首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The recycling of synaptic vesicles in nerve terminals involves multiple steps, underlies all aspects of synaptic transmission, and is a key to understanding the basis of synaptic plasticity. The development of styryl dyes as fluorescent molecules that label recycling synaptic vesicles has revolutionized the way in which synaptic vesicle recycling can be investigated, by allowing an examination of processes in neurons that have long been inaccessible. In this review, we evaluate the major aspects of synaptic vesicle recycling that have been revealed and advanced by studies with styryl dyes, focussing upon synaptic vesicle fusion, retrieval, and trafficking. The greatest impact of styryl dyes has been to allow the routine visualization of endocytosis in central nerve terminals for the first time. This has revealed the kinetics of endocytosis, its underlying sequential steps, and its regulation by Ca2+. In studies of exocytosis, styryl dyes have helped distinguish between different modes of vesicle fusion, provided direct support for the quantal nature of exocytosis and endocytosis, and revealed how the probability of exocytosis varies enormously from one nerve terminal to another. Synaptic vesicle labelling with styryl dyes has helped our understanding of vesicle trafficking by allowing better understanding of different synaptic vesicle pools within the nerve terminal, vesicle intermixing, and vesicle clustering at release sites. Finally, the dyes are now being used in innovative ways to reveal further insights into synaptic plasticity.  相似文献   

2.
Neurons in the central nervous system establish, via their axons and dendrites, an extended network that allows synaptic transmission. During developmental maturation and process outgrowth, membrane turnover is necessary for the enlargement and subsequent growth of axons and dendrites from the perikarya to the target cell (constitutive exocytosis/endocytosis). After targeting and synapse formation, small synaptic vesicles are needed for the quantal release of neurotransmitters from the presynaptic terminal with subsequent recycling by regulated exocytosis/endocytosis. An investigation of the onset of the appearance of mRNA and protein in dissociated cultures of neurons from mouse hippocampus or from chick retina has shown an early abundance of proteins involved in exocytosis, such as syntaxin 1, SNAP-25, and synaptotagmin 1, whereas dynamin 1, a protein necessary for clathrin-mediated endocytosis, can be detected only after neurons have established contacts with neighboring cells. The results reveal that constitutive membrane incorporation and regulated synaptic transmitter release is mediated by the same neuronal proteins. Moreover, the data exclude that dynamin 1 takes part in constitutive recycling before synapse formation, but dynamin 2 is present at this stage. Thus, dynamin 2 may be the constitutive counterpart of dynamin 1 in growing neurons. Synapse establishment is linked to an upregulation of dynamin 1 and thereby represents the beginning of the regulated recycling of membranes back into the presynaptic terminal.  相似文献   

3.
Endocytosis at ribbon synapses   总被引:1,自引:0,他引:1  
Unlike conventional synaptic terminals that release neurotransmitter episodically in response to action potentials, neurons of the visual, auditory and vestibular systems encode sensory information in graded signals that are transmitted at their synapses by modulating the rate of continuous release. The synaptic ribbon, a specialized structure found at the active zones of these neurons, is necessary to sustain the high rates of exocytosis required for continuous release. To maintain the fidelity of synaptic transmission, exocytosis must be balanced by high-capacity endocytosis, to retrieve excess membrane inserted during vesicle fusion. Capacitance measurements following vesicle release in ribbon-type neurons indicate two kinetically distinct phases of compensatory endocytosis, whose relative contributions vary with stimulus intensity. The two phases can be independently regulated and may reflect different underlying mechanisms operating on separate pools of recycling vesicles. Electron microscopy shows diversity among ribbon-type synapses in the relative importance of clathrin-mediated endocytosis versus bulk membrane retrieval as mechanisms of compensatory endocytosis. Ribbon synapses, like conventional synapses, make use of multiple endocytosis pathways to replenish synaptic vesicle pools, depending on the physiological needs of the particular cell type.  相似文献   

4.
Calakos N  Schoch S  Südhof TC  Malenka RC 《Neuron》2004,42(6):889-896
The active zone protein RIM1alpha interacts with multiple active zone and synaptic vesicle proteins and is implicated in short- and long-term synaptic plasticity, but it is unclear how RIM1alpha's biochemical interactions translate into physiological functions. To address this question, we analyzed synaptic transmission in autaptic neurons cultured from RIM1alpha-/- mice. Deletion of RIM1alpha causes a large reduction in the readily releasable pool of vesicles, alters short-term plasticity, and changes the properties of evoked asynchronous release. Lack of RIM1alpha, however, had no effect on synapse formation, spontaneous release, overall Ca2+ sensitivity of release, or synaptic vesicle recycling. These results suggest that RIM1alpha modulates sequential steps in synaptic vesicle exocytosis through serial protein-protein interactions and that this modulation is the basis for RIM1alpha's role in synaptic plasticity.  相似文献   

5.
Neurotransmitter release proceeds by Ca(2+)-triggered, SNARE-complex-dependent synaptic vesicle fusion. After fusion, the ATPase NSF and its cofactors α- and βSNAP disassemble SNARE complexes, thereby recycling individual SNAREs for subsequent fusion reactions. We examined the effects of genetic perturbation of α- and βSNAP expression on synaptic vesicle exocytosis, employing a new Ca(2+) uncaging protocol to study synaptic vesicle trafficking, priming, and fusion in small glutamatergic synapses of hippocampal neurons. By characterizing this protocol, we show that synchronous and asynchronous transmitter release involve different Ca(2+) sensors and are not caused by distinct releasable vesicle pools, and that tonic transmitter release is due to ongoing priming and fusion of new synaptic vesicles during high synaptic activity. Our analysis of α- and βSNAP deletion mutant neurons shows that the two NSF cofactors support synaptic vesicle priming by determining the availability of free SNARE components, particularly during phases of high synaptic activity.  相似文献   

6.
7.
Evidence is accumulating on a key role of T-type channels in neurotransmitter release. Recent works have brought undisputable proofs that T-type channels are capable of controlling hormone and neurotransmitters release in association with exocytosis of large dense-core and synaptic vesicles. T-type channel-secretion coupling is not as ubiquitous as that shown for N- and P/Q-type channels in central neurons. In this case, the high-density of Cav2 channel types and co-localization to the release sites ensure high rates of vesicle release and synchronous synaptic responses. Nevertheless, when sufficiently expressed in distal dendrites and neurosecretory cells, T-type channels are able to drive the fast fusion of vesicles ready for release during "low-threshold" Ca2+-entry. T-type channels appear effectively coupled to fast vesicle depletion and may possibly regulate other Ca2+-dependent processes like vesicle recycling and vesicle mobilization from a reserve pool that are important mechanisms controlling synaptic activity during sustained stimulation. Here, we will briefly review the main findings that assign a specific task to T-type channels in fast exocytosis discussing their possible involvement in the control of the Ca2+-dependent processes regulating synaptic activity and vesicular hormone release.  相似文献   

8.
We have labeled recycling synaptic vesicles at the somatic Bufo marinus neuromuscular junction with the styryl dye FM2-10 and provide direct evidence for refractoriness of exocytosis associated with a muscle activity-dependent form of long-term depression (LTD) at this synapse. FM2-10 dye unloading experiments demonstrated that the rate of vesicle exocytosis from the release ready pool (RRP) of vesicles was more than halved in the LTD (induced by 20 min of low frequency stimulation). Recovery from LTD, observed as a partial recovery of nerve-evoked muscle twitch amplitude, was accompanied by partial recovery of the refractoriness of RRP exocytosis. Unexpectedly, paired pulse plasticity, another routinely used indicator of presynaptic forms of synaptic plasticity, was unchanged in the LTD. We conclude that the LTD induces refractoriness of the neuromuscular vesicle release machinery downstream of presynaptic calcium entry.  相似文献   

9.
Presynaptic nerve terminals contain a great number ofsynaptic vesicles filled with neurotransmitter. The transmission of information in synapses is mediated by release of transmitter from vesicles: exocytosis, after their fusion with presynaptic membrane. At the functioning synapses, the continuous recycling of synaptic vesicles occurs (vesicle cycle), which provides multiple reuse of vesicular membrane material during synaptic activity. Vesicle cycle consists of large number of steps, including vesicle fusion--exocytosis, formation of new vesicles--endocytosis, vesicle sorting, filling of vesicles with transmitter, intraterminal vesicle transport driving the vesicles to different vesicle pools and preparing to next exocytic event. At this paper, I presented the latest literature and our data regarding the steps and mechanisms of vesicle cycle at synapses. Special attention was paid to neuromuscular synapse as the most thoroughly investigated and as my favorite preparation.  相似文献   

10.
The clear synaptic vesicles of neurons release their contents at the presynaptic membrane and are then quickly retrieved. However, it is unclear whether a complete cycle of exocytosis and endocytosis is always involved or whether neurotransmitter can be released by a transient interaction. Recent findings in chromaffin and mast cells suggest that exocytosis is preceded by the formation of a pore that has similar conductance properties to ion channels. The content of the secretory organelle partially escapes at this early step, but the pore can close before the vesicle fuses fully. This article looks at the evidence that quantal release of neurotransmitter from clear synaptic vesicles may occur by a similar 'kiss-and-run' mechanism.  相似文献   

11.
Using immunocytochemical assays and patch-clamp and calcium-imaging recordings, we demonstrate that L-type and N-type calcium channels have distinct patterns of expression and distribution and play different functional roles during hippocampal neuron differentiation. L-type channels, which support the depolarization-induced calcium influx in neurons from the very early developmental stages, are functionally restricted to the somatodendritic compartment throughout neuronal development and play a crucial role in supporting neurite outgrowth at early developmental stages. N-type channels, which start contributing at later neuronal differentiation stages (3-4 DIV), are also functionally expressed in the axons of immature neurons. At this developmental stage preceding synaptogenesis, N-type (but not L-type) channels are involved in controlling synaptic vesicle recycling. It is only at later developmental stages (10-12 DIV), when the neurons have established a clear axodendritic polarity and form synaptic contacts, that N-type channels are progressively excluded from the axon. Electrophysiological recordings of single neurons growing in microislands revealed that synaptic maturation coincides with a progressive increase in N-type channels in the somatodendritic region and a progressive decrease in the N-type channels supporting glutamate release from the presynaptic terminal. These results indicate that L-type and N-type calcium channels undergo dynamic, developmentally regulated rearrangements in regional distribution and function and also suggest that different mechanisms may be involved in the sorting and/or stabilization of these two types of channels in different plasma membrane domains during neuronal differentiation.  相似文献   

12.
We have studied the role of src family tyrosine kinases in regulating synaptic transmitter release from rat brain synaptosomes by using two assays that measure different aspects of synaptic vesicle exocytosis: glutamate release (that directly measures exocytosis of vesicle contents) and release of FM 2-10 styryl dye (that is proportional to the time the synaptic vesicle is fused to the plasma membrane). Depolarisation was induced by KCl (30 mM) or 4-aminopyridine (4AP: 0.3mM) to induce release by full fusion (FF) exocytosis, or by 1 mM 4AP to induce release by both FF and kiss-and-run (KR)-like exocytosis. The src family selective inhibitor, PP1 (10 microM), increased KCl and 0.3 mM 4AP-evoked Ca2+ -dependent release of glutamate, but had little effect upon exocytosis evoked by 1mM 4AP. PP1 did not affect the release of FM 2-10 under any of the depolarisation conditions used. PP1 also had no effect on overall intracellular calcium levels, as measured by FURA2, suggesting that the effects of the inhibitor are downstream of calcium entry. At the same concentration the inactive analogue of this compound, PP3, had no effect on any measure. Immunoblotting with an antibody to phosphotyrosine revealed that phosphorylation of many synaptosomal proteins was reduced by PP1. The immunoreactivity of three protein bands increased upon depolarisation and this increase was blocked by PP1. Phosphorylation of src at tyrosine-416 was reduced by PP1 but changes in its phosphorylation did not correlate with the effects of PP1 on release. These results suggest one or more members of the src family of tyrosine kinases is a negative regulator of the KR mode of exocytosis in synaptosomes, perhaps by tonically inhibiting KR under normal stimulation conditions.  相似文献   

13.
Cholesterol is highly enriched in the brain, and plays a key role in synapse formation and function. The brain does not derive cholesterol from the circulation; instead, the majority of cholesterol is made in glia and secreted in form of lipoproteins. Neurons can synthesize cholesterol, but the extent of neuronal cholesterol biosynthesis in the adult brain is unknown. Cholesterol biosynthesis inhibitors of the statin family are widely used to lower circulating cholesterol and cardiovascular risk. Lipophilic statins can cross the blood brain barrier and inhibit brain cholesterol biosynthesis with possible consequences for synaptic cholesterol homeostasis. We have investigated the effects of lovastatin on synapse maturation and synaptic vesicle release. Treatment of primary hippocampal neurons with low levels of lovastatin for one week reduced synapse density and impaired synaptic vesicle release. Neither lipoproteins nor geranylgeraniol fully counteracted the lovastatin-induced decrease of synaptic vesicle exocytosis, even when cholesterol depletion was prevented. In contrast, restoration of neuronal cholesterol synthesis with mevalonate prevented defects in vesicle exocytosis without fully normalizing neuronal cholesterol content. These results raise the possibility that chronic exposure of neurons to lipophilic statins may affect synaptic transmission, and indicate that hippocampal neurons need a certain level of endogenous cholesterol biosynthesis.  相似文献   

14.
At a wide range of synapses, synaptic vesicles reside in distinct pools that respond to different stimuli. The recycling pool supplies the vesicles required for release in response to modest stimulation, whereas the reserve pool is mobilized only by strong stimulation. Multiple pathways have been proposed for the recycling of synaptic vesicles after exocytosis, but the relationship of these pathways to the different synaptic vesicle pools has remained unclear. Synaptic vesicle proteins have also been assumed to undergo recycling as a unit. However, emerging data indicate that differences in the association with distinct endocytic adaptors such as the heterotetrameric adaptor AP3 influence the trafficking of individual synaptic vesicle proteins, affecting the composition of synaptic vesicles and hence their functional characteristics. These observations might begin to account for differences in the properties of different vesicle pools.  相似文献   

15.
Burrone J  Li Z  Murthy VN 《Nature protocols》2006,1(6):2970-2978
Genetically encoded fluorescent probes have become indispensable tools in the biological sciences. Studies of synaptic vesicle recycling have been facilitated by a group of GFP-derived probes called pHluorins. These probes exploit changes in pH that accompany exocytosis and recapture of synaptic vesicles. Here we describe how these synaptic tracers can be used in rodent hippocampal neurons to monitor the synaptic vesicle cycle in real time and to obtain mechanistic insights about it. Synapses can be observed in living samples using a wide-field fluorescence microscope and a cooled charge-coupled device camera. A simple specimen chamber allows electrical stimulation of synapses to evoke exocytosis in a precisely controlled manner. We present protocols to measure various parameters of the synaptic vesicle cycle. This technique can be easily adapted to study different classes of synapses from wild-type and mutant mice. Once cultured neurons expressing synaptopHluorin are available, the whole procedure should take about 2 h.  相似文献   

16.
Hippocampal neurons in tissue culture develop functional synapses that exhibit considerable variation in synaptic vesicle content (20–350 vesicles). We examined absolute and fractional parameters of synaptic vesicle exocytosis of individual synapses. Their correlation to vesicle content was determined by activity-dependent discharge of FM-styryl dyes. At high frequency stimulation (30 Hz), synapses with large recycling pools released higher amounts of dye, but showed a lower fractional release compared to synapses that contained fewer vesicles. This effect gradually vanished at lower frequencies when stimulation was triggered at 20 Hz and 10 Hz, respectively. Live-cell antibody staining with anti-synaptotagmin-1-cypHer 5, and overexpression of synaptopHluorin as well as photoconversion of FM 1-43 followed by electron microscopy, consolidated the findings obtained with FM-styryl dyes. We found that the readily releasable pool grew with a power function with a coefficient of 2/3, possibly indicating a synaptic volume/surface dependency. This observation could be explained by assigning the rate-limiting factor for vesicle exocytosis at high frequency stimulation to the available active zone surface that is proportionally smaller in synapses with larger volumes.  相似文献   

17.
After synaptic vesicle exocytosis, synaptic vesicle proteins must be retrieved from the plasma membrane, sorted away from other membrane proteins, and reconstituted into a functional synaptic vesicle. The nematode Caenorhabditis elegans is an organism well suited for a genetic analysis of this process. In particular, three types of genetic studies have contributed to our understanding of synaptic vesicle endocytosis. First, screens for mutants defective in synaptic vesicle recycling have identified new proteins that function specifically in neurons. Second, RNA interference has been used to quickly confirm the roles of known proteins in endocytosis. Third, gene targeting techniques have elucidated the roles of genes thought to play modulatory or subtle roles in synaptic vesicle recycling. We describe a molecular model for synaptic vesicle recycling and discuss how protein disruption experiments in C. elegans have contributed to this model.  相似文献   

18.
Syntaxin-1A is a t-SNARE that is involved in vesicle docking and vesicle fusion; it is important in presynaptic exocytosis in neurons because it interacts with many regulatory proteins. Previously, we found the following: 1) that autophosphorylated Ca2+/calmodulin-dependent protein kinase II (CaMKII), an important modulator of neural plasticity, interacts with syntaxin-1A to regulate exocytosis, and 2) that a syntaxin missense mutation (R151G) attenuated this interaction. To determine more precisely the physiological importance of this interaction between CaMKII and syntaxin, we generated mice with a knock-in (KI) syntaxin-1A (R151G) mutation. Complexin is a molecular clamp involved in exocytosis, and in the KI mice, recruitment of complexin to the SNARE complex was reduced because of an abnormal CaMKII/syntaxin interaction. Nevertheless, SNARE complex formation was not inhibited, and consequently, basal neurotransmission was normal. However, the KI mice did exhibit more enhanced presynaptic plasticity than wild-type littermates; this enhanced plasticity could be associated with synaptic response than did wild-type littermates; this pronounced response included several behavioral abnormalities. Notably, the R151G phenotypes were generally similar to previously reported CaMKII mutant phenotypes. Additionally, synaptic recycling in these KI mice was delayed, and the density of synaptic vesicles was reduced. Taken together, our results indicated that this single point mutation in syntaxin-1A causes abnormal regulation of neuronal plasticity and vesicle recycling and that the affected syntaxin-1A/CaMKII interaction is essential for normal brain and synaptic functions in vivo.  相似文献   

19.
The reactive species peroxynitrite, formed via the near diffusion-limited reaction of nitric oxide and superoxide anion, is a potent oxidant that contributes to tissue damage in neurodegenerative disorders. Peroxynitrite readily nitrates tyrosine residues in proteins, producing a permanent modification that can be immunologically detected. We have previously demonstrated that in the nerve terminal, nitrotyrosine immunoreactivity is primarily associated with synaptophysin. Here we identify two other presynaptic proteins nitrated by peroxynitrite, Munc-18 and SNAP25, both of which are involved in sequential steps leading to vesicle exocytosis. To investigate whether peroxynitrite affects vesicle exocytosis, we used the fluorescent dye FM1-43 to label a recycling population of secretory vesicles within the synaptosomes. Bolus addition of peroxynitrite stimulated exocytosis and glutamate release. Notably, these effects were strongly reduced in the presence of NaHCO(3), indicating that peroxynitrite acts mainly intracellularly. Furthermore, peroxynitrite enhanced the formation of the sodium dodecyl sulfate-resistant SNARE complex in a dose-dependent manner (100-1000 microm) and induced the formation of 3-nitrotyrosine in proteins of SNARE complex. These data suggest that modification(s) of synaptic vesicle proteins induced by peroxynitrite may affect protein-protein interactions in the docking/fusion steps, thus promoting exocytosis, and that, under excessive production of superoxide and nitric oxide, neurons may up-regulate neuronal signaling.  相似文献   

20.
Chen Y  Deng L  Maeno-Hikichi Y  Lai M  Chang S  Chen G  Zhang JF 《Cell》2003,115(1):37-48
A tight balance between synaptic vesicle exocytosis and endocytosis is fundamental to maintaining synaptic structure and function. Calcium influx through voltage-gated Ca2+ channels is crucial in regulating synaptic vesicle exocytosis. However, much less is known about how Ca2+ regulates vesicle endocytosis or how the endocytic machinery becomes enriched at the nerve terminal. We report here a direct interaction between voltage-gated Ca2+ channels and endophilin, a key regulator of clathrin-mediated synaptic vesicle endocytosis. Formation of the endophlin-Ca2+ channel complex is Ca2+ dependent. The primary Ca2+ binding domain resides within endophilin and regulates both endophilin-Ca2+ channel and endophilin-dynamin complexes. Introduction into hippocampal neurons of a dominant-negative endophilin construct, which constitutively binds to Ca2+ channels, significantly reduces endocytosis-mediated uptake of FM 4-64 dye without abolishing exocytosis. These results suggest an important role for Ca2+ channels in coordinating synaptic vesicle recycling by directly coupling to both exocytotic and endocytic machineries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号