首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neurons bearing presenilins: weapons for defense or suicide?   总被引:4,自引:2,他引:2  
Apoptotic machinery designed for cell's organized self-destruction involve different systems of proteases which cleave vital proteins and disassemble nuclear and cytoplasmic structures, committing the cell to death. The most studied apoptotic proteolytic system is the caspase family, but calpains and the proteasome could play important roles as well. Alzheimer's disease associated presenilins showed to be a substrate for such proteolytic systems, being processed early in several apoptotic models, and recent data suggest that alternative presenilin fragments could regulate cell survival. Mutations in genes encoding presenilins proved to sensitize neurons to apoptosis by different mechanisms e.g. increased caspase-3 activation, oxyradicals production and calcium signaling dysregulation. Here we review the data involving presenilins in apoptosis and discuss a possible role of presenilins in the regulation of apoptotic biochemical machinery.  相似文献   

2.
The beta-amyloid precursor protein (beta-APP), which is involved in the pathogenesis of Alzheimer's disease, and the Notch receptor, which is responsible for critical signalling events during development, both undergo unusual proteolysis within their transmembrane domains by unknown gamma-secretases. Here we show that an affinity reagent designed to interact with the active site of gamma-secretase binds directly and specifically to heterodimeric forms of presenilins, polytopic proteins that are mutated in hereditary Alzheimer's and are known mediators of gamma-secretase cleavage of both beta-APP and Notch. These results provide evidence that heterodimeric presenilins contain the active site of gamma-secretase, and validate presenilins as principal targets for the design of drugs to treat and prevent Alzheimer's disease.  相似文献   

3.
Tandon A  Fraser P 《Genome biology》2002,3(11):reviews3014.1-reviews30149
The presenilins are evolutionarily conserved transmembrane proteins that regulate cleavage of certain other proteins in their transmembrane domains. The clinical significance of this regulation is shown by the contribution of presenilin mutations to 20-50% of early-onset cases of inherited Alzheimer's disease. Although the precise molecular mechanism underlying presenilin function or dysfunction remains elusive, presenilins are thought to be part of a complex of proteins that has 'γ-secretase cleavage' activity, which is clearly central in the pathogenesis of Alzheimer's disease. Mutations in presenilins increase the production of the longer isoforms of amyloid β peptide, which are neurotoxic and prone to self-aggregation. Biochemical studies indicate that the presenilins do not act alone but operate within large heteromeric protein complexes, whose components and enzymatic core are the subject of much study and controversy; one essential component is nicastrin. The presenilin primary sequence is remarkably well conserved in eukaryotes, suggesting some functional conservation; indeed, defects caused by mutations in the nemotode presenilin homolog can be rescued by human presenilin.  相似文献   

4.
The amyloid-beta protein (Abeta) is strongly implicated in the pathogenesis of Alzheimer's disease. The final step in the production of Abeta from the amyloid precursor protein (APP) is proteolysis by the unidentified gamma-secretases. This cleavage event is unusual in that it apparently occurs within the transmembrane region of the substrate. Studies with substrate-based inhibitors together with molecular modeling and mutagenesis of the gamma-secretase cleavage site of APP suggest that gamma-secretases are aspartyl proteases that catalyze a novel intramembranous proteolysis. This proteolysis requires the presenilins, proteins with eight transmembrane domains that are mutated in most cases of autosomal dominant familial Alzheimer's disease. Two conserved transmembrane aspartates in presenilins are essential for gamma-secretase activity, suggesting that presenilins themselves are gamma-secretases. Moreover, presenilins also mediate the apparently intramembranous cleavage of the Notch receptor, an event critical for Notch signaling and embryonic development. Thus, if presenilins are gamma-secretases, then they are also likely the proteases that cleave Notch within its transmembrane domain. Another protease, S2P, involved in the processing of the sterol regulatory element binding protein, is also a multipass integral membrane protein which cleaves within or very close to the transmembrane region of its substrate. Thus, presenilins and S2P appear to be members of a new type of polytopic protease with an intramembranous active site.  相似文献   

5.
Increasing evidence suggests that an inhibition of the proteasome, as demonstrated in Parkinson's disease, might be involved in Alzheimer's disease. In this disease and other Tauopathies, Tau proteins are hyperphosphorylated and aggregated within degenerating neurons. In this state, Tau is also ubiquitinated, suggesting that the proteasome might be involved in Tau proteolysis. Thus, to investigate if proteasome inhibition leads to accumulation, hyperphosphorylation and aggregation of Tau, we used neuroblastoma cells overexpressing Tau proteins. Surprisingly, we showed that the inhibition of the proteasome led to a bidirectional degradation of Tau. Following this result, the cellular mechanisms that may degrade Tau were investigated.  相似文献   

6.
Nicastrin is a recently discovered protein interacting with presenilins and the beta-amyloid precursor protein, the proteins playing key roles in Alzheimer's disease and which, when mutated, appear responsible for early-onset familial forms of Alzheimer's disease. Nicastrin was reported to modulate beta-amyloid production, a phenotype affected differently by missense mutations or deletions of a conserved hydrophilic domain. In addition to such a function, nicastrin was recently suggested to possess putative catalytic activity based on its sequence homology with enzymes of the aminopeptidase family. We set up stably transfected human HEK293 cells expressing either wild-type or mutated nicastrins and we show that these proteins do not exhibit aminopeptidase M- and B-like activities.  相似文献   

7.
Alzheimer's disease is characterized by neurodegeneration and deposition of betaA4, a peptide that is proteolytically released from the amyloid precursor protein (APP). Missense mutations in the genes coding for APP and for the polytopic membrane proteins presenilin (PS) 1 and PS2 have been linked to familial forms of early-onset Alzheimer's disease. Overexpression of presenilins, especially that of PS2, induces increased susceptibility for apoptosis that is even more pronounced in cells expressing presenilin mutants. Additionally, presenilins themselves are targets for activated caspases in apoptotic cells. When we analyzed APP in COS-7 cells overexpressing PS2, we observed proteolytic processing close to the APP carboxyl terminus. Proteolytic conversion was increased in the presence of PS2-I, which encodes one of the known PS2 pathogenic mutations. The same proteolytic processing occurred in cells treated with chemical inducers of apoptosis, suggesting a participation of activated caspases in the carboxyl-terminal truncation of APP. This was confirmed by showing that specific caspase inhibitors blocked the apoptotic conversion of APP. Sequence analysis of the APP cytosolic domain revealed a consensus motif for group III caspases ((IVL)ExD). Mutation of the corresponding Asp664 residue abolished cleavage, thereby identifying APP as a target molecule for caspase-like proteases in the pathways of programmed cellular death.  相似文献   

8.
9.
Presenilins 1 and 2 are two homologous proteins which, when mutated, appear responsible for most of the early-onset familial forms of Alzheimer's disease. Among various functional aspects, presenilins appear to behave as chaperoning partners of a series of proteins including the beta-amyloid precursor protein. Recently, presenilins were shown to interact with Rab11, a GTPase involved in intracellular transport. This suggested that Rab11-presenilin interaction could influence the routing of betaAPP and thereby modulate its maturation. In this context, we examined whether overexpression of Rab11 or its constitutively active mutant Rab11Q70L could affect betaAPP maturation in human HEK293 cells. We show here that the overexpression of both Rab11-related proteins does not modify the recovery of secreted sAPPalpha or Abeta in HEK293 cells expressing wild-type betaAPP or betaAPP harboring the Swedish double mutation. These data indicate that Rab11 does not influence betaAPP processing in HEK293 cells. However, it does not preclude the possibility for Rab11 to modulate other presenilin-mediated functions in human cells.  相似文献   

10.
Mutations in presenilins (PS), transmembrane proteins encoding the catalytic subunit of γ-secretase, result in familial Alzheimer's disease (FAD). Several studies have identified lysosomal defects in cells lacking PS or expressing FAD-associated PS mutations, which have been previously attributed to a function for PS in lysosomal acidification. Now, in this issue, Coen et al. (2012. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201201076) provide a series of results that challenge this idea and propose instead that presenilins play a role in calcium-mediated lysosomal fusion.  相似文献   

11.
Many cases of early-onset familial Alzheimer's disease have been linked to mutations within two genes encoding the proteins presenilin-1 and presenilin-2. The presenilins are 48-56-kDa proteins that can be proteolytically cleaved to generate an N-terminal fragment (approximately 25-35 kDa) and a C-terminal fragment (approximately 17-20 kDa). The N- and C-terminal fragments of presenilin-1, but not full-length presenilin-1, were readily detected in both human and mouse cerebral cortex and in neuronal and glioma cell lines. In contrast, presenilin-2 was detected almost exclusively in cerebral cortex as the full-length molecule with a molecular mass of 56 kDa. The association of the presenilins with detergent-insoluble, low-density membrane microdomains, following the isolation of these structures from cerebral cortex by solubilization in Triton X-100 and subsequent sucrose density gradient centrifugation, was also examined. A minor fraction (10%) of both the N- and C-terminal fragments of presenilin-1 was associated with the detergent-insoluble, low-density membrane microdomains, whereas a considerably larger proportion of full-length presenilin-2 was present in the same membrane microdomains. In addition, a significant proportion of full-length presenilin-2 was present in a high-density, detergent-insoluble cytoskeletal pellet enriched in beta-actin. The presence of the presenilins in detergent-insoluble, low-density membrane microdomains indicates a possible role for these specialized regions of the membrane in the lateral separation of Alzheimer's disease-associated proteins within the lipid bilayer and/or in the distinct functions of these proteins.  相似文献   

12.
S X Zhang  Y Guo  G L Boulianne 《Gene》2001,280(1-2):135-144
Mutations in the presenilin genes have been shown to cause the majority of cases of early-onset familial Alzheimer's disease (AD). In addition to their role in AD, presenilins are also known to function during development by interacting with the Notch pathway. To determine if presenilins have additional functions during development and AD we have used a yeast two-hybrid approach to search for proteins that can bind to presenilins. Here, we show the identification and characterization of a novel putative methyltransferase (Metl) that interacts with the loop region of Drosophila presenilin as well as human presenilin-1 and presenilin-2, suggesting that this interaction is evolutionarily conserved and functionally important. Metl appears to be a member of a conserved family of methyltransferases that share homology with, but are distinct from, the UbiE family of methyltransferases involved in ubiquinone and menaquinone biosynthesis. In Drosophila, the metl gene gives rise to two major isoforms by alternative splicing that are broadly expressed throughout development and found in the central nervous system in an overlapping pattern with Drosophila presenilin. Finally, we show that two independent dominant adult phenotypes produced by overexpression of presenilin can be enhanced by overexpression of metl in the same tissue. Taken together, these results suggest that presenilin and Metl functionally and genetically interact during development.  相似文献   

13.
We describe a new human isoform, GFAP epsilon, of the intermediary filament protein GFAP (glial fibrillary acidic protein). GFAP epsilon mRNA is the result of alternative splicing and a new polyadenylation signal, and thus GFAP epsilon has a new C-terminal protein sequence. This provides GFAP epsilon with the capacity for specific binding of presenilin proteins in yeast and in vitro. Our observations suggest a direct link between the presenilins and the cytoskeleton where GFAP epsilon is incorporated. Mutations in GFAP and presenilins are associated with Alexander disease and Alzheimer's disease, respectively. Accordingly, GFAP epsilon should be taken into consideration when studying neurodegenerative diseases.  相似文献   

14.
Alzheimer's disease-related presenilins are thought to be involved in Notch signaling during embryonic development and/or cellular differentiation. Proteins mediating the cellular functions of the presenilins are still unknown. We utilized the yeast two-hybrid system to identify an interacting armadillo protein, termed p0071, that binds specifically to the hydrophilic loop of presenilin 1. In vivo, the presenilins constitutively undergo proteolytic processing, forming two stable fragments. Here, we show that the C-terminal fragment of presenilin 1 directly binds to p0071. Nine out of 10 armadillo repeats in p0071 are essential for mediating this interaction. Since armadillo proteins, like beta-catenin and APC, are known to participate in cellular signaling, p0071 may function as a mediator of presenilin 1 in signaling events.  相似文献   

15.
The familial Alzheimer's disease gene products, presenilin-1 and presenilin-2, have been reported to be functionally involved in amyloid precursor protein processing, notch receptor signaling, and programmed cell death or apoptosis. However, the molecular mechanisms by which presenilins regulate these processes remain unknown. With regard to the latter, we describe a molecular link between presenilins and the apoptotic pathway. Bcl-X(L), an anti-apoptotic member of the Bcl-2 family was shown to interact with the carboxyl-terminal fragments of PS1 and PS2 by the yeast two-hybrid system. In vivo interaction analysis revealed that both PS2 and its naturally occurring carboxyl-terminal products, PS2short and PS2Ccas, associated with Bcl-X(L), whereas the caspase-3-generated amino-terminal PS2Ncas fragment did not. This interaction was corroborated by demonstrating that Bcl-X(L) and PS2 partially co-localized to sites of the vesicular transport system. Functional analysis revealed that presenilins can influence mitochondrial-dependent apoptotic activities, such as cytochrome c release and Bax-mediated apoptosis. Together, these data support a possible role of the Alzheimer's presenilins in modulating the anti-apoptotic effects of Bcl-X(L).  相似文献   

16.
Mutations in presenilins are responsible for the vast majority of early-onset familial Alzheimer's disease cases. Full-length presenilin structure is composed of nine transmembrane domains which are localized on the endoplasmic reticulum membrane. Upon endoproteolytic cleavage, presenilins assemble into the γ-secretase multiprotein complex and subsequently get transported to the cell surface. There is a wealth of knowledge around the role of presenilins as the catalytic component of γ-secretase, their involvement in amyloid precursor protein processing and generation of neurotoxic β-amyloid species. However recent findings have revealed a wide range of γ-secretase-independent presenilin functions, including involvement in calcium homeostasis. Particularly, familial Alzheimer's disease presenilin mutations have been shown to interfere with the function of several molecular elements involved in endoplasmic reticulum calcium homeostasis. Presenilins modulate the activity of IP(3) and Ryanodine receptor channels, regulate SERCA pump function, affect capacitative calcium entry and function per se as endoplasmic reticulum calcium leak conductance pores.  相似文献   

17.
In many neurodegenerative disorders, such as Alzheimer's disease, inclusions containing ubiquitinated proteins have been found in the brain, suggesting a pathophysiological role for ubiquitin-mediated proteasomal degradation of neuronal proteins. Here we show for the first time that the beta-amyloid fragment 1-40, which in micromolar levels causes the death of cortical neurons, also induces the ubiquitination of several neuronal proteins. Prevention of ubiquitination and inhibition of proteasome activity block the neurotoxic effect of beta-amyloid. These data suggest that beta-amyloid neurotoxicity may cause toxicity through the activation of protein degradation via the ubiquitin-proteasome pathway. These findings suggest possible new pharmacological targets for the prophylaxis and/or treatment of Alzheimer's disease and possibly for other related neurodegenerative disorders.  相似文献   

18.
Mutations in the presenilin genes have been shown to cause the majority of cases of early-onset familial Alzheimer's disease (AD). In addition to their role in AD, presenilins are also known to function during development by interacting with the Notch pathway. To determine if presenilins have additional functions during development and AD we have used a yeast two-hybrid approach to search for proteins that can bind to presenilins. Here, we show the identification and characterization of a novel putative methyltransferase (Metl) that interacts with the loop region of Drosophila presenilin as well as human presenilin-1 and presenilin-2, suggesting that this interaction is evolutionarily conserved and functionally important. Metl appears to be a member of a conserved family of methyltransferases that share homology with, but are distinct from, the UbiE family of methyltransferases involved in ubiquinone and menaquinone biosynthesis. In Drosophila, the metl gene gives rise to two major isoforms by alternative splicing that are broadly expressed throughout development and found in the central nervous system in an overlapping pattern with Drosophila presenilin. Finally, we show that two independent dominant adult phenotypes produced by overexpression of presenilin can be enhanced by overexpression of metl in the same tissue. Taken together, these results suggest that presenilin and Metl functionally and genetically interact during development.  相似文献   

19.
20.
Mutations in the highly homologous presenilin genes encoding presenilin-1 and presenilin-2 (PS1 and PS2) are linked to early-onset Alzheimer's disease (AD). However, apart from a role in early development, neither the normal function of the presenilins nor the mechanisms by which mutant proteins cause AD are well understood. We describe here the properties of a novel human interactor of the presenilins named ubiquilin. Yeast two-hybrid (Y2H) interaction, glutathione S-transferase pull-down experiments, and colocalization of the proteins expressed in vivo, together with coimmunoprecipitation and cell fractionation studies, provide compelling evidence that ubiquilin interacts with both PS1 and PS2. Ubiquilin is noteworthy since it contains multiple ubiquitin-related domains typically thought to be involved in targeting proteins for degradation. However, we show that ubiquilin promotes presenilin protein accumulation. Pulse-labeling experiments indicate that ubiquilin facilitates increased presenilin synthesis without substantially changing presenilin protein half-life. Immunohistochemistry of human brain tissue with ubiquilin-specific antibodies revealed prominent staining of neurons. Moreover, the anti-ubiquilin antibodies robustly stained neurofibrillary tangles and Lewy bodies in AD and Parkinson's disease affected brains, respectively. Our results indicate that ubiquilin may be an important modulator of presenilin protein accumulation and that ubiquilin protein is associated with neuropathological neurofibrillary tangles and Lewy body inclusions in diseased brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号