首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies of the protein function of Borrelia burgdorferi have been limited by a lack of tools for manipulating borrelial DNA. We devised a system to study the function of a B. burgdorferi oligopeptide permease (Opp) orthologue by complementation with Escherichia coli Opp proteins. The Opp system of E. coli has been extensively studied and has well defined substrate specificities. The system is of interest in B. burgdorferi because analysis of its genome has revealed little identifiable machinery for synthesis or transport of amino acids and only a single intact peptide transporter operon. As such, peptide uptake may play a major role in nutrition for the organism. Substrate specificity for ABC peptide transporters in other organisms is determined by their substrate binding protein. The B. burgdorferi Opp operon differs from the E. coli Opp operon in that it has three separate substrate binding proteins, OppA-1, -2 and -3. In addition, B. burgdorferi has two OppA orthologues, OppA-4 and -5, encoded on separate plasmids. The substrate binding proteins interact with integral membrane proteins, OppB and OppC, to transport peptides into the cell. The process is driven by two ATP binding proteins, OppD and OppF. Using opp-deleted E. coli mutants, we transformed cells with B. burgdorferi oppA-1, -2, -4 or -5 and E. coli oppBCDF. All of the B. burgdorferi OppA proteins are able to complement E. coli OppBCDF to form a functional Opp transport system capable of transporting peptides for nutritional use. Although there is overlap in substrate specificities, the substrate specificities for B. burgdorferi OppAs are not identical to that of E. coli OppA. Transport of toxic peptides by B. burgdorferi grown in nutrient-rich medium parallels borrelial OppA substrate specificity in the complementation system. Use of this complementation system will pave the way for more detailed studies of B. burgdorferi peptide transport than currently available tools for manipulating borrelial DNA will allow.  相似文献   

2.
The Escherichia coli peptide binding protein OppA is an essential component of the oligopeptide transporter Opp. Based on studies on its orthologue from Salmonella typhimurium, it has been proposed that OppA binds peptides between two and five amino acids long, with no apparent sequence selectivity. Here, we studied peptide binding to E. coli OppA directly and show that the protein has an unexpected preference for basic peptides. OppA was expressed in the periplasm, where it bound to available peptides. The protein was purified in complex with tightly bound peptides. The crystal structure (up to 2.0 Å) of OppA liganded with the peptides indicated that the protein has a preference for peptides containing a lysine. Mass spectrometry analysis of the bound peptides showed that peptides between two and five amino acids long bind to the protein and indeed hinted at a preference for positively charged peptides. The preference of OppA for peptides with basic residues, in particular lysines, was corroborated by binding studies with peptides of defined sequence using isothermal titration calorimetry and intrinsic protein fluorescence titration. The protein bound tripeptides and tetrapeptides containing positively charged residues with high affinity, whereas related peptides without lysines/arginines were bound with low affinity. A structure of OppA in an open conformation in the absence of ligands was also determined to 2.0 Å, revealing that the initial binding site displays a negative surface charge, consistent with the observed preference for positively charged peptides. Taken together, E. coli OppA appears to have a preference for basic peptides.  相似文献   

3.
The oligopeptide transporter Opp is a five-component ABC uptake system. The extracytoplasmic lipid-anchored substrate-binding protein (or receptor) OppA delivers peptides to an integral membrane complex OppBCDF (or translocator), where, on ATP binding and hydrolysis, translocation across the membrane takes place. OppA and OppBCDF were labeled with fluorescent probes, reconstituted into giant unilamellar vesicles, and the receptor-translocator interactions were investigated by fluorescence correlation spectroscopy. Lateral mobility of OppA was reduced on incorporation of OppBCDF into giant unilamellar vesicles, and decreased even further on the addition of peptide. Fluorescence cross-correlation measurements revealed that OppBCDF distinguished liganded from unliganded OppA, binding only the former. Addition of ATP or its nonhydrolyzable analog AMP-PNP resulted in release of OppA from OppBCDF. In vanadate-trapped “transition state” conditions, OppA also was not bound by OppBCDF. A model is presented in which ATP-binding to OppDF results in donation of peptide to OppBC and simultaneous release of OppA. ATP-hydrolysis would complete the peptide translocation and reset the transporter for another catalytic cycle. Implications in terms of a general transport mechanism for ABC importers and exporters are discussed.  相似文献   

4.
The specific oligopeptide transport system Opp is essential for growth of Lactococcus lactis in milk. We examined the biodiversity of oligopeptide transport specificity in the L. lactis species. Six strains were tested for (i) consumption of peptides during growth in a chemically defined medium and (ii) their ability to transport these peptides. Each strain demonstrated some specific preferences for peptide utilization, which matched the specificity of peptide transport. Sequencing of the binding protein OppA in some strains revealed minor differences at the amino acid level. The differences in specificity were used as a tool to unravel the role of the binding protein in transport specificity. The genes encoding OppA in four strains were cloned and expressed in L. lactis MG1363 deleted for its oppA gene. The substrate specificity of these engineered strains was found to be similar to that of the L. lactis MG1363 parental strain, whichever oppA gene was expressed. In situ binding experiments demonstrated the ability of OppA to interact with non-transported peptides. Taken together, these results provide evidence for a new concept. Despite that fact that OppA is essential for peptide transport, it is not the (main) determinant of peptide transport specificity in L. lactis.  相似文献   

5.
Studies of the protein function of Borrelia burgdorferi have been limited by a lack of tools for manipulating borrelial DNA. We devised a system to study the function of a B. burgdorferi oligopeptide permease (Opp) orthologue by complementation with Escherichia coli Opp proteins. The Opp system of E. coli has been extensively studied and has well defined substrate specificities. The system is of interest in B. burgdorferi because analysis of its genome has revealed little identifiable machinery for synthesis or transport of amino acids and only a single intact peptide transporter operon. As such, peptide uptake may play a major role in nutrition for the organism. Substrate specificity for ABC peptide transporters in other organisms is determined by their substrate binding protein. The B. burgdorferi Opp operon differs from the E. coli Opp operon in that it has three separate substrate binding proteins, OppA-1, -2 and -3. In addition, B. burgdorferi has two OppA orthologues, OppA-4 and -5, encoded on separate plasmids. The substrate binding proteins interact with integral membrane proteins, OppB and OppC, to transport peptides into the cell. The process is driven by two ATP binding proteins, OppD and OppF. Using opp-deleted E. coli mutants, we transformed cells with B. burgdorferi oppA-1, -2, -4 or -5 and E. coli oppBCDF. All of the B. burgdorferi OppA proteins are able to complement E. coli OppBCDF to form a functional Opp transport system capable of transporting peptides for nutritional use. Although there is overlap in substrate specificities, the substrate specificities for B. burgdorferi OppAs are not identical to that of E. coli OppA. Transport of toxic peptides by B. burgdorferi grown in nutrient-rich medium parallels borrelial OppA substrate specificity in the complementation system. Use of this complementation system will pave the way for more detailed studies of B. burgdorferi peptide transport than currently available tools for manipulating borrelial DNA will allow.  相似文献   

6.
Bacillus subtilis spo0K mutants are blocked at the first step in sporulation. The spo0K strain was found to contain two mutations: one was linked to the trpS locus, and the other was elsewhere on the chromosome. The mutation linked to trpS was responsible for the sporulation defect (spo-). The unlinked mutation enhanced this sporulation deficiency but had no phenotype on its own. The spo- mutation was located in an operon of five genes highly homologous to the oligopeptide transport (Opp) system of Gram-negative species. Studies with toxic peptide analogues showed that this operon does indeed encode a peptide-transport system. However, unlike the Opp system of Salmonella typhimurium, one of the two ATP-binding proteins, OppF, was not required for peptide transport or for sporulation. The OppA peptide-binding protein, which is periplasmically located in Gram-negative species, has a signal sequence characteristic of lipoproteins with an amino-terminal lipo-amino acid anchor. Cellular location studies revealed that OppA was associated with the cell during exponential growth, but was released into the medium in stationary phase. A major role of the Opp system in Gram-negative bacteria is the recycling of cell-wall peptides as they are released from the growing peptidoglycan. We postulate that the accumulation of such peptides may play a signalling role in the initiation of sporulation, and that the sporulation defect in opp mutants results from an inability to transport these peptides.  相似文献   

7.
Lactococcus lactis degrades exogenous proteins such as beta-casein to peptides of 4-30 amino acids, and uses these as nitrogen sources. The binding protein or receptor (OppA(Ll)) of the oligopeptide transport system (Opp) of L.LACTIS: has the unique capacity to bind peptides from five up to at least 20 residues. To study the binding mechanism of OppA(Ll), nonameric peptides were used in which the cysteine at position 1, 3, 4, 5, 6, 7 or 9 was selectively labeled with either bulky and non-fluorescent or bulky and fluorescent groups. Also, nonameric peptides with a non-natural residue, azatryptophan, at positions 3 or 7 were used. The fluorescence of azatryptophan reports on the polarity of the environment. The studies indicate that the binding protein encloses the first six amino acids of the peptide, whereas the remaining residues stick out and interact with the surface of the binding protein. The peptide binding mechanism of OppA(Ll) is discussed in relation to known three-dimensional structures of members of this class of proteins, and an adaptation of the general binding mechanism is proposed.  相似文献   

8.
The oligopeptide permease (Opp) of Escherichia coli is an ATP-binding cassette transporter that uses the substrate-binding protein (SBP) OppA to bind peptides and deliver them to the membrane components (OppBCDF) for transport. OppA binds conventional peptides 2-5 residues in length regardless of their sequence, but does not facilitate transport of the cell wall component murein tripeptide (Mtp, L-Ala-γ-D-Glu-meso-Dap), which contains a D-amino acid and a γ-peptide linkage. Instead, MppA, a homologous substrate-binding protein, forms a functional transporter with OppBCDF for uptake of this unusual tripeptide. Here we have purified MppA and demonstrated biochemically that it binds Mtp with high affinity (K(D) ~ 250 nM). The crystal structure of MppA in complex with Mtp has revealed that Mtp is bound in a relatively extended conformation with its three carboxylates projecting from one side of the molecule and its two amino groups projecting from the opposite face. Specificity for Mtp is conferred by charge-charge and dipole-charge interactions with ionic and polar residues of MppA. Comparison of the structure of MppA-Mtp with structures of conventional tripeptides bound to OppA, reveals that the peptide ligands superimpose remarkably closely given the profound differences in their structures. Strikingly, the effect of the D-stereochemistry, which projects the side chain of the D-Glu residue at position 2 in the direction of the main chain in a conventional tripeptide, is compensated by the formation of a γ-linkage to the amino group of diaminopimelic acid, mimicking the peptide bond between residues 2 and 3 of a conventional tripeptide.  相似文献   

9.
Borrelia burgdorferi must acquire all of its amino acids (AAs) from its arthropod vector and vertebrate host. Previously, we determined that peptide uptake via the oligopeptide (Opp) ABC transporter is essential for spirochete viability in vitro and during infection. Our prior study also suggested that B. burgdorferi employs temporal regulation in concert with structural variation of oligopeptide-binding proteins (OppAs) to meet its AA requirements in each biological niche. Herein, we evaluated the contributions to the B. burgdorferi enzootic cycle of three of the spirochete’s five OppAs (OppA1, OppA2, and OppA5). An oppA1 transposon (tn) mutant lysed in the hyperosmolar environment of the feeding tick, suggesting that OppA1 imports amino acids required for osmoprotection. The oppA2tn mutant displayed a profound defect in hematogenous dissemination in mice, yet persisted within skin while inducing only a minimal antibody response. These results, along with slightly decreased growth of the oppA2tn mutant within DMCs, suggest that OppA2 serves a minor nutritive role, while its dissemination defect points to an as yet uncharacterized signaling function. Previously, we identified a role for OppA5 in spirochete persistence within the mammalian host. We now show that the oppA5tn mutant displayed no defect during the tick phase of the cycle and could be tick-transmitted to naïve mice. Instead of working in tandem, however, OppA2 and OppA5 appear to function in a hierarchical manner; the ability of OppA5 to promote persistence relies upon the ability of OppA2 to facilitate dissemination. Structural homology models demonstrated variations within the binding pockets of OppA1, 2, and 5 indicative of different peptide repertoires. Rather than being redundant, B. burgdorferi’s multiplicity of Opp binding proteins enables host-specific functional compartmentalization during the spirochete lifecycle.  相似文献   

10.
The oligopeptide transport system (Opp) of Lactococcus lactis belongs to the class of binding protein-dependent ABC-transporters. This system has the unique capacity to mediate the uptake of peptides from 4 up to at least 18 residues. Kinetic analysis of peptide binding to the binding protein, OppA, revealed a relationship between the peptide dissociation constants and the length of the ligand. The dissociation constants varied from submicromolar for dodecapeptides to millimolar for pentapeptides. This implies that the residues 6-12 of the peptide contribute to the binding affinity, and, in contrast to the current views on peptide binding by homologous proteins, these residues must interact with OppA. Analysis of pre-steady-state kinetics of binding showed that the observed differences in the -values result primarily from variations in the dissociation rate constants. These results are discussed in relation to the affinity constant for transport of these substrates. Overall, the data suggest that the slow dissociation rate constants for the larger peptides are rate determining in the translocation of peptides across the membrane.  相似文献   

11.
Growth of Lactococcus lactis in milk depends on the utilization of extracellular peptides. Up to now, oligopeptide uptake was thought to be due only to the ABC transporter Opp. Nevertheless, analysis of several Opp-deficient L. lactis strains revealed the implication of a second oligopeptide ABC transporter, the so-called Opt system. Both transporters are expressed in wild-type strains such as L. lactis SK11 and Wg2, whereas the plasmid-free strains MG1363 and IL-1403 synthesize only Opp and Opt, respectively. The Opt system displays significant differences from the lactococcal Opp system, which made Opt much more closely related to the oligopeptide transporters of streptococci than to the lactococcal Opp system: (i) genetic organization, (ii) peptide uptake specificity, and (iii) presence of two oligopeptide-binding proteins, OptS and OptA. The fact that only OptA is required for nutrition calls into question the function of the second oligopeptide binding protein (Opts). Sequence analysis of oligopeptide-binding proteins from different bacteria prompted us to propose a classification of these proteins in three distinct groups, differentiated by the presence (or not) of precisely located extensions.  相似文献   

12.
Besides their role as a source of amino acids for Bacillus subtilis, exogenous peptides play important roles in the signalling pathways leading to the development of competence and sporulation. B.subtilis has three peptide transport systems all belonging to the ATP-binding cassette family, a dipeptide permease (Dpp) and two oligopeptide permeases (Opp and App) with overlapping specificity. These comprise a membrane-spanning channel through which the peptide passes, a pair of ATPases which couple ATP hydrolysis to peptide translocation and a lipid-modified, membrane-anchored extracellular "binding-protein" that serves as the receptor for the system. Here, we present the crystal structure of a soluble form of the peptide-binding protein AppA, which has been solved to 1.6 A spacing by anomalous scattering and molecular replacement methods. The structure reveals a protein made of two distinct lobes with a topology similar to those of DppA from Escherichia coli and OppA from Salmonella typhimurium. Examination of the interlobe region reveals an enlarged pocket, containing electron density defining a nonapeptide ligand. The main-chain of the peptide is well defined and makes a series of polar contacts with the protein including salt-bridges at both its termini. The side-chain density is ambiguous in places, consistent with the interpretation that a population of peptides is bound, whose average electron density resembles the amino acid sequence N-VDSKNTSSW-C.  相似文献   

13.
14.
The oligopeptide-binding protein, OppA, ushers oligopeptide substrates to the membrane-associated oligopeptide permease (Opp), a multi-component ABC-type transporter involved in the uptake of oligopeptides by several bacterial species. In the present study, we report a structural model and an oligopeptide docking analysis of the OppA protein expressed by Xanthomonas axonopodis pv. citri (X. citri), the etiological agent of citrus canker. The X. citri OppA structural model showed a conserved three-dimensional structure, irrespective of the low amino acid identities with previously defined structures of Bacillus subtilis and Salmonella typhimurium orthologs. Oligopeptide docking analysis carried out with the proposed model indicated that the X. citri OppA preferentially binds tri- and tetrapeptides. The present study represents the first structural analysis of an OppA ortholog expressed by a phytopathogen and contributes to the understanding of the physiology and nutritional strategies of X. citri.  相似文献   

15.
细菌的肽转运蛋白包括3种,寡肽转运蛋白(Oligopeptide permease,Opp)、二肽转运蛋白(Dipeptide permease,Dpp)和二/三肽转运蛋白(Di-and tripeptide permease,Dtp)。Opp和Dpp属于ABC型超家族(ATP-binding cassette superfamily)转运蛋白,利用ATP水解产生的能量实现底物转运。对Opp和Dpp研究最多的是胞外肽结合蛋白OppA和DppA,它们起着最初识别与结合底物的重要作用。Dtp属于主要协助转运蛋白超家族(Major facilitator superfamily,MFS),与质子进行底物共转运。细菌肽转运蛋白的晶体结构解析结合大量的生化数据分析,使得人们对其转运机制有了深入的了解。本文对这三种肽转运蛋白的研究进展分别进行综述。  相似文献   

16.
The oligopeptide-binding protein, OppA, binds and ushers oligopeptide substrates to the membrane-associated oligopeptide permease (Opp), a multi-component ABC-type transporter involved in the uptake of oligopeptides expressed by several bacterial species. In the present study, we report the cloning, purification, refolding and conformational analysis of a recombinant OppA protein derived from Xanthomonas axonopodis pv. citri (X. citri), the etiological agent of citrus canker. The oppA gene was expressed in Escherichia coli BL21 (DE3) strain under optimized inducing conditions and the recombinant protein remained largely insoluble. Solubilization was achieved following refolding of the denatured protein. Circular dichroism analysis indicated that the recombinant OppA protein preserved conformational features of orthologs expressed by other bacterial species. The refolded recombinant OppA represents a useful tool for structural and functional analyses of the X. citri protein.  相似文献   

17.
The kinetic properties of wild-type and mutant oligopeptide binding proteins of Lactococcus lactis were determined. To observe the properties of the mutant proteins in vivo, the oppA gene was deleted from the chromosome of L. lactis to produce a strain that was totally defective in oligopeptide transport. Amplified expression of the oppA gene resulted in an 8- to 12-fold increase in OppA protein relative to the wild-type level. The amplified expression was paralleled by increased bradykinin binding activity, but had relatively little effect on the overall transport of bradykinin via Opp. Several site-directed mutants were constructed on the basis of a comparison of the primary sequences of OppA from Salmonella enterica serovar Typhimurium and L. lactis, taking into account the known structure of the serovar Typhimurium protein. Putative peptide binding-site residues were mutated. All the mutant OppA proteins exhibited a decreased binding affinity for the high-affinity peptide bradykinin. Except for OppA(D471R), the mutant OppA proteins displayed highly defective bradykinin uptake, whereas the transport of the low-affinity substrate KYGK was barely affected. Cells expressing OppA(D471R) had a similar K(m) for transport, whereas the V(max) was increased more than twofold as compared to the wild-type protein. The data are discussed in the light of a kinetic model and imply that the rate of transport is determined to a large extent by the donation of the peptide from the OppA protein to the translocator complex.  相似文献   

18.
19.
Amino acid auxotrophous bacteria such as Lactococcus lactis use proteins as a source of amino acids. For this process, they possess a complex proteolytic system to degrade the protein(s) and to transport the degradation products into the cell. We have been able to dissect the various steps of the pathway by deleting one or more genes encoding key enzymes/components of the system and using mass spectrometry to analyse the complex peptide mixtures. This approach revealed in detail how L . lactis liberates the required amino acids from β-casein, the major component of the lactococcal diet. Mutants containing the extracellular proteinase PrtP, but lacking the oligopeptide transport system Opp and the autolysin AcmA, were used to determine the proteinase specificity in vivo . To identify the substrates of Opp present in the casein hydrolysate, the PrtP-generated peptide pool was offered to mutants lacking the proteinase, but containing Opp, and the disappearance of peptides from the medium as well as the intracellular accumulation of amino acids and peptides was monitored in peptidase-proficient and fivefold peptidase-deficient genetic backgrounds. The results are unambiguous and firmly establish that (i) the carboxyl-terminal end of β-casein is degraded preferentially despite the broad specificity of the proteinase; (ii) peptides smaller than five residues are not formed in vivo  ; (iii) use of oligopeptides of 5–10 residues becomes only possible after uptake via Opp; (iv) only a few (10–14) of the peptides generated by PrtP are actually used, even though the system facilitates the transport of oligopeptides up to at least 10 residues. The technology described here allows us to monitor the fate of individual peptides in complex mixtures and is applicable to other proteolytic systems.  相似文献   

20.
Small peptides derived from protein hydrolysis occur ubiquitously. To utilize these structurally diverse compounds, organisms possess generic peptide transporters for di- (Dpp), tri- (Tpp), and oligopeptides (Opp). Using conformational analysis, we describe the predominant conformers of di-, tri-, and oligopeptides in water; dipeptides occur as nine main groups, defined by specific combinations of torsional angles. The molecular recognition templates (MRTs) of substrates for Dpp and Tpp comprise distinct groups of dipeptide conformers plus folded tripeptide conformers with matching spatial distribution of recognition features; for Opp, the MRT involves specific oligopeptide conformers with extended backbones. For any peptide, the proportion of its conformers in a particular MRT correlates with its relative binding and transport by each transporter. Thus, peptide transporters have evolved complementary specificities to optimize utilization of the universal peptide pool. The general applicability of MRTs should facilitate rational design and targeting of peptide-based prodrugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号