首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although hybridization between species in Papaver is difficult, a combination of karyotypic and genomic analysis has allowed the definition of up to six, apparently independent genomes, in the 2n= 12 and 1n= 14 diploids. In the 2n= 14 group there is considerable karyotypic differentiation and karyotypes off. atlanticum and P. hybridum are sufficiently dissimilar from each other and from the rest to allow the recognition of the two genomes as unique although no hybrids with other x= 7 diploids were produced. The genome of P. atlanticum is defined as C7C7 and that of P. hybridum H7H7.P. alpinum and P. rhaeticum only hybridized successfully with each other and the near perfect bivalent formation in their hybrid, together with the extreme similarity of their karyotypes, suggests that they are very closely related. They are designated J7J7. All the other x=7 diploids are karyotypically similar and the analysis of meiosis in their hybrids demonstrates thay they all share the same genome to some extent. There is however some differentiation among them. P. commutatum, P. glaucum, P. macrostemum and P. rhoeas are genomically very similar and all can be regarded as A7A7. P.fugax and P. tauricola appear to share an identical genome, partially differentiated from A7A7 and are defined as A27A27 while P. postii, although showing some little homology with A7A7 is sufficiently differentiated from it to be regarded as more distant than A27A27 and is described as A37A37. Although no hybrids between the two 2n= 12 diploids P. apulum and P.pavoninum were produced their karyotypes are sufficiently different to be individually recognized. The only hybrid produced between the x= 6 and x= 7 groups (P. apulum×P. hybridum) showed no homology between the chromosomes of the two genomes and, although this may not be true for any other x=6/x=7 combinations it is best to recognize the two x= 6 genomes as independent of the x= 7. The genome of P. apulum is thus regarded as I6I6 and that of P. pavoninum as P6P6.  相似文献   

2.
 Chromosome pairing at metaphase-I was analyzed in F1 hybrids among T. turgidum (AABB), T. aestivum (AABBDD), and T. timopheevii (AtAtGG) to study the chromosome structure of T. timopheevii relative to durum (T. turgidum) and bread (T. aestivum) wheats. Individual chromosomes and their arms were identified by means of C-banding. Homologous pairing between the A-genome chromosomes was similar in the three hybrid types AAtBG, AAtBGD, and AABBD. However, associations of B-G were less frequent than B-B. Homoeologous associations were also observed, especially in the AAtBGD hybrids. T. timopheevii chromosomes 1At, 2At, 5At, 7At, 2G, 3G, 5G, and 6G do not differ structurally from their counterpart in the A and B genomes. Thus, these three polyploid species inherited translocation 5AL/4AL from the diploid A-genome donor. Chromosome rearrangements that occurred at the tetraploid level were different in T. turgidum and T. timopheevii. Translocation 4AL/7BS and a pericentric inversion of chromosome 4A originated only in the T. turgidum lineage. The two lines of T. timophevii studied carry four different translocations, 6AtS/1GS, 1GS/4GS, 4GS/4AtL, and 4AtL/3AtL, which most likely arose in that sequence. These structural differences support a diphyletic origin of polyploid wheats. Received: 15 June 1998 / Accepted: 19 August 1998  相似文献   

3.
Summary The DNAs of two diploid species of Gossypium, G. herbaceum var. africanum (A1 genome) and G. raimondii (D5 genome), and the allotetraploid species, G. hirsutum (Ah and Dh genomes), were characterized by kinetic analyses of single copy and repetitive sequences. Estimated haploid genome sizes of A1 and D5 were 1.04 pg and 0.68 pg, respectively, in approximate agreement with cytological observations that A genome chromosomes are about twice the size of D genome chromosomes. This differences in genome size was accounted for entirely by differences in the major repetitive fraction (0.56 pg versus 0.20 pg), as single copy fractions of the two genomes were essentially identical (0.41 pg for A1 and 0.43 pg for D5). Kinetic analyses and thermal denaturation measurements of single copy duplexes from reciprocal intergenomic hybridizations showed considerable sequence similarity between A1 and D5 genomes (77% duplex formation with an average thermal depression of 6 °C). Moreover, little sequence divergence was detectable between diploid single copy sequences and their corresponding genomes in the allotetraploid, consistent with previous chromosome pairing observations in interspecific F1 hybrids.Journal paper No. 4461 of the Arizona Agricultural Experiment Station  相似文献   

4.
Cytological and genetical studies are reported on the hybrid and later generations ofGossypium herbaceum (A1 genome) xG. triphyllum (Hg genome). Chromosome pairing between the two genomes was high, and their chromosomes are considered, with minor exceptions, to be strueturally similar. Studies of the F1 and segregating families showed thatG. triphyllum carries the complementary factorsR inf2 supΘS R infa supGO for petal spot,Y a(Yb) Y infc supP for cream petal,pa for cream pollen, andY ap for depression of yellow petal pigment. Leaf ahape ofG. triphyllum was dominant to the leaf shape ofG. herbaceum. The blue petal color ofG. triphyllum was recovered only in the backeross of the F1 to this species. Contribution from the Agricultural Experiment Stations of Arizona and Texas. Part of this work was done under Regional Research Project S-1 of the Hatch Act (Amended). 1. Address of first author; 2. Address of second author.  相似文献   

5.
Homoeologous metaphase I (MI) pairing of Triticum aestivum × Aegilops geniculata hybrids (2n = 5× = 35, ABDUgMg) has been examined by an in situ hybridization procedure permitting simultaneous discrimination of A, B, D and wild genomes. The seven D genome chromosomes (and their arms, except for 6D and 7D) plus some additional wheat chromosomes were also identified. Wheat-wild MI associations represented more than 60% of total, with an average ratio of 5:1:12 for those involving the A, B and D genomes, respectively. A remarkable between-chromosome variation for the level of wheat-wild genetic exchange is expected within each wheat genome. However, it can be concluded that 3DL and 5DL are the crop genome locations with the highest probability of being transferred to Ae. geniculata. Hybrids derived from the ph2b wheat mutant line showed increased MI pairing but identical pattern of homoeologous associations than those with active Ph2.  相似文献   

6.
Summary An aneupolyhaploid (2n = 36) of the decaploid Thinopyrum ponticum and an amphidiploid (2n = 28) of Hordeum violaceum x Hordeum bogdanii were produced through anther and inflorescence culture, respectively. Meiotic associations in pollen mother cells at metaphase I of these plants were analyzed. The aneupolyhaploid arose by direct embryogenesis from a microspore without passing through a callus phase. The mean pairing frequencies of 2.67 univalents + 0.54 rod bivalents + 8.85 ring bivalents + 2.75 trivalents + 0.17 chain quadrivalents + 0.56 ring quadrivalents + 0.65 pentavalents in the aneupolyhaploid (2n = 36) best fit the 221 model. However, the frequent multivalents (up to five trivalents, or three quadrivalents, or four pentavalents in a cell) indicated that decaploid T. ponticum has five sets of closely related genomes representable by the genome formula J1 J1 J1 J2 J2. Colchicine treatment of inflorescence-derived H. violaceum x H. bogdanii regenerants greatly enhanced the rate of chromosome doubling, and completely doubled regenerants could be isolated. The H. violaceum x H. bogdanii amphidiploid had a mean pairing pattern of 12.53 univalents + 5.57 rod bivalents + 1.97 ring bivalents + 0.07 trivalents + 0.03 hexavalents, indicating the presence of desynaptic gene(s) in the original diploiid hybrid. Therefore, the pairing frequency in that diploid hybrid was an under-estimate of chromosome homology between the parental genomes, and additional diploid hybrids are needed to assess the genome homology between H. violaceum and H. bogdanii. These two contrasting experiments demonstrated that tissue culture techniques are useful in altering the ploidy level to produce plant materials suitable for genome analysis and phylogenetic studies.Cooperative investigation of the USDA-ARS, Forage and Range Research Laboratory, Logan, UT 84322-6300, and the Utah Agricultural Experiment Station, Utah State University, Logan, UT 84322-4810. Approved as journal paper No. 3991  相似文献   

7.
Chhetri  Geeta  Kim  Jiyoun  Kim  Inhyup  Kang  Minchung  So  Yoonseop  Seo  Taegun 《Antonie van Leeuwenhoek》2021,114(11):1925-1934

A novel Gram-stain negative, asporogenous, slimy, rod-shaped, non-motile bacterium ROOL2T was isolated from the root samples collected from a rice field located in Ilsan, South Korea. Phylogenetic analysis of the 16S rRNA sequence showed 96.5% similarity to Tianweitania sediminis Z8T followed by species of genera Mesorhizobium (96.4–95.6%), Aquabacterium (95.9–95.7%), Rhizobium (95.8%) and Ochrobactrum (95.6%). Strain ROOL2T grew optimally at 30 °C in the presence of 1–6% (w/v) NaCl and at pH 7.5. The major respiratory quinone was ubiquinone-10 and the major cellular fatty acids were C18:1ω7c, summed feature 4 (comprising iso-C17:1 I and/or anteiso-C17:1 B) and summed feature 8 (comprising C18:1ω6c and/or C18:1ω7c). The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylmethylethanolamine, phosphatidylglycerol, one unidentified aminolipid and two unidentified lipids. The assembled draft genome of strain ROOL2T had 28 contigs with N50 value of 656,326 nt, total length of 4,894,583 bp and a DNA G?+?C content of 61.5%. The average amino acid identity (AAI) values of strain ROOL2T against the genomes of related members belonging to the same family were below 68% and the ANI and dDDH values between the strain ROOL2T and the type strains of phylogenetically related species were 61.8–76.3% and 19.4–21.1%, respectively. Strain ROOL2T only produces carotenoid-type pigment when grown on LB agar and slime on R2A agar. In the presence of tryptophan, strain ROOL2T produced indole acetic acid (IAA), a phytohormone in plant growth and development. Gene clusters for indole-3-glycerol phosphatase and tryptophan synthase were found in the genome of strain ROOL2T. The genotypic and phenotypic characteristics indicated that strain ROOL2T represents a novel genus belonging the family Phyllobacteriaceae, for which the name Oryzicola mucosus gen. nov., sp. nov. is proposed. The type strain is ROOL2T (KCTC 82711 T?=?NBRC 114717 T).

  相似文献   

8.
Analyses of RFLPs, isozymes, morphological markers and chromosome pairing were used to isolate 12 Triticum aestivum cv Chinese Spring (genomes A, B, and D)-T. peregrinum (genomes Sv and Uv) disomic chromosome addition lines. The evidence obtained indicates that each of the 12 lines contains an intact pair of T. peregrinum chromosomes. One monosomic addition line, believed to contain an intact 6Sv chromosome, was also isolated. A CS-7Uv chromosome addition line was not obtained. Syntenic relationships in common with the standard Triticeae arrangement were found for five of the seven Sv genome chromosomes. The exceptions were 4Sv and 7Sv. A reciprocal translocation exists between 4S1 and 7S1 in T. longissimum and evidence was obtained that the same translocation exists in T. peregrinum. In contrast, evidence for syntenic relationships in common with the standard Triticeae arrangements were found for only one Uv chromosome of T. peregrinum.; namely, chromosome 2Uv. All other Uv genome chromosomes are involved in at least one translocation, and the same translocations were found in the U genome of T. umbellulatum. Evidence was also obtained indicating that the centromeric regions of 4U and 4Uv are homoeologous to the centromeric regions of Triticeae homoeologous group-6 chromosomes, that the centromeric regions of 6U and 6Uv are homoeologous to the centromeric regions of group-4 chromosomes, and that 4U and 4Uv are more closely related overall to Triticeae homoeologous group-6 chromosomes than they are to group-4 chromosomes.  相似文献   

9.
 Genomic in situ hybridization (GISH) was used to examine genome interactions in two allohexa ploid (2n=6x=72) Lycopersicon esculentum (+) L. peruvianum somatic hybrids and their seed progenies originated from subsequent backcrosses to L. esculentum. The ability of GISH to distinguish between chromatin derived from two closely related species, L. esculentum and L. peruvianum (both 2n=2x=24), allowed the precise chromosomal constitution of somatic hybrids and their backcross progenies to be unequivocally established. This enabled the interaction of species genomes to be observed at meiosis, providing clear evidence of strictly regular homoeologous pairing and the high degree of homoeologous recombination in allodiploid plants (2n=2x=24) of the BC1 generation. In segmental allodiploids of the BC2 and BC3 generations, the recombinant chromosomes continued to pair with a homoeologous partner (in the absence of a homologous one), and therefore could be stably incorporated into gametes. Chiasmata were found almost exclusively in more distal, rather subterminal, chromosome segments. A considerable proportion of meiotic recombination was detected in subterminal heterochromatic regions, often involving distal euchromatin, located in close proximity. GISH also supplied information on the extent of the overall sequence homology between the genomes of L. esculentum and L. peruvianum, indicating that despite their different breeding systems, these species may not be differentiated to a high degree genetically. The present study has demonstrated that somatic hybridization between two such closely related, but sexually incompatible or difficult to cross species, provides a way of transferring genes, via homoloeogous crossing-over and recombination, across the incompatibility barriers. Indeed, such hybrids may offer the preferred route for gene transfer, which subsequently results in more stable gene introgression than other methods. Received: 22 July 1996 / Accepted: 23 August 1996  相似文献   

10.
In order to estimate synteny between At and A polyploid wheat genomes belonging to different evolutionary lines (Timopheevi and Emmer), saturation of chromosome maps of Triticum timopheevii At genome by molecular markers has been conducted. Totally, 179 EST-SSR and 48 genomic SSR-markers have been used with the following integration of 13 and 7 markers correspondingly into chromosome maps of At genome. ESTSSR showed higher transferability and lower polymorphism than genomic SSR markers. The chromosome maps designed were compared to maps of homoeologous chromosome group of the T. aestivum A genome. No disturbances of colinearity, i.e., of the order of markers within the chromosome segments on which they had been previously mapped, were observed. According to the quantity assessment of markers amplifying in homoeologous chromosomes, the maximum divergence was detected in two groups (4At/4A and 3At/3A) among the seven chromosomes examined in the A t and A genomes. Comparison of molecular genetic mapping results with the published results of studying meiosis of F1 hybrids and the frequency of chromosomes substitution in introgressive T. aestivum × T. timopheevii lines suggest that individual chromosomes of the At and A genomes evolve differently. Translocations were shown to introduce the major impact on the divergence of 4At/4A and 6At/6A chromosomes, while mutations of the primary DNA structure, on the divergence of homoeologous group 3 chromosomes. The level of reorganization of other chromosomes during the evolution in the At and A genomes was significantly lower.  相似文献   

11.
Both 6x Verbena aubletia (n=15) and 2x V. tenuisecta (n=5) form bivalents during meiosis, however, their 4x F1 hybrid (V. aubletia × V. tenuisecta) shows almost complete homoeologous pairing involving on average 19.74 out of its 20 chromosomes. In 10% cells there are 4IV+2II indicating that essentially there may be 4 homoeologous sets of 5 chromosomes each in the F1 hybrid. Evidently, V. aubletia is segmental allo-hexaploid involving 3 homoeologous genomes (A1A1 A2A2 A3A3). Whether its cytologically diploid behaviour is the result of a multivalent suppressor system or due to an acute property of preferential pairing, cannot be answered with certainty. In either case intergenomal homoeologies are totally suppressed resulting in bivalent pairing, meiotic isolation of the 3 genomes and institution of normal fertility.  相似文献   

12.
Cytology of a pentaploid hybrid and genome analysis in Solanum nigrum L.   总被引:1,自引:0,他引:1  
M. Krishna Rao 《Genetica》1971,42(1):157-164
Cytology of a pentaploid hybrid (2n=60) produced by crossing an autotetraploid (2n=48) of a diploid race of Solanum nigrum L. as seed parent with the naturally occurring hexaploid S. nigrum (2n=72) was studied which showed approximately 24II+12I. Chromosome pairing in the gametic complement of the hexaploid was deduced to be 12II+12I and on this basis it is concluded that the natural hexaploid is an autoallohexaploid, which has three sets (genomes) of 12 chromosomes each, two of which are to a large extent homologous to each other. Theoretically the genomic formula can be tentatively written as AAAABB. Since the natural hexaploid does not show any quadrivalents between the four homologous A genomes, chromosome pairing appears to be restricted to bivalent formation by a special genetic mechanism. The probability that S. nigrum could be an autohexaploid, parallelling Pheleum pratense, has been discussed.  相似文献   

13.
Lotus corniculatus is a tetraploid (2n=4x=24) perennial forage legume and has been reported to have tetrasomic inheritance for several traits, although it has also been reported to show disomic inheritance. Molecular markers were used to clarify whether tetrasomic inheritance, disomic inheritance, or a combination of both, was found within an F2 population arising from a cross between two diverse L. corniculatus accessions. The inheritance of ”tetra-allelic” RFLP markers (markers with four segregating bands) indicated that disomic inheritance could not account for the phenotypic F2 classes observed, and that only tetrasomic inheritance would explain the observed results. Goodness of fit tests for ”tetra-allelic” and ”tri-allelic” (three segregating bands) RFLP marker data suggested support for chromosomal-type tetrasomic inheritance. RFLP genotypes interpreted from autoradiographic signal intensity provided additional support for tetrasomic inheritance and the occurrence of preferential pairing between parental chromosomes. Bivalent pairing was predominant in the two parental lines and their F1 hybrid in cytological analyses. L. corniculatus has been classified as both an autotetraploid and an allotetraploid species. RFLP evidence of tetrasomic inheritance gives support for L. corniculatus being classified as an autotetraploid species. Even though bivalent pairing occurs, as seen in other autotetraploid species, pairing between any of the four homologous chromosomes is possible. Preferential pairing in the F1 hybrid suggests that genome differentiation appears to be minimal between homologs within an accession, while genome differentiation is greater between homologs from different accessions of this genetically diverse species. Received: 16 November 1999 / Accepted: 14 July 2000  相似文献   

14.

A white-colony-forming, facultative anaerobic, motile and Gram-stain-negative bacterium, designated G-1-2-2 T was isolated from soil of agriculture field near Kyonggi University, Republic of Korea. Strain G-1-2-2 T synthesized the polyhydroxybutyrate and could grow at 10–35 °C. The phylogenetic analysis based on 16S rRNA gene sequence showed that, strain G-1-2-2 T formed a lineage within the family Comamonadaceae and clustered as a member of the genus Ramlibacter. The 16S rRNA gene sequence of strain G-1-2-2 T showed high sequence similarities with Ramlibacter ginsenosidimutans BXN5-27 T (97.9%), Ramlibacter monticola G-3-2 T (97.9%) and Ramlibacter alkalitolerans CJ661T (97.5%). The sole respiratory quinone was ubiquinone-8 (Q-8). The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, and an unidentified phospholipid. The principal cellular fatty acids were C16:0, cyclo-C17:0, summed feature 3 (C16:1ω7c and/or C16:1ω6c) and summed feature 8 (C18:1ω7c and/or C18:1ω6c). The genome of strain G-1-2-2 T was 7,200,642 bp long with 13 contigs, 6,647 protein-coding genes, and DNA G?+?C content of 68.9%. The average nucleotide identity and in silico DNA–DNA hybridization values between strain G-1-2-2 T and close members were?≤?81.2 and 24.1%, respectively. The genome of strain G-1-2-2 T showed eight putative biosynthetic gene clusters responsible for various secondary metabolites. Genome mining revealed the presence of atoB, atoB2, phaS, phbB, phbC, and bhbD genes in the genome which are responsible for polyhydroxybutyrate biosynthesis. Based on these data, strain G-1-2-2 T represents a novel species in the genus Ramlibacter, for which the name Ramlibacter agri sp. nov. is proposed. The type strain is G-1-2-2 T (=?KACC 21616 T?=?NBRC 114389 T).

  相似文献   

15.
Bai  Xin-Feng  Lv  Xue-Lian  Liu  Xue  Cui  Ting-Ting  Zhang  Mian-Song  Ding  Ning  Liu  Chang-Heng  Jia  Ai-Rong 《Antonie van Leeuwenhoek》2022,115(4):497-503

A Gram-stain negative, aerobic, rod-shaped bacterium, designated 126T, was isolated from the intestinal content of a sea cucumber, Apostichopus japonicus, in China. Strain 126T was found to grow optimally at 25–28 °C and pH 7.5–8.0 in marine 2216 E medium, with tolerance of 1–7% (w/v) NaCl. Strain 126T is motile by means of one to several polar flagella. The dominant fatty acids of strain 126T were identified as C16:1 ω7c/C16:1 ω6c (29.5%), C18:1 ω7c/C18:1 ω6c (19.8%) and C16:0 (16.7%). The respiratory quinone was found to be Q-8. The polar lipid profile was found to be mainly composed of phosphatidylglycerol and phosphatidylethanolamine. The total length of the draft genome is approximately 4.2?×?106 bp, encoding 3655 genes and 3576 coding sequences. The G?+?C content of the genomic DNA is 48.0%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 126T belongs to the genus Neiella and is closely related to Neiella marina J221T (96.5%). Genomic comparisons of 126T to N. marina J221T revealed that they had similar genome size, G?+?C content and complement of clusters of orthologous groups. However, average nucleotide identity and digital DNA–DNA hybridization values between strains126T and N. marina J221T was 75.5% and 19.7%, which could distinguish the strains. On the basis of these phenotypic and genotypic data, strain 126T is concluded to represent a novel species, for which the name Neiella holothuriorum sp. nov. is proposed. The type strain is 126T (=?GDMCC 1.2530T?=?KCTC 82829T).

  相似文献   

16.
Hybrids between upland cotton (G. hirsutum, genome constitution 2AhDh) and either A-genome or D-genome diploid species exhibit 26 paired and 13 unpaired chromosomes at metaphase I. The Ah and Dh genomes are therefore considered homoeologous with those of the respective diploids. Previous studies, nevertheless, revealed a low level of ("incipient") differentiation between Dh and various diploid D genomes. The diploid A genomes have been regarded as more closely homologous to Ah on the basis of low preferential pairing and autotetraploid segregation ratios in allohexaploids.—The present study addressed the following questions: Are the diploid A genomes differentiated from Ah in meiotic homology? If so, is the differentiation manifested equally by all 13 chromosomes or is it localized in certain chromosomes?—Three diploid A-genome lines representing G. herbaceum and G. arboreum were hybridized by in ovulo culture of embryos (1) with a standard line of G. hirsutum, which differs from G. herbaceum by two and from G. arboreum by three naturally occurring reciprocal translocations involving chromosomes 1–5, and (2) with six lines homozygous for experimental translocations involving chromosomes 6, 7, 10, 11, 12 and 13. Chiasma frequencies in hybrids were compared with those in appropriate G. hirsutum controls. In every comparison overall chiasma frequencies were slightly lower in the hybrids. Therefore Ah appears to be differentiated from the diploid A genomes. No localized differentiation was detected in chromosomes marked by experimental translocations. The differentiation may be localized mainly in chromosomes 4 and 5.  相似文献   

17.
Summary Cross-compatibility of species in section Arachis Krap. et Greg. nom. nud., and chromosome pairing and pollen fertility in their interspecific F1 hybrids were studied to further understand the phylogenetic relationships among these species. Except those with A. batizocoi Krap. et Greg. nom. nud., hybrids between diploid species have near normal bivalent frequency (9.1–9.8) and moderate to high pollen fertility (60–91%). Hybrids between A. batizocoi and other species have low bivalent frequency (5.2–6.9) and very low pollen fertility (3–7%). These results confirm the earlier separation of these species into two groups based on karyomorphology and Mahalanobis D2 calculated on arm ratios. These studies also provide a picture of relative affinities between A. batizocoi, the lone member of one cluster, and the other species, and among the rest of the species. They also indicate that the basic chromosome complement in the two groups of species is the same. Chromosome pairing in triploid hybrids, (A. hypogaea L. X diploid wild species), suggests that A. batizocoi is the closest diploid relative of A. hypogaea. It is closer to A. hypogaea subspecies fastigiata Waldron than to A. hypogaea subspecies hypogaea Krap. et. Rig. Other diploid species of the section Arachis are equidistant from A. hypogaea, and have the same genome which has strong homology to one of the genomes of A. hypogaea. Based on the present results, the two tetraploid species, A. monticola Krap. et Rig. and A. hypogaea can be recognised as two forms of the same species. Breeding implications have been discussed in the light of chromosome behaviour observed in hybrids of A. hypogaea X diploid species, and on the presumptions that A. hypogaea has an AABB genomic constitution, and that among the diploid species, the B genome is present in A. batizocoi while the A genome is common to the other diploid species of section Arachis.Submitted as Journal Article No. 328 by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)  相似文献   

18.

A novel bacterial strain designated CJ43T was isolated from fresh water located in Gangwon-do, South Korea, displaying multi-drug resistance. The isolate was Gram-stain-negative, aerobic, orange-pigmented, and rod-shaped. Strain CJ43T grew optimally at 30 °C and pH 7 on R2A agar in the absence of NaCl. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain CJ43T belonged to the genus Pedobacter in the family Sphingobacteriaceae and was most closely related to Pedobacter puniceum HX-22-1 T and P. glucosidilyticus 1-2 T (98.3 and 98.1% sequence similarity). The genome size of strain CJ43T was 3.9 Mb in a single contig with DNA G?+?C content of 34.9%. The genome included 3144 predicted protein-coding genes, as well as 55 tRNA, 9 rRNA and 3 ncRNA genes. The genome also contained 128 putative antibiotic resistance genes, reflecting its phenotypes. The average nucleotide identity values between strain CJ43T and two closely related strains P. puniceum HX-22-1 T and P. glucosidilyticus 1-2 T were 91.0 and 88.7%, respectively. In silico digital DNA-DNA hybridization results between strain CJ43T and the related strains were 42.8 and 38.6%, respectively. The major fatty acids of strain CJ43T were iso-C15:0, iso-C17:0 3-OH, and summed feature 3 (C16:1 ω6c and/or C16:1 ω7c). Strain CJ43T contained phosphatidylethanolamine as the major polar lipid and menaquinone-7 as the sole respiratory quinone. Based on the polyphasic taxonomy data, strain CJ43T represents a novel species of the genus Pedobacter, for which the name Pedobacter aquae sp. nov. is proposed with the type strain CJ43T (=?KACC 21350 T?=?JCM 33709 T).

  相似文献   

19.
Summary The meiotic behaviour of the amphiploid Hordeum chilense X Triticum turgidum conv. durum using a C-banding staining method is studied. Nine pairs of chromosomes at metaphase-1 (4A, 7A and the seven of the B genome) were identified and the remaining wheat chromosomes (1A, 2A, 3A, 5A and 6A) and seven of the chilense (1 to 7 H ch chromosomes) were assigned to its particular genome. A similar mean number of univalents from parental genomes (wheat and wild barley) were found. No meiotic pairing between chilense and turgidum chromosomes was detected. Differences in the meiotic behaviour per chromosome and amongst genomes are explained on the basis of cytomorphological and heterochromatin characteristics.  相似文献   

20.
Intergeneric hybridizations were made betweenT. elongatum, and twoPsathyrostachys and fiveLeymus species. The seed set obtained onT. elongatum ×Leymus hybrids ranged from 5.65% to 20.00%, depending onLeymus species. The seed set obtained onT. elongatum ×Psathyrostachys hybrids ranged from 16.07% to 19.70%. Meiotic pairing at metaphase-I in JN diploid hybrids ofT. elongatum ×Psathyrostachys species revealed a very low level homology between the basic J and N genomes, and further demonstrated that the two genomes are quite diverged. Chromosome pairing in theT. elongatum ×Leymus secalinus hybrid averaged 15.19 univalents + 2.62 rod bivalents + 0.26 ring bivalents + 0.02 trivalents, suggesting that the partial Je chromosomes ofT. elongatum has homology withLeymus secalinus genomes.L. secalinus might have 3–4 chromosomes originating from Je genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号