water buffalo αs1-casein presented ten amino acid substitutions, seven of which involved charged amino acid residues. With respect to bovine βA2-casein variant, the two water buffalo β-casein variants A and B presented four and five amino acid substitutions, respectively. In addition to the phosphoserines, a phosphothreonine residue was identified in variant A. From the phylogenetic point of view, both water buffalo β-casein variants seem to be homologous to bovine βA2-casein.  相似文献   

3.
Two extracellular serine proteinases with molecular masses of about 53–55 and 70–72 kDa, were purified from Arthrobacter nicotianae 9458 and characterized. The enzymes differed with respect to temperature optimum, 55–60 and 37°C, respectively, tolerance to low values of pH and temperature, heat stability, sensitivity to EDTA and sulfhydryl blocking agents, and hydrophobicity. Both proteinases were optimally active in the pH range of 9.0 and 9.5, had considerable activity at pH 6.0 on αs1- and β-caseins, and tolerated NaCl over 5%. Specificity on casein fractions was generally similar and β-casein was more susceptible to hydrolysis than αs1-casein. The proteinases of Arthrobacter spp. may play a significant role in ripening of the smear surface-ripened cheeses.  相似文献   

4.
S-carboxymethylated (SCM) κ-casein forms in vitro fibrils that display several characteristics of amyloid fibrils, although the protein is unrelated to amyloid diseases. In order to get insight into the processes that prevent the formation of amyloid fibrils made of κ-caseins in milk, we have characterized in detail the reaction and the roles of its possible effectors: glycosylation and other caseins. Given that native κ-casein occurs as a heterogeneous mixture of carbohydrate-free and carbohydrate-containing chains, kinetics of fibril formation were performed on purified glycosylated and unglycosylated SCM κ-caseins using the fluorescent dye thioflavin T in conjunction with transmission electron microscopy and Fourier transform infrared spectroscopy for morphological and structural analyses. Both unglycosylated and glycosylated SCM κ-caseins have the ability to fibrillate. Kinetic data indicate that the fibril formation rate increases with SCM κ-casein concentration but reaches a plateau at high concentrations, for both the unglycosylated and glycosylated forms. Therefore, a conformational rearrangement is the rate-limiting step in fibril growth of SCM κ-casein. Transmission electron microscopy images indicate the presence of 10- to 12-nm spherical particles prior to the appearance of amyloid structure. Fourier transform infrared spectroscopy spectra reveal a conformational change within these micellar aggregates during the fibrillation. Fibrils are helical ribbons with a pitch of about 120-130 nm and a width of 10-12 nm. Taken together, these findings suggest a model of aggregation during which the SCM κ-casein monomer is in rapid equilibrium with a micellar aggregate that subsequently undergoes a conformational rearrangement into a more organized species. These micelles assemble and this leads to the growing of amyloid fibrils. Addition of αs1-and β-caseins decreases the growth rate of fibrils. Their main effect was on the elongation rate, which became close to that of the limiting conformation change, leading to the appearance of a lag phase at the beginning of the kinetics.  相似文献   

5.
The Seryl and Threonyl residues affected in αs1 and in β-caseins by rat liver “casein kinase TS” (a cytosolic cAMP-independent protein kinase) have been identified. All of them, as well as the residues affected by the same enzyme in αs2-casein are characterized by an acidic group two residues to their C terminus and by being located within predicted β-turns. Several other potential sites of phosphorylation, according to their primary structure, but located outside predicted β-turns, are not significantly labeled by the protein kinase. It seems conceivable therefore that both a definite aminoacid sequence including a critical acidic residue, and the existence of a β-turn are required for the activity of this protein kinase.  相似文献   

6.
Human casein micelles were reconstituted from isolated κ- and β-caseins and calcium ions. Micelle formation was recognized in the presence of calcium chloride even at the low concentration of 5mM. At pH levels ranging from 5.5 to 8.0, the re-formed micelles were quite stable so that precipitation of β-casein was not observed. The large micelles were constituted by a higher ratio of β-casein to κ-casein (16:1 by weight) than the small micelles (3: 1). The κ-casein in the small micelles contained carbohydrates to about 43% (w/w) in the molecule, whereas that in the large micelles was only about 25%. When the casein micelles were re-formed from κ-easein and fractionated β-casein components, the extent of phosphorylation of the β-casein component was found to influence the micelle formation; i.e., the β-casein component with no phosphate (the 0-P form) was disadvantageous to form micelles, but the component with 5 phosphates (the 5-P form) formed micelles most easily.  相似文献   

7.
(1) High-resolution 31P-NMR was used to study the environment of the phosphoserine residues of the phosphoproteins, αs1-casein B, β-casein A2 and β-casein C. For reference purposes 31P-NMR spectra of phosvitin and ovalbumin were also collected. (2) 31P resonances were assigned to specific phosphoserine residues as a result of comparisons of the high-resolution 31P-NMR spectra for αs1- and β-caseins and for peptide fragments of these proteins obtained by cyanogen bromide and trypsin cleavage. (3) Measurements of the enhancement of the relaxation rate for water protons (1H) on addition of Mn2+ to αs1-casein B and to a fragment αs1-CN3, obtained by cyanogen bromide cleavage, gave approximate pK values for the binding groups and suggest the possibility of a conformational change induced by varying the concentration of divalent cation.  相似文献   

8.
Caseins are highly phosphorylated milk proteins assembled in large colloidal structures termed micelles. In the milk of ruminants, alphas1-casein has been shown to be extensively phosphorylated. In this report we have determined the phosphorylation pattern of human alphas1-casein by a combination of matrix-assisted laser desorption mass spectrometry and amino acid sequence analysis. Three phosphorylation variants were identified. A nonphosphorylated form, a variant phosphorylated at Ser18 and a variant phosphorylated at Ser18 and Ser26. Both phosphorylation sites are located in the amino acid recognition sequence of the mammary gland casein kinase. Notably, no phosphorylations were observed in the conserved region covering residues Ser70-Glu78, which is extensively phosphorylated in the ruminant alphas1-caseins.  相似文献   

9.
αs1- and β-Caseins have a sequence cluster -Ser(P)-Ser(P)-Ser(P)-Glu-Glu- which is not present in κ-casein and the whey PP3 component. The affinity of these phosphoproteins for the iron(III)-iminodiacetic acid (IDA) complex immobilized on Sepharose was studied a a function of pH, urea concetnration, calcium ion concentration, enzymatic dephosphorylation and temperature. The affinity of the three polyphosphorylated proteins (αs1- and β-caseins, PP3) was similar. The sequence cluster was not a specific recognition pattern for the iron(III) ion. These three proteins presented a site of high affinity and a site of weak affinity. κ-Casein, which had only one Ser(P) residue, presented only the site of weak affinity. Their primary site which was absent after dephosphorylation or calcium ion addition required the presence of at least two Ser(P) residues close in space. Their secondary site was sensitive to the presence of urea. It was sensitive to pH variation for PP3 and κ-casein. The study of the affinity of a few free amino acids towards iron(III)-IDA showed that the secondary site involved tryptophan and tyrosine residues for αs1- and β-caseins, histidine residues for PP3 and cysteine residues for κ-casein.  相似文献   

10.
It was indicated from ultraviolet difference spectra and ultracentrifugal experiments that associations occurred between two casein components (αs- and κ-caseins, β- and κ-caseins and αs- and β-caseins) at lower CaCl2 concentrations (2~3 mm) and that aromatic amino acid residues participated in the associations. Chemical modification studies with 2-hydroxy-5-nitrobenzylbromide indicated that tryptophane residues of each casein component were not essential for these associations. It was also demonstrated by nitration of tyrosine residues with tetranitromethane that tyrosine residues of κ-casein were essential for αs·κ-association and for β·κ-association and that tyrosine residues of αs-casein were important to αs·β-association.

Interactions between casein components were also studied at higher CaCl2 concentration (10 mm) which is enough for micelle formation. It was found that tyrosine residues of κ- casein played an important role for the stabilization of αs- and β-caseins. Properties of the nitrated-β-casein were almost the same as that of the native β-casein except the absorption spectrum. αs·β-Interaction in the presence of 10 mm CaCl2 was investigated by use of the nitrated-β-casein instead of the native β-casein. It was proved that αs-casein was stabilized by the nitrated-β-casein and that precipitation of the nitrated-β-casein increased in the presence of αs-casein.

The mechanism of interactions between casein components at higher CaCl2 concentration (10 mm) are discussed in connection with the associations at lower CaCl2 concentrations (2~3 mm).  相似文献   

11.
Samples of the milk proteins αs1-casein and β-casein partially dephosphorylated by means of bovine spleen phosphoprotein phosphatase have been electrophoretically analysed using cellulose acetate as the supporting medium and Procion blue as the protein dye. Sufficient resolution was obtained in 1 hr to allow quantification of the proteins present. Skimmed-milk samples and acid-precipitated whole casein samples have been analysed by the same technique. The advantages of the method are discussed in relation to the more conventional electrophoretic techniques normally used to analyse these milk proteins.  相似文献   

12.
The interaction of bovine milk α- and β-caseins as an efficient drug carrier system with Dipyridamole (DIP) was investigated using spectroscopy and molecular docking studies at different temperatures (20–37 °C). FTIR, CD, and fluorescence spectroscopy methods demonstrated that α- and β-caseins interact with DIP molecule mainly via hydrophobic and hydrophilic interactions and change in secondary structure of α- and β-caseins. DIP showed a higher quenching efficiency and binding constant of α-casein than β-casein. There was only one binding site for DIP and it was located on the surface of the protein molecule. The thermodynamic parameters of calculation showed that the binding process occurs spontaneously and demonstrated that α- and β-caseins provide very good binding and entrapment to DIP via hydrogen bonds, Van der Waals forces, and hydrophobic interactions. Fluorescence resonance energy transfer, synchronous fluorescence spectroscopy, and docking study showed that DIP binds to the Trp residues of α- and β-casein molecules with short distances. Docking study showed that DIP molecule made several hydrogen bonds and van der Waals interactions with α- and β-caseins. The study of cell culture and micellar solubility of DIP demonstrated α- and β-caseins relatively the same helping in delivery of DIP. Milk α- and β-caseins are considered as a useful vehicle for the solublization and stabilization of DIP in aqueous solution at natural pH.  相似文献   

13.
The secondary structure of bovine αs-casein and chemically modified αs-casein in various solvents was investigated by infrared absorption spectrum and optical rotatory dispersion measurements. Amino groups of αs-casein were either succinylated or acetylated, and carboxyl groups were either methylated or ethylated. Acetylated- and ethylated-αs-caseins are insoluble in water. Water-soluble samples have unordered structure in water. In organic solvents, such as 2-chloroethanol and ethylene glycol, they have about 50% α-helical fraction. On the other hand, it was found that methylated-αs-casein had two infrared absorption peaks centered at 1625 and 1643 cm?1 in D2O-CH3OD mixed solvent. This fact may be connected with the presence of β-structure. In the case of solid film of this sample, cast from solution containing CH3OH, the presence of β-structure was indicated, too. The authors attempted to explain the formation of β-structure in methylated-αs-casein in terms of the electrostatic interactions due to the differences in the net charge between methylated and unmodified αs-caseins.  相似文献   

14.
Casein (αS1, αS2, β, κ) is the major protein fraction in milk and, together with heat denatured whey proteins, responsible for gel network formation induced by acidification. Rheological measurements during gelation typically reveal a maximum storage modulus (G') at a pH close to the isoelectric point (pI) of casein (~4.6). With further decreasing pH gel stiffness decreases because of increased electrostatic repulsion, which is referred to as overacidification. In this study we investigated the effect of casein cross-linking with microbial transglutaminase on gel structure weakening induced by acidification to pH below the pI. Although enzymatic cross-linking increased the maximum stiffness (G' MAX ) of casein gels the reduction of G' during overacidification, expressed as ratio of the plateau value (G' FINAL ) to G' MAX , was more pronounced. Almost no soluble protein was detected in the serum of gels from cross-linked casein, whereas considerable amounts of αS- and κ-casein were released from reference gels below the pI. This suggests that covalent cross-linking of casein retains charged molecules within the gel network and therefore causes a higher reduction of protein-protein interactions because of higher electrostatic repulsion. Furthermore, higher amounts of uncross-linked β-casein, which was the only casein type not found in the serum, resulted in higher G' FINAL to G' MAX ratios, underlining the important contribution of β-casein to acid gel formation and prevention of gel structure weakening.  相似文献   

15.
In order to clarify the interaction of calcium ion with casein, the volume change associated with the interaction was measured by dilatometric procedures. When CaCl2 was added to the casein solutions at neutral pH, a volume increase occurred and reached a constant saturated value of about 700 ml per 106 g protein with increasing CaCl2 concentrations for whole-, αs- and β-casein solutions, but there was no volume change for κ-casein solution. On the other hand, the binding of calcium ion to the casein fractions was determined by a gel filtration procedure at pH 6.0 to 9.0. The number of Ca2+ ions bound to the caseins increased with the CaCl2 concentration and pH value, and the relative order of binding capacities for the caseins was: αs-casein > whole-casein > β-casein > κ-casein.

It was found that the volume changes obtained by the dilatometry were smaller than the calculated volume increases based on the assumption that these are caused by the binding of Ca2+ ion to the caseins. Therefore it is necessary to introduce another factor which reduces the volume increase due to the Ca2+ ion binding in order to reasonably explain the measured volume changes. At present it is presumed that there occurs the unfolding of peptide chain of casein molecule on Ca2+ ion binding, which has been known to decrease the volume of the protein solution.  相似文献   

16.
The effects of bovine milk proteins on melanogenesis in B16 cells were examined. Both whey protein isolate and casein exhibited depigmenting properties. Among the major protein components of milk—including β-lactoglobulin, α-lactalbumin, α-, β-, and k-casein—only K-casein exhibited the depigmenting effect. However, the carboxyl terminal peptide of K-casein, glycomacropeptide, did not show this activity. Also, K-casein promoted the proliferation of the cells and inhibited the activity of tyrosinase in the cells. These results indicate that K-casein acts as a melanogenesis-suppressing modulator.  相似文献   

17.
It was indicated from fluorescence spectra and fluorescence titration that a hydrophobic probe, 1-anilino-8-naphthalenesulfonate (ANS), binds to casein components (αs-, β- and κ-caseins). Fluorescence intensity and affinity of ANS-κ-casein complex were larger than that of ANS-αs- and ANS-β-casein complexes. Enhancements of fluorescence intensity of complexes of casein components were observed by the addition of KCI or CaCl2. Reason for the enhancement was postulated to be the increase of the quantum yield of the ANS fluorescence caused by the environmental change of ANS binding region of the casein components.

Marked increase of sedimentation coefficient of β-casein in the presence of KCl or CaCl2 at 10°C was caused by the addition of ANS. This may be responsible for the stimulation of the Ca-dependent precipitation of β-casein by the addition of ANS.

It was found that αs · κ-association was prevented by ANS and that hydrophobic interaction have an important role for αs · κ-association.  相似文献   

18.
Caseins constitute the main protein components in mammalian milk and have critical functions in calcium transport and prevention of protein aggregation. Fibrillation and aggregation of κ-casein, a phenomenon which has only recently been detected, might be associated with malfunctions of milk secretion and amyloidosis phenomena in the mammary glands. This study employs a newly-designed chromatic biomimetic vesicle assay to investigate the occurrence and the parameters affecting membrane interactions of casein aggregates and the contribution of individual casein members to membrane binding. We show that physiological casein colloids exhibit membrane activity, as well as early globular aggregates of κ-casein, a prominent casein isoform. Furthermore, inhibition of κ-casein fibrillation through complexation with αS-casein and β-casein, respectively, was found to go hand in hand with induction of enhanced membrane binding; these data are important in the context of casein biology since in secreted milk κ-casein is found only in assemblies containing also αS-casein and β-casein. The chromatic experiments, complemented by transmission electron microscopy analysis and fluorescence quenching assays, also revealed significantly higher affinity early spherical aggregates of k-casein to anionic phosphatidylglycerol-lipids, as compared to zwitterionic phospholipids. Overall, this study suggests that lipid interactions play important roles in maintaining the essential physiological functions of caseins in mammalian milk.  相似文献   

19.
This study aimed to evaluate amino acids content and the electrophoretic profile of camel milk casein from different camel breeds. Milk from three different camel breeds (Majaheim, Wadah and Safrah) as well as cow milk were used in this study.Results showed that ash and moisture contents were significantly higher in camel milk casein of all breeds compared to that of cow milk. On the other hand, casein protein of cow milk was significantly higher compared to that of all camel milk breeds. Molecular weights of casein patterns of camel milk breeds were higher compared to that of cow milk.Essential (Phe, Lys and His) and non-essential amino acids content was significantly higher in cow milk casein compared to the casein of all camel milk breeds. However, there was no significant difference for the other essential amino acids between cow casein and the casein of Safrah breed and their quantities in cow and Safrah casein were significantly higher compared to the other two breeds. Non-essential amino acids except Arg and the essential amino acids (Met, Ile, Lue and Phe) were also significantly higher in cow milk α-casein compared to α-casein from all camel breeds. Moreover, essential amino acids (Val, Phe and His) and the non-essential amino acids (Gly and Ser) content was significantly higher in cow milk β-casein compared to the β-casein of all camel milk breeds and the opposite was true for Lys, Thr, Met and Ile. However, Met, Ile, Phe and His were significantly higher for β-casein of Majaheim compared to the other two milk breeds. The non-essential amino acids (Gly, Tyr, Ala and Asp) and the essential amino acids (Thr, Val and Ile) were significantly higher in cow milk κ-casein compared to that for all camel milk breeds. There was no significant difference among all camel milk breeds in their κ-casein content of most essential amino acids.Relative migration of casein bands of camel milk casein was not identical. The relative migration of αs-, β- and κ-casein of camel casein was slower than those of cow casein. The molecular weights of αs-, β- and κ-casein of camel caseins were 27.6, 23.8 and 22.4 KDa, respectively. More studies are needed to elucidate the structure of camel milk.  相似文献   

20.
Whey and casein proteins representing the first and second halves of the early lactation phase in the common brushtail possum (Trichosurus vulpecula) have been compared by two dimensional gel electrophoresis. Nine components of whey were differentially expressed during early lactation, including proteins identified as cathepsin B, clusterin, late lactation protein, lysozyme, ganglioside M2 activator and neutrophil gelatinase-associated lipocalin. A major novel protein, termed very early lactation protein (VELP), was identified in whey. Partial amino acid sequence data obtained from VELP did not appear to match any other reported protein sequence. VELP was shown to be an acidic glycoprotein of 20–30 kDa which exists as a homodimer. In the casein fraction, κ-casein appeared to be differentially post-translationally modified during early lactation and fragments of β-casein were relatively more abundant at the earlier lactation stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号