首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Welbergen JA 《Oecologia》2011,165(3):629-637
When females and males differ in their timing of maximum reproductive effort, this can result in sex-specific seasonal cycles in body mass. Such cycles are undoubtedly under strong selection, particularly in bats, where they affect flying ability. Flying foxes (Old World fruit bats, Pteropus spp.) are the largest mammals that can sustain powered flight and therefore face critical trade-offs in managing body reserves for reproduction, yet little is known about body mass dynamics in this group. I investigated body mass changes in relation to reproductive behaviour in a large colony of grey-headed flying foxes (Pteropus poliocephalus). In this polygynous mammal, females were predicted to maximise reproductive effort during lactation and males during the breeding season. As predicted, female body condition declined during the nursing period, but did not vary in relation to sexual activity. By contrast, males accumulated body reserves prior to the breeding season, but subsequently lost over 20% of their body mass on territory defence and courtship, and lost foraging opportunities as they also defended their day roost territories at night. Males in better condition had larger testes, particularly during territory establishment, prior to maximum sexual activity. Thus, the seasonality of female mass reflected the high metabolic load that lactation imposes on mothers. However, male mass followed a pattern akin to the "fatted male phenomenon", which is commonly observed in large polygynous mammals with seasonal reproduction, but not in bats. This shows the importance of body reserves for reproduction in flying foxes, despite their severe constraints on body mass.  相似文献   

2.
Individuals of many nontropical rodent species display reproductive, immunological, and somatic responses to day length. In general, short day (SD) lengths inhibit reproduction and enhance immune function in the laboratory when all other conditions are held constant. Most studies to date have focused on seasonal variation in immune function in adulthood. However, perinatal photoperiods also communicate critical day length information and serve to establish a developmental trajectory appropriate for the time of year. Nontropical rodents born early in the breeding season undergo rapid reproductive development, presumably to promote mating success during their first reproductive season. Rodents born late in the breeding season suspend somatic growth and puberty until the following vernal breeding season. We tested the hypothesis that perinatal day lengths have similar enduring effects on the immune system of rodents. Siberian hamsters (Phodopus sungorus) were maintained prenatally and until weaning (21 days) in either SDs (8 h light:16 h dark) or long days (LD) (16 h light:8 h dark), then they were weaned into either the opposite photoperiod or maintained in their natal photoperiod, forming four groups (LD-LD, LD-SD, SD-LD, and SD-SD). After 8-wk in these conditions, cell-mediated immune activity was compared among groups. SD-SD hamsters of both sexes enhanced immune function relative to all other groups. The reproductive effects of perinatal photoperiod were not evident by the end of the experiment; circulating testosterone and cortisol sampled at the end of the experiment reflected the postweaning, but not the perinatal photoperiod. This experiment demonstrates long-lasting organizational effects of perinatal photoperiod on the rodent immune system and indicates that photoperiod-induced changes in the immune system are dissociable from changes in the reproductive system.  相似文献   

3.
Photoperiod may regulate seasonal reproduction either by providing the primary driving force for the reproductive transitions or by synchronizing an endogenous reproductive rhythm. This study evaluated whether breed differences in timing of the reproductive seasons of Finnish Landrace (Finn) and Galway ewes are due to differences in photoperiodic drive of the reproductive transitions or to differences in photoperiodic synchronization of the endogenous rhythm of reproductive activity. The importance of decreasing photoperiod after the summer solstice in determining the onset and duration of the breeding season was tested by housing ewes from the summer solstice in either a simulated natural photoperiod or a fixed summer-solstice photoperiod (18 h light:6 h dark; summer-solstice hold). Onset of the breeding season within each breed did not differ between these photoperiodic treatments, but Galway ewes began and ended their breeding season earlier than Finn ewes. The duration of the breeding season was shorter in Galway ewes on summer-solstice hold than on simulated natural photoperiod; duration did not differ between photoperiodic treatments in Finn ewes. The requirement for increasing photoperiod after the winter solstice for initiation of anoestrus was tested by exposing ewes from the winter solstice to either a simulated natural photoperiod or a winter-solstice hold photoperiod (8.5 h light:15.5 h dark). Onset of anoestrus within each breed did not differ between these photoperiodic treatments, but the time of this transition differed between breeds. These observations suggest that genetic differences in timing of the breeding season in Galway and Finn ewes do not reflect differences in the extent to which photoperiod drives the reproductive transitions, because neither breed requires shortening days to enter the breeding season or lengthening days to end it at appropriate times. These findings are consistent with the hypothesis that photoperiod synchronizes an endogenous rhythm of reproductive activity in both breeds and that genetic differences in timing of the breeding season reflect differences in photoperiodic synchronization of this rhythm.  相似文献   

4.
In its natural habitat, Microcebus murinus, a small malagasy prosimian primate, is exposed to seasonal shortage of water and resources. During the winter dry season, animals enter a pronounced fattening period with concurrent decrease in behavioural/physiological activities, whereas the breeding season is restricted to the rainy summer months. To determine the role of daylength on metabolic rate and water loss in this nocturnal primate, we measured body mass, oxygen consumption at 25°C (RMR), circadian water loss through urine output (UO) and evaporation (EWL) in eight males exposed to either short days (8L:16D SD) or long days (14L:10D LD), under controlled captive conditions. Exposure to SD led to a ponderal increase (maximal body mass: 125±4 g, N=8), and to significant changes in RMR and water loss, both reaching lowest values after 3 months under SD (0.84±0.04 ml O2 h−1 g−1 and 38±0.3 mg H2O g−1 day−1, respectively). Following exposure to LD, body mass decreased to 77±3 g (N=8), whereas both RMR and water loss, mainly through EWL, significantly increased (P<0.001), the highest value occurring after 2 months (1.51±0.08 ml O2 h.−1 g−1 and 87±7 mgH2O g−1 day−1, respectively). Moreover, independent of daylength, circadian changes in EWL were characterized by significantly reduced values during the diurnal rest. The results demonstrate that daylength variations affect the physiology of this tropical primate, allowing anticipatory adaptation to seasonal environmental constraints.  相似文献   

5.
The influence of changes in the amount of locomotor activity on the annual body mass cycle was investigated in captive Svalbard ptarmigan kept indoors at thermoneutrality and exposed to seasonal changes in daylength or continuous light from the summer onwards. In both groups there was a close correlation between locomotor activity and metabolic rate. Only birds exposed to changes in daylength showed an annual cycle in locomotor activity, with low activity in autumn and mid-winter and a peak in spring. The birds permanently exposed to continuous light had a relatively low activity throughout the year with no systematical changes. Body mass began to increase in both groups in early autumn and the food intake was elevated during most of the following fattening period. It is concluded that elevated food intake is the prime factor involved in autumnal fattening in captive Svalbard ptarmigan. Body mass increased significantly faster under decreasing daylength compared with continuous light, associated with a lower activity as well as a higher food intake. The birds exposed to continuous light maintained a high body mass and a relatively low activity level during spring. In birds exposed to changing daylength, body mass fell from late February onwards, which is about 3 months later than in outdoor caged or free-living Svalbard ptarmigan. In the birds exposed to increasing daylength a fourfold increase in the amount of locomotor activity occurred from February to April. This increased activity was correlated with a negative energy balance and may be casually associated with the fall in body mass in these birds. Under outdoor conditions, elevated locomotor activity in spring may be responsible for a continuation of the decline in body mass commencing in November, despite a slight tendency for an increased food intake towards the end of this period.Abbreviations BM body mass - CE f caloric equivalent of food - EAE energy assimilation efficiency - EE energy expenditure - FI food intake - LA locomotor activity - LL continuous light - LD simulated annual changes in daylength - MEI metabolizable energy intake - MR metabolic rate - RQ respiratory quotient  相似文献   

6.
The aim of the present study was to determine whether a treatment of 3 mo of artificial long days and daily contact with bucks can stimulate reproductive activity during the normal seasonal anoestrous in female goats, and whether such treatment modifies the onset of the normal breeding season. Thirty-nine adult, open does were assigned to two treatments of similar mean body weight (BW) and body condition score (BCS). One treatment (LD; n=18) was housed in a light-proof building and exposed to long days (16 h of light/d) from 17 November to 5 February, and then exposed to the natural photoperiod in an open shed. The remaining females were housed in an open shed under natural photoperiod conditions throughout the experiment (control [C]; n=21). Plasma samples for progesterone, BW and BCS were recorded every wk. Oestrous activity was checked daily using aproned bucks. Bucks were housed close to females in a separate barn from the onset of the experiment. Ovulation rate was determined by laparoscopy 7 d after positive identification of oestrus. The interaction of treatment by time for temporal concentrations patterns of progesterone concentrations indicated that luteal activity in LD does were greater (P<0.001) than those of C does during the natural seasonal anoestrous season. None of the C does exhibited oestrous or luteal activity during the non-breeding season; whereas, 72% of LD does exhibited luteal activity only 33% of them showed oestrous activity and during this season (P<0.01). Differences in resumption of the oestrous or luteal activity were not observed (P>0.05) in the subsequent breeding season between treatments. In conclusion, 3 mo of exposing does to long days and daily contact with bucks during the breeding season appears to stimulate reproductive processes that normal would not occur during the anoestrous season. However, this treatment does not induce oestrus is adequate numbers of does to be of practical value. Finally, this treatment does not modify the onset of the subsequent natural breeding season.  相似文献   

7.
One experiment was conducted to determine whether the treatment with artificial long days and exogenous melatonin can induce reproductive activity during spring (seasonal anoestrus) in Mediterranean goats that are in daily contact with bucks and whether this treatment causes a variation in the reactivation of the reproductive activity in the normal breeding season. The experiment started on 4 November 2005 and finished on 27 October 2006. Thirty-four adult and barren does were used, distributed into two groups balanced according to their live weight (LW) and body condition score (BCS). Seventeen females were exposed to long days (16 h of light/day) from 14 November 2005 to 20 February 2006. On 20 February, they received one s.c. melatonin implant (LD-M group) and were exposed to natural photoperiodic changes in an open shed. The other females during the experiment were placed in an open shed under natural photoperiod and remained as the control group (C group). The C and LD-M groups were keeping in contact with males during the whole experiment. During the experiment, the LW, BCS and plasma progesterone concentrations were measured weekly, oestrous activity was tested daily using entire aproned bucks, and ovulation rate was evaluated by laparoscopy 7 days after positive identification of the oestrus. A clear treatment-time interaction was observed for plasma progesterone concentrations (P < 0.001), with a period of high progesterone concentrations during the natural seasonal anoestrus in the LD-M group. Although 94.1% of females in the LD-M group presented ovarian activity during this period, no female in group C did. Resumption of ovarian activity in the subsequent natural breeding season was 2 weeks later in the LD-M group in comparison with group C (P < 0.05). We can conclude that in Mediterranean goat breeding systems, when females are in daily contact with bucks, the treatment with 3 months of long days and melatonin implant at the end of the light photoperiodic treatment can induce ovarian and oestrous activity during the seasonal anoestrus. Finally, this treatment causes a short delay in the subsequent reactivation of ovarian activity in the natural breeding season.  相似文献   

8.
Summary This study examined whether cold, short day or melatonin causes reproductive regression and stimulates nonshivering thermogenesis in a subarctic rodentClethrionomys rutilus. Red-backed voles born and raised at 23°C and 22 h light per day (LD 22: 2) at Fairbanks, Alaska (65°N) were exposed in one of six groups to: 1) long day (LD 22:2), 23°C, injected daily with melatonin or saline 2 h before lights out, 2) long day, 3°C, injected daily with melatonin or saline, 3) short day (LD 8:16), 23°C or 3°C. Voles were tested for nonshivering thermogenesis (NST) prior to and after 8 wk exposure. Body weight, testes weight and female reproductive tract weight were assessed after 8 wk in long day and 12 wk in short day.NST was not altered by short day or melatonin but cold (3°C) caused an increase in NST which was similar in long day and short day.Body weight of males and females was not affected by short day but was decreased by melatonin.Short day did not alter mean testes weight (about 20% voles regressed) but reduced mean female reproductive tract weight (more than 40% voles regressed). Melatonin reduced testes weight and female reproductive tract weight (more than 50% of voles of both sexes regressed).The results suggest that in northern red-backed voles: 1) the pineal does not mediate seasonal changes in thermogenic capacity, 2) the pineal may mediate reduction of body weight and regression of reproductive organs but, in addition to daylength, other cues or factors may be important, 3) populations may exhibit variability in sensitivity of reproduction to photoperiod which could allow for opportunistic breeding.Abbreviations NST nonshivering thermogenesis - NE norepinephrine - RMR resting metabolic rate  相似文献   

9.
The body fattening and weight gain preceding vernal migration in birds is timed by a set of environmental factors of which daylength is predominant. However, the mechanism(s) by which these events is determined is poorly understood. Previous investigations on a photoperiodic migratory species, the blackheaded bunting ( Emberiza melanocephala ), indicate the involvement of a light-sensitive circadian rhythm during initiation of fat deposition and body weight gain. This communication presents data from another set of experiments aimed to characterize further the mechanism(s) of fat deposition in the same species.
Groups of photosensitive, unstimulated and stimulated birds were subjected to transfer and superimposition experiments for 30 days. While the former set included shifting of long-day (LD) birds to DD, SD (short days), DD/LD and SD/LD, in the latter a 90-minute bright light was superimposed at two different times of the day during the dim-green lighted phase 15L:9D of varying intensity. Birds were weighed at the beginning and at the end of experiments. Those in transfer cycles were also weighed at 10-day intervals. The results suggest that the premigratory body fattening and weight gain in blackheaded buntings is light dependent and timed by environmental daylength in accordance with the photosensitive endogenous circadian rhythm (ECR). They also show that the photoperiodic responses in birds in general are mediated by circadian rhythm(s).  相似文献   

10.
Mouflon and domestic Manchega sheep differ in the timing of their reproductive season under natural photoperiod (NP) conditions. This study examines whether they also differ in their reproductive responses to artificial photoperiod cues. For this, mouflons (n=24) and ewes (n=24) were exposed between the winter and summer solstices to artificial long days (LD: 16 h light/day), to short days (SD) simulated via the use of melatonin implants, or to NP conditions (controls), and their ovulatory activity monitored. The effects of these treatments on annual changes in prolactin concentration were also recorded. In the LD mouflon ewes, the offset and onset (7 March ± 5 and 2 October ± 4, respectively) of cyclic ovulatory activity occurred earlier (P<0.001) than in the NP animals (26 April ± 6 and 20 October ± 2, respectively), but no differences were seen (P>0.05) between the SD and NP mouflon ewes in either the onset of anoestrus (12 May ± 6 and 26 April ± 6, respectively) or the onset of subsequent ovulatory activity (13 October ± 8 and 20 October ± 2, respectively); however the duration of the anoestrus period was significantly reduced in the SD. In LD Manchega ewes, the onset of anoestrus was advanced (2 February ± 5 vs 15 March ± 11), but ovulatory activity started at the same time as in NP Manchega ewes (16 July ± 4 vs 5 July ± 8). In the SD Manchega ewes, two animals showed continuous cyclic ovulatory activity over the course of the experiment while the remainder entered anoestrus two months later (16 May ± 6, P<0.001) than their NP counterparts. In these SD ewes, the onset of cyclic ovarian activity was very variable. An annual rhythm of plasma prolactin concentration was seen in both the mouflon and Manchega ewes under all three photoperiod conditions. However, the amplitudes of the changes seen in prolactin concentration were smaller in both the LD and SD animals than in the corresponding NP animals (P<0.001). In conclusion, the results show that these two types of Mediterranean sheep differ in their ovulatory response when subjected to artificial photoperiods. The results also suggest that refractoriness to SDs may be the most important physiological mechanism regulating the onset of anoestrus in highly seasonal breeds, but not in less seasonal breeds.  相似文献   

11.
The aim of the study was to find out whether there is a daily rhythm in goat serum cortisol concentrations, whether the concentration profiles differ between normal light:dark and constant dark conditions, and whether any seasonal variations might be detected in daily cortisol secretion patterns. Seven Finnish landrace goats were kept at indoor temperature (18-23°C) under artficial lighting that approximately simulated the annual changes of daylength at 60°N. Blood samples were collected for cortisol measurements by radioimmunoassay at 2h intervals during six times of the year: winter (light:dark 6:18h), early spring (10:14h), late spring (14:10h), summer (18:6h), early fall (14:10h), and late fall (10:14h). Cortisol profiles were determined for two consecutive days, first in light:dark (LD) conditions and then in continuous darkness (DD). There was no significant daily rhythm in serum cortisol levels in any time of the year, nor did the profiles in LD and DD conditions show any differences. A significant seasonal variation was, however, detected among the overall cortisol levels. In winter, the concentrations were higher than in any other season, and from early spring to summer they were at their lowest. Under equal photoperiods, the cortisol levels were higher in fall than spring. The difference between winter and summer was confirmed in the following year in LD conditions. There was no correlation between the serum cortisol and progesterone levels. The results suggest that the possible circadian variation of cortisol secretion in goats is completely masked by external factors, and the lighting conditions do not have immediate effects on the daily secretion patterns. The seasonal variation in the overall cortisol levels is most probably related to the changes in photoperiod, because other conditions were relatively constant during the experiment.  相似文献   

12.
Opportunistic breeders inhabit areas with unpredictable changes in environmental conditions. In such places favorable breeding conditions can occur during any time of year, and one prediction is that individuals should attend to photoperiod less than to more immediate cues to time reproduction. This study tests whether zebra finches utilize photoperiod independently of other proximate cues, specifically food availability. We transferred semi-domesticated male Lesser Sundas zebra finches (Taeniopygia guttata guttata) from 8 h light, 16 h dark per day (8L:16D) with ad libitum food availability to 20L:4D with ad libitum food (LD ad lib group) or food restriction (LD restricted group). A third group remained on 8L:16D with ad libitum food availability (SD ad lib group). Testis volume in LD ad lib males increased and was larger than other groups within 30 and 60 days of photostimulation. By contrast, LD restricted males and SD ad lib males did not exhibit significant gonadal growth. However, both LD groups increased mass irrespective of food availability. Surprisingly, at the end of the experiment the SD ad lib group sang the most undirected song. Our data demonstrate that long days alone are not sufficient to drive reproductive development in this opportunistically breeding species. Rather, it appears that reproductive development is stimulated by extended feeding times or increased food abundance during long days, and not by changes in day length per se. These data lend support to the proposition that photoperiod acts as a supplementary cue or permissive factor in this system, and thus represents the possibility of a reversal in the hierarchy of cue sensitivity.  相似文献   

13.
Studies on the maternal transfer of photoperiodic information in mammals indicate that the daily photoperiod perceived by the mother during the gestation-lactation period is communicated to the fetus either through the placenta or via the milk. However, the impact of photoperiodic exposures during gestation and lactation on the maternal pineal and reproductive physiology has not been reported for any tropical rodent. The exposure of pregnant female Indian palm squirrels (Funambulus pennanti) to constant light (24 h light:0 h dark), constant dark (0 h light:24 h dark), long daylength (14 h light:10 h dark) or short daylength (10 h light:14 h dark) during early gestation (< 30 days) resulted in the resorption of pregnancy, while during late gestation (> 30 days), it did not interfere with the maintenance of pregnancy. Alterations in photoperiodic condition during late gestation and lactation altered the postpartum recovery process. Pineal gland activity, as assessed by pineal mass, protein content and plasma melatonin, was lowest during the breeding phase, but increased gradually after parturition until the next breeding phase. During gestation and lactation, constant light, long daylength and short daylength conditions were less effective, while constant dark condition had a profound effect in depressing pineal gland activity, which subsequently advanced postpartum recovery. Hence, lactating females under constant darkness prepare themselves for next mating much earlier than females under natural daylength (12 h light:12 h dark) conditions. Therefore, photoperiodic information, mediated via the pineal gland, may be important for maintaining gestation physiology as well as postpartum recovery in female rodents.  相似文献   

14.
Seasonality of reproduction in sheep and its control by photoperiod   总被引:3,自引:0,他引:3  
Seasonality of the reproductive cycle in sheep is a general phenomenon for mid-latitude breeds. The proximal part (breeding season) and also partially distal part (end of gestation and beginning of lactation) of this cycle is controlled by photoperiod, whatever the form of light regimens. Data are presented which indicate that male and female do not necessarily have the same photoperiodic sensitivity. Gonadal stimulation in the ram starts 1.5-2 months earlier than in the ewe under annual variations. Photoperiod controls the reproductive cycle by the intermediary of the hypothalamo-pituitary axis. There are both a steroid-independent and a steroid-dependent effect of light, depending on both decreasing and increasing daylength in mid-latitudes. Data are also presented which support Bunning's hypothesis on photoperiodic time measurement in mammals. Sheep measure photoperiodic time by using a circadian rhythm of photosensitivity. Daylength is not measured by the total duration of exposure to light but by the illumination of two special set points during the day, one of them entraining the circadian rhythm of photosensitivity and the other inducing or not inducing a physiological response if it is coincident, or not coincident, with photoinducible phase of that rhythm. A photoinducible phase has been found for prolactin secretion, and perhaps also for LH secretion. Melatonin secretion is used by sheep for measuring daylength. However, that secretion disappears during two set points during the day, thus raising the possibility of using alternatively melatonin and light pulse for controlling the reproductive cycle in sheep.  相似文献   

15.
The KiSS-1 gene encodes kisspeptin, the endogenous ligand of the G-protein-coupled receptor GPR54. Recent data indicate that the KiSS-1/GPR54 system is critical for the regulation of reproduction and is required for puberty onset. In seasonal breeders, reproduction is tightly controlled by photoperiod (i.e., day length). The Syrian hamster is a seasonal model in which reproductive activity is promoted by long summer days (LD) and inhibited by short winter days (SD). Using in situ hybridization and immunohistochemistry, we show that KiSS-1 is expressed in the arcuate nucleus of LD hamsters. Importantly, the KiSS-1 mRNA level was lower in SD animals but not in SD-refractory animals, which spontaneously reactivated their sexual activity after several months in SD. These changes of expression are not secondary to the photoperiodic variations of gonadal steroids. In contrast, melatonin appears to be necessary for these seasonal changes because pineal-gland ablation prevented the SD-induced downregulation of KiSS-1 expression. Remarkably, a chronic administration of kisspeptin-10 restored the testicular activity of SD hamsters despite persisting photoinhibitory conditions. Overall, these findings are consistent with a role of KiSS-1/GPR54 in the seasonal control of reproduction. We propose that photoperiod, via melatonin, modulates KiSS-1 signaling to drive the reproductive axis.  相似文献   

16.
The effects on sex pheromone-releasing, or calling behaviour, of diel photoperiods of varying daylength, of light cycle phase shifts, and of continuous illumination were investigated in Trogoderma glabrum females. On light régimes with 8 to 20 hr daylengths, calling maxima tended to centre close to photophase midpoints. Although influencing the time of day at which calling occurred, daylength had little effect on the amount of activity or the length of the calling period. When 16 : 8 LD light cycles were advanced or delayed by 4 hr, the time of day at which calling peaks were observed shifted within 2 to 4 cycles so that a constant phase relationship with photoperiod was maintained. Daily calling peaks were evident in groups of females exposed to between 1 and 5 days of continuous illumination, but mean calling time occurred earlier in the day as light exposures were lengthened. It was concluded that a circadian rhythm of calling behaviour exists in T. glabrum females. and that the rhythm can be entrained to 24 hr periodicity by photoperiod.  相似文献   

17.
The timing of reproductive activity in seasonal breeding sheep relies on daily photoperiodic signals being relayed to provide information on the time of year. Although light and melatonin are involved, the exact mechanism is not understood. In this experiment, three groups of 6 Romney Marsh ewes, a highly seasonal breed, were provided with 8 weeks of short nights (9.6-9.8 h, by artificially advancing dawn) around the winter solstice, near the end of their natural breeding season. One group of animals was infused to a physiological level with melatonin for 5 h during the afternoon prior to the onset of dark, while a second group was identically infused but for 5 h from the time of lights on. A third group received the short-night treatment only. Following the short-night treatment, all groups were exposed to long nights (> 14 h, by delaying dawn) until the summer solstice. Ovarian activity, assessed by progesterone monitoring twice weekly, showed that the noninfused and the morning-infused groups displayed renewed reproductive activity in response to the short-night/long-night treatment. There was no renewed ovarian activity in the afternoon-infused group, indicating that the time of day that melatonin is present, rather than the duration of melatonin exposure, is an important signal in the control of reproductive timing. Measurements of a marker of the endogenous circadian pacemaker, by melatonin measurements under acutely extended darkness, revealed that the short-night treatments phase advanced the onset of the pacemaker in all groups such that the afternoon phase of the pacemaker was coincident with light. The results provide strong support for the model that proposes that an afternoon-located sensitive phase of the pacemaker is responsible for the relay of photoperiodic signals in the timing control of seasonal breeding. The model proposes that the reproductive axis be primed during short nights when the sensitive phase is coincident with light in the afternoon so ovarian activity can be induced when the sensitive phase is located within the longer nights of autumn and coincident with endogenous melatonin.  相似文献   

18.
Mink are seasonal photosensitive breeders; testis activity is triggered when days have less than 10 h light. Increasing and decreasing plasma concentrations of prolactin induce the spring and autumn moults. In a 5 year experiment, males were maintained under short days (8 h light:16 h dark) at 13 degrees C or long days (16 h light:8 h dark) at 21 degrees C, winter and summer conditions, respectively. Under winter and summer conditions, circannual cycles of prolactin secretion and moulting were observed at intervals of about 11 months. Recurrence of testis cycles was not evident. In a second experiment, males were maintained under an 8 h light:16 h dark cycle from the winter solstice or under 10 h light:14 h dark, 12 h light:12 h dark or 14 h light:10 h dark cycles from 10 February. Under 8 h light:16 h dark cycle, testis regression was slightly later than under natural conditions, indicating photorefractoriness. However, mink remained sensitive to light: the longer the photoperiod, the faster the testis regression. In a third experiment, males were transferred under 8 h light:16 h dark or 16 h light:8 h dark from 15 May (group 1), 12 June (group 2) or 4 July (group 3); males submitted to long days received melatonin capsules on the day of transfer. Increasing concentrations of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) and testis volume were shown by half the males in group 2 and nearly all the males in group 3; the constant release of melatonin from implants was more efficient than short days; but in the three groups, prolactin concentrations decreased in the few days after short-day or melatonin treatment. Overall, the results demonstrate endogenous circannual rhythms of prolactin secretion, body weight and moulting. Although a refractory period to short days was observed, the annual cycle of testis activity totally relies on the annual changes in daylength.  相似文献   

19.
Seasonal breeding is a universal reproductive strategy in many animals. Hypothalamic genes, especially type 2 and 3 iodothyronine deiodinases (Dio2/3), RFamide‐related peptide 3 (Rfrp‐3), kisspeptin (Kiss‐1) and gonadotropin‐releasing hormone (GnRH), are involved in a photoperiodic pathway that encodes seasonal signals from day length in many vertebrate species. However, the seasonal expression patterns of these genes in wild mammals are less studied. Here, we present a four‐year field investigation to reveal seasonal rhythm and age‐dependent reproductive activity in male Brandt's voles (Lasiopodomys brandtii) and to detect relationships among seasonal expression profiles of hypothalamic genes, testicular activity, age and annual day length. From breeding season (April) to nonbreeding season (October), adult male voles displayed a synchronous peak in gonadal activity with annual day length around summer solstice, which was jointly caused by age structure shifts and age‐dependent gonadal development patterns. Overwintered males maintained reproductive activity until late in the breeding season, whereas most newborn males terminated gonadal development completely, except for a minority of males born early in spring. Consistently, the synchronous and opposite expression profiles of Dio2/3 suggest their central function to decode photoperiodic signals and to predict the onset of the nonbreeding season. Moreover, changes in Dio2/3 signals may guide the actions of Kiss‐1 and Rfrp‐3 to regulate the age‐dependent divergence of reproductive strategy in wild Brandt's vole. Our results provide evidence on how hypothalamic photoperiod genes regulate seasonal breeding in a natural rodent population.  相似文献   

20.
Most temperate-zone birds live in environments with a regular seasonality, and primarily use the long-term changes in photoperiod as a cue to initiate gonadal development in anticipation of the breeding season. Short-term cues such as food and temperature are later used to fine-tune the rate of gonadal development to local conditions. Many tropical habitats are seasonal, but the timing of the seasons (e.g., rainy season) can vary considerably between years. We hypothesize that to time breeding in environments with seasonal variability, tropical birds respond to both long-term and short-term environmental cues to initiate gonadal growth. We tested the effectiveness of photoperiod and food cues for the initiation of gonad growth in captive male spotted antbirds (Hylophylax n. naevioides) from Panama. A ‘control’ group was maintained on the short natural photoperiod of 12 h light and 12 h dark (LD 12:12) and adequate food. A ‘food-stimulated’ group was also held on LD 12:12 but received an increase in food quantity and quality. A ‘photo+food-stimulated’ group experienced an increase in daylength by 1 h (LD 13:11, the maximal photoperiod in Panama) and an increase in food quantity and quality. Within 3 weeks testis sizes of ‘food-stimulated’ birds increased significantly, suggesting that food cues alone can initiate gonad development. As expected from the previous experiment, testis sizes of ‘photo+food-stimulated’ birds, but not ‘control’ birds, also increased. We suggest that the capability to respond to both food and photoperiodic cues allows animal the flexibility to adjust reproductive activity to variable environmental conditions each year. Future work should elucidate whether food provides nutritional or non-nutritional cues, and the neurophysiological mechanisms by which food stimulates reproductive activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号