首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of ionic strength on the proteolysis by trypsin of the major membrane-penetrating protein (polypeptide 3) in the erythrocyte membrane was studied. Both the intracellular and extracellular regions of the protein are susceptible to trypsin proteolysis under hypo-osmotic conditions, whereas under iso-osmotic conditions the extracellular region of the protein is resistant to trypsin, and the intracellular region yields only two cleavage products with trypsin. Studies of the fragments obtained from polypeptide 3 by trypsin digestion under iso-osmotic conditions of 'ghosts' radioiodinated with lactoperoxidase confirmed our earlier conclusions that the polypeptide chain of polypeptide 3 traverses the membrane twice. Ionic-strength-dependent changes were also observed in the incorporation of iodine by lactoperoxidase into the individual extracellular tyrosine sites of the protein. These results show that polypeptide 3 undergoes ionic-strength-dependent changes in structure.  相似文献   

2.
Membrane protein synthesis was investigated by incubating rabbit reticulocytes, in vitro, with radioactive amino acids. The kinetics of membrane protein synthesis showed linear incorporation for approx. 15 min, after which there was only a slight increase in incorporation. On the other hand, intracellular protein synthesis was linear for an incubation period of 60 min. Membranes isolated from such rabbit reticulocytes were analysed on sodium dodecyl sulfate (SDS)-polyacrylamide gels. Two major radioactive bands were found in the 50–60 000 D region, whilst another labelled band had a molecular weight of 43 000 D. This latter band had an electrophoretic mobility identical with rabbit muscle actin (and chick brain actin), when run on one-dimensional SDS polyacrylamide gels. Absolute identity between rabbit brain actin and a newly synthesized reticulocyte membrane protein was shown by comigration on a two-dimensional (first dimension isoelectric focusing and second dimension SDS gel) electrophoresis system. Another band that was radioactively labelled was found to have a molecular weight of approx. 32 000 D. Separation of reticulocytes into different age groups showed that young reticulocytes synthesized a membrane protein species that was not radioactively labelled in the old reticulocyte population.  相似文献   

3.
We have studied the fragmentation by pepsin in 1 M-acetic acid of the erythrocyte anion-transport protein in erythrocyte membranes. The location of the fragments obtained was determined by radioiodinating the protein with the use of lactoperoxidase, and identifying the labelled peptides obtained in peptide "maps" of thermolysin digests of the fragments. Three of the fragments were found to be related overlapping products, and shared a common C-terminus. The major site of pepsin cleavage leading to the C-termini of these fragments was shown to be close to the major site of extracellular cleavage of the protein by proteinases active at a neutral pH. Another two fragments were isolated and shown to be derived from the C-terminal portion of the protein. No well-defined large radioactive fragments of the protein were solubilized from the membrane by pepsin in 1 M-acetic acid, the bulk of the radioactivity attributable to the anion transport protein being recovered in very small fragments that could not be resolved by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Our results suggest that the polypeptide chain of the anion-transport protein emerges at the extracellular face of the membrane 8000-13000 daltons on the N-terminal side of the major site of extracellular cleavage of the protein by proteinases that are active at a neutral pH.  相似文献   

4.
Polypeptide 3, the major membrane-penetrating protein of the human erythrocyte membrane, was characterized, together with two major fragments derived by specific proteolysis of the native protein in the membrane. One fragment (fragment 3f) was obtained from thermolysin cleavage in the extracellular region of the protein, and the other (fragment T1) was derived from tryptic cleavage in the intracellular region of the protein. The results of N- and C-terminal group analysis suggest that fragment 3f contains the N-terminal region of polypeptide 3 and fragment T1 contains the C-terminal part of the molecule. The carbohydrate contents of the polypeptides suggest that carbohydrates are present in three regions of the molecule, much of this carbohydrate being present in the C-terminal part of the molecule. This region of the protein also contains the receptors for concanavalin and the lectins from Phaseolus vulgaris and Ricinis communis, and our results suggest that there is heterogeneity in the carbohydrate chains present in the C-terminal region of polypeptide 3. These data are related to the folding of polypeptide 3 in the erythrocyte membrane.  相似文献   

5.
Poliovirus protein 2C is a 329-amino acid-protein that is essential for viral RNA synthesis and may perform multiple functions. In infected cells, it is associated with virus-specific membrane vesicles. Recombinant 2C protein expressed in transfected cells has been shown to associate with and induce rearrangement of the intracellular membrane network. This study was designed to map the determinants of membrane binding and rearrangement in the 2C protein. Computer-assisted analysis of the protein sequence led to a prediction that the protein folds into a structure composed of three domains. Expression plasmids that encode each or combinations of these predicted domains were used to examine the abilities of the partial protein sequences to associate with intracellular membranes and to induce rearrangement of these membranes in HeLa cells. Biochemical fractionation procedures suggested that the N-terminal region of the protein was required for membrane association. Electron microscopic and immunoelectron microscopic observation showed that both the N- and C-terminal regions, but not the central portion, of 2C protein interact with intracellular membranes and induce major changes in their morphology. The central portion, when fused to the N-terminal region, altered the specific membrane architecture induced by the N-terminal region, giving rise to vesicles resembling those observed during poliovirus infection.  相似文献   

6.
Monoclonal antibodies to the Mr 31,000 major integral membrane protein of the human erythrocyte band 7 region were used to identify the corresponding polypeptide chain and epitope-carrying fragments on immunoblots. Analysis of the erythrocyte membrane, membrane fractions, and cytosol revealed that the Mr 31,000 band 7 integral membrane protein is unique and not related to any of the other water-soluble or membrane-bound band 7 components. Cross-reacting proteins were identified in the membranes of other mammalian erythrocytes and in cell lines of epithelial and lymphoid origin. Proteolytic digestion of intact human erythrocytes or erythrocyte membranes demonstrated that the band 7 integral membrane protein has an intracellular domain larger than Mr 12,000; it does not have an extracellular one. One of the monoclonal antibodies was employed for the isolation of band 7 integral membrane protein by immunoaffinity chromatography; subsequent Edman degradation revealed a blocked N-terminus.  相似文献   

7.
Assembly of human immunodeficiency virus type 1 (HIV-1) particles occurs at the plasma membrane of infected cells. Myristylation of HIV-1 Gag precursor polyprotein Pr55Gag is required for stable membrane binding and for assembly of viral particles. We expressed a series of proteins representing major regions of the HIV-1 Gag protein both with and without an intact myristyl acceptor glycine and performed subcellular fractionation studies to identify additional regions critical for membrane binding. Myristylation-dependent binding of Pr55Gag was demonstrated by using the vaccinia virus/T7 hybrid system for protein expression. Domains within the matrix protein (MA) region downstream of the initial 15 amino acids were required for membrane binding which was resistant to a high salt concentration (1 M NaCl). A myristylated construct lacking most of the matrix protein did not associate with the plasma membrane but formed intracellular retrovirus-like particles. A nonmyristylated construct lacking most of the MA region also was demonstrated by electron microscopy to form intracellular particles. Retrovirus-like extracellular particles were produced with a Gag protein construct lacking all of p6 and most of the nucleocapsid region. These studies suggest that a domain within the MA region downstream from the myristylation site is required for transport of Gag polyprotein to the plasma membrane and that stable plasma membrane binding requires both myristic acid and a downstream MA domain. The carboxyl-terminal p6 region and most of the nucleocapsid region are not required for retrovirus-like particle formation.  相似文献   

8.
Human erythrocyte membranes contain a major transmembrane protein, known as Band 3, that is involved in anion transport. This protein contains a total of five reactive sulfhydryl groups, which can be assigned to either of two classes on the basis of their susceptibility to release from the membrane by trypsin. Two of the groups are located in the region COOH-terminal to the extracellular chymotrypsin-sensitive site of the protein and remain with a membrane-bound 55,000-dalton fragment generated by trypsin treatment. The three sulfhydryl groups NH2-terminal to the extracellular chymotrypsin site are released from the cytoplasmic surface of the membrane by trypsin. All three groups are present in a 20,000-dalton tryptic fragment of Band 3. Two of these groups are located very close to the sites of trypsin cleavage that generate the 20,000-dalton fragment. The third reactve group is probably located about 15,000-daltons from the most NH2-terminal sulfhydryl group. Two other well defined fragments of the protein do not contain reactive sulfhydryl groups. They are a 23,000-dalton fragment derived from the NH2-terminal end that is also released by trypsin from the cytoplasmic surface of the membrane and a 19,000-dalton membrane-bound region of the protein that is produced by treatment with chymotrypsin in ghosts. The 20,000-dalton tryptic fragment may, therefore, constitute a sulfhydryl-containing domain of the Band 3 protein.  相似文献   

9.
Gonococci were labelled with 125I using the lactoperoxidase system. The amount of label incorporated was similar with all strains including those which appeared capsulated. Electrophoresis on sodium dodecyl sulphate-polyacrylamide gels revealed that the major proteins labelled were those found in outer membrane preparations. Comparison of variants of one strain showed that the major outer membrane protein (protein I) was always present and heavily labelled. The second major protein (protein II) was present in variable amounts but labelling was proportional to the amount present. A third protein (III) was only present in outer membranes from a freshly isolated variant but was present in whole cells of each strain. Protein III was not labelled in whole cells but was labelled in outer membrane preparations suggesting that many membranes have their inner surface exposed. The labelling of a strain adapted to growth in guinea-pig chambers failed to reveal any new major surface proteins. The results demonstrate the variation in surface topography possible with variants of one strain of gonococcus but show that one major protein antigen is always expressed on the surface.  相似文献   

10.
The enzyme lactoperoxidase was used to catalyse the radioiodination of membrane proteins in intact human erythrocytes and in erythrocyte `ghosts'. Two major proteins of the erythrocyte membrane were isolated after iodination of these two preparations, and the peptide `maps' of each protein so labelled were compared. Peptides from both proteins are labelled in the intact cell. In addition, further mobile peptides derived from one of the proteins are labelled only in the `ghost' preparation. Various sealed `ghost' preparations were also iodinated, lactoperoxidase being present only at either the cytoplasmic or extra-cellular surface of the membrane. The peptide `maps' of protein E (the major membrane protein) labelled in each case were compared. Two discrete sets of labelled peptides were consistently found. One group is obtained when lactoperoxidase is present at the extra-cellular surface and the other group is found when the enzyme is accessible only to the cytoplasmic surface of the membrane. The results support the assumption that the organization of protein E in the membrane of the intact erythrocyte is unaltered on making erythrocyte `ghosts'. They also confirm previous suggestions that both the sialoglycoprotein and protein E extend through the human erythrocyte membrane.  相似文献   

11.
In contrast to compact myelin, the series of paranodal loops located in the outermost lateral region of myelin is non-compact; the intracellular space is filled by a continuous channel of cytoplasm, the extracellular surfaces between neighboring loops keep a definite distance, but the loop membranes have junctional specializations. Although the proteins that form compact myelin have been well studied, the protein components of paranodal loop membranes are not fully understood. This report describes the biochemical characterization and expression of Opalin as a novel membrane protein in paranodal loops. Mouse Opalin is composed of a short N-terminal extracellular domain (amino acid residues 1-30), a transmembrane domain (residues 31-53), and a long C-terminal intracellular domain (residues 54-143). Opalin is enriched in myelin of the central nervous system, but not that of the peripheral nervous system of mice. Enzymatic deglycosylation showed that myelin Opalin contained N- and O-glycans, and that the O-glycans, at least, had negatively charged sialic acids. We identified two N-glycan sites at Asn-6 and Asn-12 and an O-glycan site at Thr-14 in the extracellular domain. Site-directed mutations at the glycan sites impaired the cell surface localization of Opalin. In addition to the somata and processes of oligodendrocytes, Opalin immunoreactivity was observed in myelinated axons in a spiral fashion, and was concentrated in the paranodal loop region. Immunogold electron microscopy demonstrated that Opalin was localized at particular sites in the paranodal loop membrane. These results suggest a role for highly sialylglycosylated Opalin in an intermembranous function of the myelin paranodal loops in the central nervous system.  相似文献   

12.
The PC-1 protein is a membrane glycoprotein that is selectively expressed on the surface of antibody-secreting cells. Previous work has shown that it consists of two apparently identical disulfide-bonded polypeptides, each of molecular weight approximately 120,000. We now describe the sequence of PC-1 mRNA and protein. The PC-1 protein is shown to consist of 905 amino acids and to have an uncommon transmembrane orientation. The NH2-terminal 58 residues are intracellular and the COOH-terminal 826 residues are extracellular. A cysteine-rich region of 85 amino acids lies adjacent to the extracellular surface of the membrane and appears to have arisen by exon duplication. In common with other membrane glycoproteins with this orientation, there is no obvious signal sequence other than the transmembrane segment. The PC-1 protein therefore has an overall structure and membrane orientation that resembles those of the transferrin receptor, the asialoglycoprotein receptor, and the Ia invariant chain.  相似文献   

13.
Topology prediction of membrane proteins.   总被引:19,自引:3,他引:16       下载免费PDF全文
A new method is described for prediction of protein membrane topology (intra- and extracellular sidedness) from multiply aligned amino acid sequences after determination of the membrane-spanning segments. The prediction technique relies on residue compositional differences in the protein segments exposed at each side of the membrane. Intra/extracellular ratios are calculated for the residue types Asn, Asp, Gly, Phe, Pro, Trp, Tyr, and Val, preferably found on the extracellular side, and for Ala, Arg, Cys, and Lys, mostly occurring on the intracellular side. The consensus over these 12 residue distributions is used for sidedness prediction. The method was developed with a test set of 42 protein families, for which all but one were correctly predicted with the new algorithm. This represents an improvement over predictions based on the widely used "positive-inside rule" and other techniques, where at least six mispredictions were observed for the same data set. Further, application of this and other methods to 12 protein families not in the test set still showed the better performance of the present technique, which was subsequently applied to another set of membrane protein families where the topology has yet to be determined.  相似文献   

14.
The topology of the human erythrocyte membrane anion-transport protein (band 3) has been investigated by isolation and peptide 'mapping' of the major and minor fragments derived from proteolytic cleavage of the lactoperoxidase 125I-labelled protein in erythrocytes and erythrocyte membranes. The content, in each fragment, of lactoperoxidase 125I-labelled sites (which have a known location in the extracellular or cytoplasmic domain of the protein), together with the location of the sites of proteolytic cleavage yielding the fragments, has allowed us to determine the alignment of the fragments on the linear amino acid sequence and to infer the topology of the polypeptide in the membrane. The results suggest that a region in the C-terminal portion of the polypeptide forms part of the cytoplasmic domain of the protein in addition to a large N-terminal segment. The membrane-bound regions of the protein are located in the C-terminal two-thirds of the molecule. In this region the polypeptide chain traverses the membrane at least four times and an additional loop of polypeptide is either embedded in the membrane or also penetrates through it to the other surface. The location of the lectin receptors on the protein and the site of binding of an anion-transport inhibitor have also been studied.  相似文献   

15.
In erythrocytes treated with the SH-oxidizing agent, diamide, mixed disulfide bonds between membrane proteins and GSH are formed involving 20% of the membrane SH groups. To study the distribution of these mixed disulfides over the membrane protein fractions, intracellular GSH was labelled biosynthetically with [2-3H]glycine prior to diamide treatment of the cells and the radioactivity of defined membrane peptide fractions determined. Mixed disulfides preferentially occur in the extrinsic protein, spectrin (six SH groups), in addition to the formation of peptide disulfides. Intrinsic proteins are much less reactive: only one SH group of the major intrinsic protein (band 3) reacts with GSH, which accounts for previously observed impossibility to dimerize band 3 via disulfide bonds in intact cells. The labelling method described offers a promising strategy to label and map exposed endofacial SH groups of membrane proteins with a physiological, impermeable marker, GSH.In ghosts treated with diamide and GSH the number of mixed disulfides formed is greater than in erythrocytes. Polymerization of spectrin via intermolecular disulfide bridges is suppressed, while intramolecular disulfides are still formed, providing a means for the analysis of spectrin structure.The diamide-induced mixed membrane-GSH disulfides are readily reduced by GSH. This suggests, that GSH may also be able to reduce mixed disulfides formed in the erythrocyte membrane under oxidative stress in vivo. The reversible formation of mixed disulfides may serve to protect sensitive membrane structures against irreversible oxidative damage.  相似文献   

16.
The disulfide bond cross-linked major outer membrane protein (MOMP) of the extracellular elementary bodies (EBs) of Chlamydia psittaci was reduced to its monomeric form within 1 h of entry of EBs into host cells by a process which was inhibited by chloramphenicol, while monomeric forms of three cross-linked cysteine-rich proteins could not be detected in Sarkosyl outer membrane complexes at any time in either extracellular or intracellular forms of C. psittaci. Synthesis and incorporation of the MOMP into outer membrane complexes were detected early in the infection cycle (12 h postinfection), while synthesis and incorporation of the cysteine-rich proteins were not observed until reticulate bodies had begun to reorganize into EBs at 20 to 22 h postinfection. By 46 h postinfection, the intracellular population of C. psittaci consisted mainly of EBs, the outer membrane complexes of which were replete with monomeric MOMP and cross-linked cysteine-rich proteins. Upon lysis of infected cells at 46 h, the MOMP was rapidly cross-linked, and infectious EBs were released. The status of the MOMP of intracellular Chlamydia trachomatis was similar to the status of the MOMP of C. psittaci in that the MOMP was largely uncross-linked at 24 and 48 h postinfection, but formed interpeptide disulfide bonds when it was exposed to an extracellular environment late in the developmental cycle. In contrast to C. psittaci, only a fraction of the cross-linked MOMP of infecting EBs of C. trachomatis was reduced by 4 h postinfection, and reduction of the MOMP was not inhibited by chloramphenicol. Exposure of extracellular EBs of C. trachomatis and C. psittaci to dithiothreitol reduced the MOMP but failed to stimulate metabolic activities normally associated with reticulate bodies.  相似文献   

17.
18.
A cDNA clone for the membrane form of guanylate cyclase has been isolated from the testis of the sea urchin Strongylocentrotus purpuratus. An open reading frame predicts a protein of 1125 amino acids including an apparent signal peptide of 21 residues; a single transmembrane domain of 25 amino acids divided the mature protein into an amino-terminal, extracellular domain of 485 amino acids and a carboxyl domain of 594 intracellular amino acids. Three potential Asn-linked glycosylation sites were present in the proposed extracellular domain. The deduced protein sequence was homologous to the protein kinase family and contained limited but significant regions of identity with a low molecular weight atrial natriuretic peptide receptor. The carboxyl region (202 amino acids) was 42% identical with a subunit of the cytoplasmic form of guanylate cyclase recently cloned from bovine lung (Koesling, D., Herz, J., Gausepohl, H., Niroomand, F., Hinsch, K.-D., Mulsch, A., Bohme, E., Schultz, G., and Frank, R. (1988) FEBS Lett. 239, 29-34). Therefore, the membrane form of guanylate cyclase is a member of an apparently large family of proteins that includes the low molecular weight atrial natriuretic peptide receptor, the soluble form of guanylate cyclase and protein kinases.  相似文献   

19.
To identify glucose-binding proteins amongst the polypeptides of the mouse duodenal brush border membrane, three types of experiments are reported. The first involved the introduction of labelled glucose and its analogue phlorizin into the lumen of separate groups of ligatured duodenal segments. Several proteins were shown to have bound both labelled species in situ by liquid scintillation counting of slices from polyacrylamide gels on which solubilised membrane protein had been electrophoretically separated. The second type of experiment was designed to determine the competitive nature of the binding of both labelled and cold phlorizin to proteins which had already bound glucose. Only three bands could competitively bind phlorizin. Finally, gels on which solubilised protein from in situ glucose-binding experiments had been run were placed in solutions containing labelled phlorizin. The binding of phlorizin to proteins in the same three bands as above suggested a confirmation of the conclusion that there were three membrane protein types which appeared to be involved in phlorizin-sensitive glucose-binding.  相似文献   

20.
1. Human tumour KB cells growing in suspension culture were labelled by lactoperoxidase-catalysed iodination. Several major radioactively labelled proteins were detected by poly-acrylamide-gel electrophoresis in sodium dodecyl sulphate. 2. After reduction with 2-mercaptoethanol the major radioactive electrophoretic bands migrated as substances with apparent molecular weights of about 90,000, 70,000, 60,000, 50,000 and 34,000 and corresponded closely to the positions at which the major glycosylated polypeptide subunits of KB-cell homogenates migrated during electrophoresis under the same conditions. 3. All the iodinated protein bands except one were present in purified preparations of KB plasma membranes. 4. Most of the 50,000-molecular-weight species, supposedly a surface protein component labelled during iodination of intact and viable KB cells by a non-penetrating enzyme reagent, appeared in a crude nuclear pellet during fractionation. 5. The glyco-protein nature of the major external iodinated species of KB cells was confirmed by adsorption chromatography of these substances, dissolved in low concentrations of Triton X-100, on a lectin-Sepharose column. Two major enzyme markers of the KB plasma membrane, 5'-nucleotidase and alkaline phosphatase were also found to be glycoproteins. 6. Enzyme-catalysed incorporation of radioactive iodine into a fraction of low molecular weight and soluble in chloroform-methanol mixtures also occurred during lactoperoxidase treatment of intact KB cells. The partial characterization of this fraction is briefly described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号