首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel desulfurizing bacterium has been isolated from oil-contaminated soils in Khuzestan. The ability for dibenzothiophene desulfurization and its biochemical pathway were investigated. The bacterium was identified as Gordonia sp. AHV-01 (Genbank Accession no. HQ607780) by 16S rRNA gene sequencing. HPLC results and Gibb’s assay were shown that dibenzothiophene desulfurized via 4S-pathway. Maximum growth (0.426 g dry cells/L) and produced 2-hydroxybiphenyl (63.1 μM) were observed at 120 h of cultivation. By using of response surface design procedure the optimization of pH, temperature and rotary shaker round on the desulfurization reaction of isolate AHV-01 were performed. The optimum conditions were determined at pH of 7.0, temperature of 30°C and rotary shaker round of 180 rpm. At these conditions, the dibenzothiophene desulfurization activity was increased and maximum 2-hydroxybiphenyl production was detected 70.29 μM at 96 h. According to these results, isolate AHV-01 was capable to desulfurize dibenzothiophene via 4S-pathway and likely it can be useful to reduce organic sulfur contents of crude oil.  相似文献   

2.
Calnexin (CNX) and calreticulin (CRT) are homologous lectin chaperones in the endoplasmic reticulum (ER) that facilitate glycoprotein folding and retain folding intermediates to prevent their transit via the secretary pathway. The Arabidopsis genome has two CNX (CNX1 and CNX2) and three CRT (CRT1, CRT2 and CRT3) homologs. Despite growing evidence of the biological roles of CNXs and CRTs, little is understood about their function in Arabidopsis growth and development under normal conditions. Here, we report that the deletion of CNX1, but not of CNX2, in the crt1 crt2 crt3 triple mutation background had an adverse effect on pollen viability and pollen tube growth, leading to a significant reduction in fertility. The cnx1 crt1 crt2 crt3 quadruple mutation also conferred severe defects in growth and development, including a shortened primary root, increased root hair length and density, and reduced plant height. Disruption of all five members of the CNX/CRT family was revealed to be lethal. Finally, the abnormal phenotype of the cnx1 crt1 crt2 crt3 quadruple mutants was completely rescued by either the CNX1 or CNX2 cDNA under the control of the CNX1 promoter, suggesting functional redundancy between CNX1 and CNX2. Taken together, these results provide genetic evidence that CNX and CRT play essential and overlapping roles during vegetative growth and male gametophyte development in Arabidopsis.  相似文献   

3.
4.
5.
In many plant species, gene dosage is an important cause of phenotype variation. Engineering gene dosage, particularly in polyploid genomes, would provide an efficient tool for plant breeding. The hexaploid oilseed crop Camelina sativa, which has three closely related expressed subgenomes, is an ideal species for investigation of the possibility of creating a large collection of combinatorial mutants. Selective, targeted mutagenesis of the three delta‐12‐desaturase (FAD2) genes was achieved by CRISPR‐Cas9 gene editing, leading to reduced levels of polyunsaturated fatty acids and increased accumulation of oleic acid in the oil. Analysis of mutations over four generations demonstrated the presence of a large variety of heritable mutations in the three isologous CsFAD2 genes. The different combinations of single, double and triple mutants in the T3 generation were isolated, and the complete loss‐of‐function mutants revealed the importance of delta‐12‐desaturation for Camelina development. Combinatorial association of different alleles for the three FAD2 loci provided a large diversity of Camelina lines with various lipid profiles, ranging from 10% to 62% oleic acid accumulation in the oil. The different allelic combinations allowed an unbiased analysis of gene dosage and function in this hexaploid species, but also provided a unique source of genetic variability for plant breeding.  相似文献   

6.
Sutter, R. P., Grandin, A. B., Dye, B. D., and Moore, W. R. 1996. (−) Mating type-specific mutants ofPhycomycesdefective in sex pheromone biosynthesis.Fungal Genetics and Biology20,268–279. We have isolated the first mating type-specific mutants in mucoraceous fungi. Both mutants inPhycomyces blakesleeanusappear to be defective in the same gene. The gene, present in both mating types, is necessary only in cultures of the (−) mating type. The gene codes for an enzyme in sex pheromone biosynthesis. The pheromone precursor made by the mutants is detectable only in cross-feeding experiments. The biological and solubility properties of the precursor suggest the precursor is 4-dihydrotrisporin, a metabolite of β-carotene. Separate studies with β-carotene-deficient mutants and Compound-P, a new chemically synthesized precursor of the pheromones, imply the constitutive level of enzymes for pheromone biosynthesis inPhycomycesis extremely low. In comparison, the level of enzymes for pheromone conversion to trisporic acid is higher. The mating type-specific mutants also catalyze the conversion of (+) pheromone to trisporic acid. This finding was unexpected because literature models predicted this reaction was catalyzed by the same enzyme which catalyzed the conversion of 4-dihydrotrisporin to (−) pheromone—a reaction missing in the (−) mating type-specific mutants. Thus, we propose a revised model for trisporic acid biosynthesis.  相似文献   

7.
Broad specificity amino acid racemase (E.C. 5.1.1.10) from Pseudomonas putida IFO 12996 (BAR) is a unique racemase because of its broad substrate specificity. BAR has been considered as a possible catalyst which directly converts inexpensive l-amino acids to dl-amino acid racemates. The gene encoding BAR was cloned to utilize BAR for the synthesis of d-amino acids, especially d-Trp which is an important intermediate of pharmaceuticals. The substrate specificity of cloned BAR covered all of the standard amino acids; however, the activity toward Trp was low. Then, we performed random mutagenesis on bar to obtain mutant BAR derivatives with high activity for Trp. Five positive mutants were isolated after the two-step screening of the randomly mutated BAR. After the determination of the amino acid substitutions in these mutants, it was suggested that the substitutions at Y396 and I384 increased the Trp specific racemization activity and the racemization activity for overall amino acids, respectively. Among the positive mutants, I384M mutant BAR showed the highest activity for Trp. l-Trp (20 mM) was successfully racemized, and the proportion of d-Trp was reached 43% using I384M mutant BAR, while wild-type BAR racemized only 6% of initial l-Trp.  相似文献   

8.
Summary We isolated a series of Tn5-insertional mutants from the mini-F plasmid, which has a deletion in the origin II region and replicates exclusively from origin I, and found that the mutants that had Tn5 in either the F4 or the F5 gene were defective in their replication. It is concluded that, in addition to the F3 gene on which we have reported previously, both the F4 and the F5 genes are essential for the replication from origin I.  相似文献   

9.
We have isolated and characterised the nuclear gene that codes for the 30.4-kDa subunit of the peripheral arm of complex I from Neurospora crassa. The single-copy gene was localised on chromosome VI of the fungal genome by restriction fragment length polymorphism mapping. An extra copy of the gene was introduced into a strain of N. crassa by transformation. This strain was crossed with another strain in order to inactivate, by repeat-induced point mutations, both copies of the duplication carried by the parental transformant. Ascospore progeny from the cross were analysed and a mutant strain lacking the 30.4-kDa protein, nuo30.4, was isolated and further characterised. The mutant appears to assemble the membrane arm of complex I, while formation of the peripheral arm is prevented. Nevertheless, the mutant grows reasonably well – indicating that this well conserved protein is not essential for vegetative growth – and is able to mate with other strains both as male or female. Strains with multiple mutations are readily obtained from heterozygous crosses between different complex I mutants of N. crassa. On the other hand, homozygous crosses between several mutants, including nuo30.4, fail to produce ascospores. These results suggest that complex I plays an essential role during the sexual phase of the life cycle of the fungus. Received: 24 February 1997 / Accepted: 23 September 1997  相似文献   

10.
Eight respiratory-deficient mutants ofChlamydomonas reinhardtii have been isolated after mutagenic treatment with acriflavine or ethidium bromide. They are characterized by their inability to grow or their very reduced growth under heterotrophic conditions. One mutation (Class III) is of nuclear origin whereas the seven remaining mutants (Classes I and II) display a predominantly paternalmt - inheritance, typical of mutations residing in the mitochondrial DNA. Biochemical analysis has shown that all mutants are deficient in the cyanide-sensitive cytochrome pathway of the respiration whereas the alternative pathway is still functional. Measurements of complexes II + III (antimycin-sensitive succinate-cytochromec oxido-reductase) and complex IV (cytochromec oxidase) activities allowed to conclude that six mutations have to be localized in the mitochondrial apocytochromeb (COB) gene, one in the mitochondrial cytochrome oxidase subunit I (COI) gene and one in a nuclear gene encoding a component of the cytochrome oxidase complex. By using specific probes, we have moreover demonstrated that five mutants (Class II mutants) contain mitochondrial DNA molecules deleted in the terminal end containing the COB gene and the telomeric region; they also possess dimeric molecules resulting from end-to-end junctions of deleted monomers. The two other mitochondrial mutants (Class I) have no detectable gross alteration. Class I and Class II mutants can also be distinguished by the pattern of transmission of the mutation in crosses.Anin vivo staining test has been developed to identify rapidly the mutants impaired in cyanide-sensitive respiration.  相似文献   

11.
The Homeobox Gene GLABRA2 Affects Seed Oil Content in Arabidopsis   总被引:2,自引:0,他引:2  
Despite a good understanding of genes involved in oil biosynthesis in seed, the mechanism(s) that controls oil accumulation is still not known. To identify genes that control oil accumulation in seed, we have developed a simple screening method to isolate Arabidopsis seed oil mutants. The method includes an initial screen for seed density followed by a seed oil screen using an automated Nuclear Magnetic Resonance (NMR). Using this method, we isolated ten low oil mutants and one high oil mutant. The high oil mutant, p777, accumulated 8% more oil in seed than did wild type, but it showed no differences in seed size, plant growth or development. The high-oil phenotype is caused by the disruption of the GLABRA2 gene, a previously identified gene that encodes a homeobox protein required for normal trichome and root hair development. Knockout of GLABRA2 did not affect LEAFY COTYLEDON 1 and PICKLE expression in developing embryo. The result indicates that in addition to its known function in trichome and root hair development, GLABRA2 is involved in the control of seed oil accumulation.  相似文献   

12.
Two mutants of the dibenzothiophene-desulfurizing Rhodococcus erythropolis KA2-5-1, strains MS51 and MS316, which express a high level of desulfurizing activity in the presence of sulfate, were isolated using the transposome technique. The level of dibenzothiophene-desulfurization by cell-free extracts prepared from mutants MS51 and MS316 grown on sulfate was about five-fold higher than that by cell-free extracts of the wild-type. This result was consistent with results of Western-blot analysis using antisera specific for DszA, DszB and DszC, the enzymes involved in the desulfurization of dibenzothiophene. Gene analysis of the mutants revealed that the same gene was disrupted in mutants MS51 and MS316 and that the transposon-inserted gene in these strains was the gene for cystathionine beta-synthase, cbs. The cbs mutants also expressed high levels of Dsz enzymes when methionine was used as the sole source of sulfur.  相似文献   

13.
Gordonia amicalis F.5.25.8 has the unique ability to desulfurize dibenzothiophene and to metabolize carbazole [Santos et al., Appl Microbiol Biotechnol 71:355–362, 2006]. Efforts to amplify the dsz genes from G. amicalis F.5.25.8 based on polymerase chain reaction (PCR) primers designed using the dsz gene sequences of Rhodococcus erythropolis IGTS8 were mostly unsuccessful. A comparison of the protein sequences of dissimilar desulfurization enzymes (DszABC, BdsABC, and TdsABC) revealed multiple conserved regions. PCR primers targeting some of the most highly conserved regions of the desulfurization genes allowed us to amplify dsz genes from G. amicalis F.5.25.8. DNA sequence data that include nearly the entirety of the desulfurization operon as well as the promoter region were obtained. The most closely related dsz genes are those of G. alkinovorans strain 1B at 85% identity. The PCR primers reported here should be useful in microbial ecology studies and the amplification of desulfurization genes from previously uncharacterized microbial cultures.  相似文献   

14.
The execution of 4S process (sulfur-specific pathway) by growing cells of the newly isolated strain RIPI-22 and its resting cells in both aqueous reaction system and in two-phase system were investigated. The time for maximum desulfurization activity of the strain in resting state and in model oil system (hexadecane containing dibenzothiophene) was 7 h. Using taguchi design procedure the effects of cell density, pH and phase ratio on the desulfurization reaction were studied. The extent of desulfurization was hardly dependent on the pH where as the volume ratio of hydrocarbon-aqueous phase significantly affected the desulfurization activity.On the basis of the determined optimum desulfurizing conditions, the biodesulfurization pattern of DBT was studied and kinetic parameters were calculated.  相似文献   

15.
The ISlacZ/hah transposon carried by pIT2 and derived originally from Tn5 has been a popular system in the generation of random insertion mutants of Pseudomonas aeruginosa. Using this system in the current study, two transconjugants were identified as conferring high levels of carbenicillin resistance. Analyses by gene complementation tests and site-specific gene knockout experiments support the conclusion that carbenicillin resistance in these two mutants is not due to the insertion of ISlacZ/hah transposon into the affected genes. Instead, the production of a TEM β-lactamase was detected, and integration of the bla gene from pIT2 to the chromosome of the recipient strain was confirmed by polymerase chain reaction. This surprising event was reproducible, with an estimated frequency among the transconjugants of 4% to 10%, and it may cause a potential complication in the interpretation of mutant phenotypes without notice.  相似文献   

16.
InNicotiana sylvestris, two cytoplasmic male sterile (CMS) mutants obtained by protoplast culture show abnormal developmental features of both vegetative and reproductive organs, and mitochondrial gene reorganization following homologous recombination between 65 bp repeated sequences. A mitochondrial region of 16.2 kb deleted from both CMS mutants was found to contain the last two exons of thenad7 gene coding for a subunit of the mitochondrial respiratory chain complex I, which is encoded in the nucleus in fungi and animals but was recently found to be encoded by the mitochondrial genome in wheat. Although theN. sylvestris nad7 gene shows strong homology with its wheat counterpart, it contains only three introns instead of four. Polymerase chain reaction (PCR) experiments indicated that the parental gene organization, including the completenad7 gene, is probably maintained at a substoichiometric level in the CMS mutants, but this proportion is too low to have a significant physiological role, as confirmed by expression studies showing the lack of detectable amounts of the NAD7 polypeptide. Consequently, absence of NAD7 is not lethal to plant cells but a deficiency of complex I could be involved in the abnormal CMS phenotype.  相似文献   

17.
Recombinant Mycobacterium sp. strain MR65 harboring dszABCD genes was used to desulfurize alkyl dibenzothiophenes (Cx-DBTs) in n-hexadecane. The specific desulfurization activity for 2,4,6,8-tetraethyl DBT (C8-DBT) by DszC enzyme was about twice that for 4,6-dipropyl DBT (C6-DBT). However, the degradation rate of 2,4,6,8-tetraethyl DBT in n-hexadecane by resting cells of strain MR65 was only about 40% of that of 4,6-dipropyl DBT. These results indicated that the desulfurization ability for Cx-DBTs by resting cells depends on carbon number substituted at positions 4 and 6 and that the rate-limiting step in the desulfurization reaction of highly alkylated Cx-DBTs is the transfer process from the oil phase into the cell.  相似文献   

18.
Spectral and photochemical properties were analyzed on intact chloroplasts and pigment-protein complexes isolated with gel electrophoresis from pea (Pisum sativum L.) leaves of parental variety Torsdag and of chlorophyll-deficient mutants chlorotica 2004 and 2014. Measurements of chlorophyll absorption and fluorescence spectra and of second derivative low-temperature (–196°C) spectra clarified exact positions of fluorescence maxima and revealed the chlorophyll forms of individual complexes in samples investigated. The chlorotica 2004 mutant, whose hybrids yield the heterosis effect, was characterized by the decreased accumulation of chlorophyll forms absorbing at 690, 697, and 708 nm, known to constitute the core antenna in the vicinity of photosystem I (PSI) reaction center. In the chlorotica 2014 mutant, whose hybrids are low productive, the interaction between PSI and PSII complexes was weakened, but no other difference from the parental variety was observed. The analysis of PSI and PSII photochemical activities, as well as estimates of light-harvesting antenna size and the number of reaction centers revealed that the chlorotica 2004 mutant is deficient in the number of PSI reaction centers by a factor of 1.7. This deficiency resulted from the mutation-induced disorder in biosynthesis of chlorophyll a-protein complex of PSI. It appears that gene interactions between the 2004 mutant and the parental variety Torsdag enhance the functional and metabolic activity of leaves in their hybrids, thereby yielding the heterosis effect.Translated from Fiziologiya Rastenii, Vol. 52, No. 2, 2005, pp. 172–183.Original Russian Text Copyright © 2005 by Ladygin, Vaishlya.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

19.
An edible-oil degrading bacterial strain HH-01 was isolated from oil plant gummy matter and was classified as a member of the genus Bacillus on the basis of the nucleotide sequence of the 16S rRNA gene. A putative lipase gene and its flanking regions were cloned from the strain based on its similarity to lipase genes from other Bacillus spp. The deduced product was composed of 214 amino acids and the putative mature protein, consisting of 182 amino acids, exhibited 82% amino acid sequence identity with the subfamily I.4 lipase LipA of Bacillus subtilis 168. The recombinant product was successfully overproduced as a soluble form in Escherichia coli and showed lipase activity. The gene was, therefore, designated as lipA of HH-01. HH-01 LipA was stable at pH 4–11 and up to 30°C, and its optimum pH and temperature were 8–9 and 30°C, respectively. The enzyme showed preferential hydrolysis of the 1(3)-position ester bond in trilinolein. The activity was, interestingly, enhanced by supplementing with 1 mM CoCl2, in contrast to other Bacillus lipases. The lipA gene seemed to be constitutively transcribed during the exponential growth phase, regardless of the presence of edible oil.  相似文献   

20.
Summary A gene conferring high-level resistance to tylosin in Streptomyces lividans and Streptomyces griseofuscus was cloned from a tylosin-producing strain of Streptomyces fradiae. The tylosin-resistance (Tylr) gene (tlrA) was isolated on five overlapping DNA fragments which contained a common 2.6 Kb KpnI fragment. The KpnI fragment contained all of the information required for the expression of the Tylr phenotype in S. lividans and S. griseofuscus. Southern hybridization indicated that the sequence conferring tylosin resistance was present on the same 5 kb SalI fragment in genomic DNA from S. fradiae and several tylosin-sensitive (Tyls) mutants. The cloned tlrA gene failed to restore tylosin resistance in two Tyls mutants derived by protoplast formation and regeneration, and it restored partial resistance in a Tyls mutant obtained by N-methyl-N-nitro-N-nitrosoguanidine (MNNG) mutagenesis. The tlrA gene conferred resistance to tylosin, carbomycin, niddamycin, vernamycin-B and, to some degree, lincomycin in S. griseofuscus, but it had no effect on sensitivity to streptomycin or spectinomycin, suggesting that the cloned gene is an MLS (macrolide, lincosamide, streptogramin-B)-resistance gene. Twenty-eight kb of S. fradiae DNA surrounding the tlrA gene was isolated from a genomic library in bacteriophage Charon 4. Introduction of these DNA sequence into S. fradiae mutants blocked at different steps in tylosin biosynthesis failed to restore tylosin production, suggesting that the cloned Tylr gene is not closely linked to tylosin biosynthetic genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号