首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The alcR positive control gene is necessary for the expression of both alcA (coding for alcohol dehydro-genase ADH I.) and aldA (coding for aldehyde dehydro-genase, AldDH) in Aspergillus nidulans. Using a cloned alcR probe and Northern blots analysis we show that: (1)alcR itself is inducible; (2)alcR inducibility depends on the expression of the alcR gene Itself; and (3) alcR is subject to carbon catabolite repression and its expression Is controlled by the negatively acting creA wide specificity gene. The repression of alcR is sufficient to explain the cariaon catabolite repression of ADH I and AldDH.  相似文献   

5.
The carR region encodes a light-inducible promoter, a negative regulator of the promoter and a trans-acting activator that controls the light-inducible Myxococcus xanthus carotenoid biosynthesis regulon. DNA sequence analysis revealed, downstream of the promoter, three translationally coupled genes, carQ, carR and carS. Sequencing of mutations demonstrated that carR encoded the negative regulator and was an integral membrane protein. Mutant construction and sequencing revealed that carS was the trans-acting activator and that carQ was a positive regulator of the promoter. Neither gene encodes proteins with known sequence-specific DNA-binding motifs. The sequence of the light-inducible promoter region, identified by primer extension analysis, showed similarity to the consensus sequence of the Escherichia coli stress response (‘heat-shock’) promoters.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
Transgenic alfalfa plants harboring a gene fusion between the soybean leghemoglobin (lbc3) promoter region and the chloramphenicol acetyl transferase (cat) gene were used to determine the influence of rhizobial mutants on lb gene expression in nodules. The promoter region of the Sesbania rostrata glb3 (Srglb3) leghemoglobin gene was examined for the presence of conserved motifs homologous to binding site 1 and 2 of the soybean lbc3 promoter region, found to interact with a trans-acting factor present in soybean nodule nuclear extracts (Jensen EO, Marcker KA, Schell J, de Bruijn FJ, EMBO J 7: 1265–1271, 1988). Subfragments of the S. rostrata glb3 (Srglb3) promoter region were examined for binding to trans-acting factors from nodule nuclear extracts. In addition to the binding sites previously identified (Metz BA, Welters P, Hoffmann HJ, Jensen EO, Schell J, de Bruijn FJ, Mol Gen Genet 214: 181–191), several other sites were found to interact with trans-acting factors. In most cases the same trans-acting factor(s) were shown to be involved. One fragment (202) was found to bind specifically to a different factor (protein) which was extremely heat-resistant (100°C). The appearance of this factor was shown to be developmentally regulated since the expected protein-DNA complexes were first observed around 12 days after infection, concomitant with the production of leghemoglobin proteins. Fragments of the Srglb3 5 upstream region were fused to the -glucuronidase reporter gene with its own CAAT and TATA box region or those of the cauliflower mosaic virus 35S and nopaline synthase (nos) promoters. These constructs were used to generate transgenic Lotus corniculatus plants and their expression was measured in different plant tissues. The Srglb3 CAAT and TATA box region was found to be required for nodule-specific expression and several upstream enhancer-type regions were identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号