首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
Sensitized UV-B irradiation (sunlamps) of the dinucleoside monophosphate, d-TpF (F = fluorouracil), produces the usual cyclobutane-type photodimer and an additional defluorinated 5-5 photoadduct, d-T5p5U. In d-T5p5U, the original C5 = C6 structure is modified such that the C5 (d-T5p-) is covalently bonded with the C5 (-p5U) (where the fluorine had been) and the C6 (d-T5p-) acquires an OH group. 2D NOE data and the results of J-coupling analysis are used as constraints to refine structures of d-T5p5U in restrained molecular dynamics calculations. The structures obtained show the most probable chiralities of the C5 and C6 atoms of the Thy-portion to be 5R and 6R, respectively. The orientation of the CH3- and uracil-groups are pseudo-axial and pseudo-equatorial, respectively, with respect to the C5 atom. Glycosidic angles are high-anti and anti for the d-T5p- and the -p5U residue, respectively. C3'-endo like sugar puckering is predominant in the d-T5p- residue while C2'-endo like puckering is predominant at the -p5U residue.  相似文献   

2.
The molecular structure of ammonium deoxycytidylyl-(3'-5')-deoxyguanosine, crystallized from aqueous acetone near pH 4, was determined for X-ray diffraction data. The crystals were tetragonal, space group P43212 with a = b = 11.078 (1) A and c = 45.826 (4) A. The structure was solved by tangent expansion of phases based on a derived phosphorus position and refined to R = 0.060 by full matrix least squares. Molecules related by a 2-fold symmetry axis are connected by hydrogen bonds between the bases and form parallel right-handed duplexes. Pairs of cytosines share a proton at N(3) and are joined by three hydrogen bonds: N(4)-H...O(2)...H-N(4), and N(3)-H...N(3). Guanines are joined by two hydrogen bonds: N(2)-H...N(3) and N(3)...H-N(2). Base-stacking interactions within the duplex are weak with the cytosine and guanine ring planes inclined at 24 degrees to each other in each monomer. Despite the unusual arrangement of the molecules, the sugar phosphate backbone has the g-g- conformation normally associated with right-handed double helical structures. Conformational parameters of the nucleosides are also typical with both sugars C(2')-endo and glycosidic torsion angles 55 degrees for cytidine and 94 degrees for guanosine. The bonding geometry of the bases is influenced by hydrogen bonding and charge-transfer networks in the crystal lattice. The solvent molecules interact with the dimer in three fused circular hydrogen bonding domains with a single disordered ammonium cation per d(CpG) dimer. Parallels with the formation of self base pairs and their implications in molecular biology are discussed.  相似文献   

3.
4.
The three-dimensional structure of the complexes of ribonuclease A with cytidyl-2',5'-adenosine (2',5'-CpA) and deoxycytidyl-3',5'-deoxyadenosine [3',5'-d(CpA)] in aqueous solution has been determined by 1H NMR methods in combination with restrained molecular dynamics calculations. Twenty-three intermolecular NOE cross-corrections for the 3',5'-d(CpA) complex and 19 for the 2',5'-CpA, together with about 1,000 intramolecular NOEs assigned for each complex, were translated into distance constraints and used in the calculation. No significant changes in the global structure of the enzyme occur upon complex formation. The side chains of His 12, Thr 45, His 119, and the amide backbone group of Phe 120 are involved directly in the binding of the ligands at the active site. The conformation of the two bases is anti in the two complexes, but differs from the crystal structure in the conformation of the two sugar rings in 3',5'-d(CpA), shown to be in the S-type region, as deduced from an analysis of couplings between the ribose protons. His 119 is found in the two complexes in only one conformation, corresponding to position A in the free protein. Side chains of Asn 67, Gln 69, Asn 71, and Glu 111 from transient hydrogen bonds with the adenine base, showing the existence of a pronounced flexibility of these enzyme side chains at the binding site of the downstream adenine. All other general features on the structures coincide clearly with those observed in the crystal state.  相似文献   

5.
The radiation chemistry of the dinucleoside monophosphate d(CpG) and its sequence isomer, d(GpC), has been examined in aqueous solutions saturated with either N2O or O2. The products were isolated using HPLC, and the major products were identified using proton NMR spectroscopy and mass spectrometry. The major products include 5,6-dihydroxy-5,6-dihydrouracil (glycol) derivatives, 5- and 6-hydroxycytosine substitution products, 1-carbamoyl-2-oxo-4,5-dihydroxyimidazolidine products, and the 8-hydroxyguanine substitution product. Both trans stereoisomers of the imidazolidine derivatives are obtained from d(CpG) as well as from its sequence isomer. These are prominent products when the irradiation is carried out in the presence of oxygen, but they are not observed in the absence of oxygen.  相似文献   

6.
A novel structural analogue of cyclic AMP has been synthesized. This compound has been found to activate protein kinase from skeletal muscle (Ka 5.0 microM). It is virtually resistant to degradation by beef heart cAMP phosphodiesterase. It is an inhibitor of this enzyme with an [I]50 of 47.0 microM. The proliferation of cancer cells (HT-29) is inhibited by this compound. It represents the first example of a 2',3'-cyclic nucleotide with marked biological activity.  相似文献   

7.
M Gochin  T L James 《Biochemistry》1990,29(51):11172-11180
The structure of d(AC)4.d(GT)4 is investigated by constrained molecular dynamics simulations. The constraints include proton pair distances derived from 2D NOE intensities by using the iterative relaxation matrix analysis algorithm MARDIGRAS and sugar pucker phases and amplitudes derived from double-quantum-filtered COSY spectra. Molecular dynamics runs on simulated intensity and distance sets as well as the experimental data were carried out to determine the effects of starting structure, distance constraint derivation, energy functions, and experimental errors on the end result. It was found that structural details could not be elucidated within about 1.5-A overall atomic deviation. This limitation is due in part to the accuracy of the experimental data but, more importantly, is attributable to the quantity of experimental constraints available and to imperfections in the force field utilized in the molecular dynamics calculations. Within the limits of the method, some structural characteristics of d(AC)4.d(GT)4 could be elucidated.  相似文献   

8.
The solution conformation of the self-complementary RNA-DNA hybrid hexamer 5'-[r(GCA)d(TGC)]2 is investigated by NMR spectroscopy and restrained molecular dynamics. The 1H-NMR spectrum is assigned in a sequential manner using two-dimensional homonuclear Hartmann-Hahn and nuclear Overhauser enhancement spectroscopy. From the latter a set of 178 approximate interproton distance restraints are determined and used as the basis of a structure refinement by restrained molecular dynamics. Eight independent calculations are carried out, four from a classical A-type geometry and four from a classical B-type one. Convergence is achieved to very similar A-type structures with an average atomic root mean square difference between them of 1.0 +/- 0.2 A. The converged structures exhibit variations in helical parameters similar to those found previously for the analogue RNA hexamer 5'-r(GCAUGC)2 [(1988) Biochemistry 27, 1735-1743].  相似文献   

9.
Searls T  Chen DL  Lan T  McLaughlin LW 《Biochemistry》2000,39(15):4375-4382
Bacteriophage T7 primase catalyzes the synthesis of the oligoribonucleotides pppACC(C/A) and pppACAC from the single-stranded DNA template sites 3'-d[CTGG(G/T)]-5' and 3'-(CTGTG)-5', respectively. The 3'-terminal deoxycytidine residue is conserved but noncoding. A series of nucleoside analogues have been prepared and incorporated into the conserved 3'-d(CTG)-5' site, and the effects of these analogue templates on T7 primase activity have been examined. The nucleosides employed include a novel pyrimidine derivative, 2-amino-5-(beta-2-deoxy-D-erythro-pentofuranosyl)pyridine (d2APy), whose synthesis is described. Template sites containing d2APy in place of the cryptic dC support oligoribonucleotide synthesis whereas those containing 3-deaza-2'-deoxycytidine (dc(3)C) and 5-methyl-6-oxo-2'-deoxycytidine (dm(5ox)C) substitutions do not, suggesting that the N3 nitrogen of cytidine is used for a critical interaction by the enzyme. Recognition sites containing 4-amino-1-(beta-2-deoxy-D-erythro-pentofuranosyl)-5-methyl-2,6[1H, 3H]-pyrimidione (dm(3)2P) or 2'-deoxyuridine (dU) substitutions for dT support oligoribonucleotide synthesis whereas those containing 5-methyl-4-pyrimidinone 2'-deoxyriboside (d(2H)T) substitutions do not, suggesting the importance of Watson-Crick interactions at this template residue. Template sites containing 7-deaza-2'-deoxyguanosine (dc(7)G) or 2'-deoxyinosine (dI) in place of dG support oligoribonucleotide synthesis. The reduced extent to which dc(7)G is successful within the template suggests a primase-DNA interaction. Inhibition studies suggest that the primase enzyme binds "null" substrates but cannot initiate RNA synthesis.  相似文献   

10.
11.
R C Pless  P O Ts'o 《Biochemistry》1977,16(6):1239-1250
The heptaethyl ester of heptadeoxythymidylyl-(3'-5')-deoxythymidine (d-[Tp(Et)]7T or d-T8-Et) has been prepared by chemical methods. The material, consisting of a mixture of diastereoisomers, forms a 1:1 complex with (dA)n in neutral aqueous buffer; this interaction is virtually independent of ionic strength. The octamer triester does not bind to (dA)n-(dT)n, and it interacts with (rA)n only at low temperatures. By cochromatography with (dA)n on Sephadex G-50, d-T8-Et fractions with different binding affinities for the polyadenylates were obtained. This heterogeneity in binding affinity is ascribed to the diastereoisomerism of d-T8-Et. Enthalpies of dupoex formation were determined by the concentration variation method. At 0.1 M sodium ion concentration, the enthalpy of binding of the various d-T8-Et fractions to (dA)n is essentially invariant (-8.1 kcal/mol of base pairs at 0 degrees C to -8.6 kcal at 25 degrees C) and 1.6 kcal/mol of base pairs more negative than the enthalpy of binding of the phosphodiester analogue, d-(Tp)7T, to (dA)n (-6.8 kcal/mol of base pairs at 11 degrees C). This difference is the electrostatic contribution to the enthalpy of duplex formation, arising from the interstrand electrostatic repulsion and the intrastrand repulsion in d-(Tp)7T. The entropy of binding to (dA)n is more negative for the octamer triesters than for the diester analogue, and is different for the various d-T8-Et fractions. This is interpreted in terms of varying degrees of restriction of rotational freedom for the ethyl substituents upon double helix formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号