首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An objective of biodiversity conservation activities is to minimize the exposure of biodiversity features to threatening processes and to ensure, as far as possible, that biodiversity persists in the landscape. We discuss how issues of vulnerability and persistence can and should be addressed at all stages of the conservation planning and implementation process. Procedures for estimating the likelihood of persistence and for measuring degrees of vulnerability at different spatial and temporal scales using subjective assessments, rules of thumb and analytical and simulation models are reviewed. The application of information on vulnerability and persistence to conservation planning and management is discussed under the headings of natural dynamics, replication of protection, levels of representation, source and sink population structures, refuges and critical resources, reserve design, habitat fragmentation and levels of management.  相似文献   

2.
景观生态网络研究进展   总被引:14,自引:19,他引:14  
作为生态学重要的概念与方法,生态网络是景观生态学研究的热点问题,也是耦合景观结构、生态过程和功能的重要途径。景观生态网络对于保护生物多样性、维持生态平衡、增加景观连接度具有重要意义。从景观生态网络的相关理论、研究进展、研究方法模型等进行分析,并对其应用前景进行展望,主要介绍了传统景观格局分析、网络分析、模型模拟等方法的适用性与特点,并分析了景观生态网络在城市景观格局优化、自然保护区规划、生物多样性保护、土地规划等领域的应用,最后提出了研究的主要问题。  相似文献   

3.
《Ecological Informatics》2009,4(3):123-135
The rapid global loss of biodiversity has led to a proliferation of systematic conservation planning methods. In spite of their utility and mathematical sophistication, these methods only provide approximate solutions to real-world problems where there is uncertainty and temporal change. The consequences of errors in these solutions are seldom characterized or addressed. We propose a conceptual structure for exploring the consequences of input uncertainty and oversimplified approximations to real-world processes for any conservation planning tool or strategy. We then present a computational framework based on this structure to quantitatively model species representation and persistence outcomes across a range of uncertainties. These include factors such as land costs, landscape structure, species composition and distribution, and temporal changes in habitat. We demonstrate the utility of the framework using several reserve selection methods including simple rules of thumb and more sophisticated tools such as Marxan and Zonation. We present new results showing how outcomes can be strongly affected by variation in problem characteristics that are seldom compared across multiple studies. These characteristics include number of species prioritized, distribution of species richness and rarity, and uncertainties in the amount and quality of habitat patches. We also demonstrate how the framework allows comparisons between conservation planning strategies and their response to error under a range of conditions. Using the approach presented here will improve conservation outcomes and resource allocation by making it easier to predict and quantify the consequences of many different uncertainties and assumptions simultaneously. Our results show that without more rigorously generalizable results, it is very difficult to predict the amount of error in any conservation plan. These results imply the need for standard practice to include evaluating the effects of multiple real-world complications on the behavior of any conservation planning method.  相似文献   

4.
自然保护区生态安全设计的方法研究   总被引:20,自引:6,他引:20  
由于生态破坏和自然栖息地的丧失,造成野生动植物种群的破碎化.自然保护区已成为孤立的生境岛屿,目前以单个、孤立保护区为主的生物多样性保护模式是远远不够的,应在广泛的时空尺度上保护生态过程和生物多样性各组成成份,建立一个整体的保护网络.根据国内外生物多样性保护的要求和发展趋势,提出了自然保护区生态安全设计的概念,它是综合考虑了生态、社会、经济的一种协调设计战略,首先从区域层次研究保护区网络的优化设计;其次,在网络的每个节点(保护区),研究保护区的面积、形状和内部功能分区;最后,研究网络与节点的连接(廊道).自然保护区网络设计应维持生态系统的地域完整性和生态过程完整性,采用迭代法、整数规划方法和地理途径方法,为一个或多个保护目标勾画出多种保护规划蓝图。  相似文献   

5.
Toward ecologically scaled landscape indices   总被引:2,自引:0,他引:2  
Nature conservation is increasingly based on a landscape approach rather than a species approach. Landscape planning that includes nature conservation goals requires integrated ecological tools. However, species differ widely in their response to landscape change. We propose a framework of ecologically scaled landscape indices that takes into account this variation. Our approach is based on a combination of field studies of spatially structured populations (metapopulations) and model simulations in artificial landscapes. From these, we seek generalities in the relationship among species features, landscape indices, and metapopulation viability. The concept of ecological species profiles is used to group species according to characteristics that are important in metapopulations' response to landscape change: individual area requirements as the dominant characteristic of extinction risk in landscape patches and dispersal distance as the main determinant of the ability to colonize patches. The ecological profiles and landscape indices are then integrated into two ecologically scaled landscape indices (ESLI): average patch carrying capacity and average patch connectivity. The field data show that the fraction of occupied habitat patches is correlated with the two ESLI. To put the ESLI into a perspective of metapopulation persistence, we determine the viability for six ecological profiles at different degrees of habitat fragmentation using a metapopulation model and computer-generated landscapes. The model results show that the fraction of occupied patches is a good indicator for metapopulation viability. We discuss how ecological profiles, ESLI, and the viability threshold can be applied for landscape planning and design in nature conservation.  相似文献   

6.
With the high rate of ecosystem change, effective systematic conservation planning must account for ongoing and imminent threats to biodiversity to ensure its persistence. Accordingly, guidance on appropriate conservation actions in the face of climate change has been accumulating. We review this guidance and bring together the key recommendations needed to successfully account for climate change impacts, relevant to the scale at which natural resource management is carried out. We discuss how the traditional conservation tools of protection and restoration need to be adjusted to be effective in the face of climate change. We highlight the conservation innovations such as moveable and temporary reserves, and Targeted Gene Flow. We build on recent work to provide critical advice for considering climate change in conservation planning. In particular, we discuss how stating explicit objectives related to climate change adaptation, quantifying uncertainty, and exploring trade-offs will better place conservation plans to meet objectives for multiple goals such as protection of species, ecosystems, geophysical diversity and ecological processes.  相似文献   

7.
厦门市重点保护植物空间优先保护格局研究   总被引:1,自引:1,他引:0  
钱灵颖  黄智洵  杨盛昌  曹文志 《生态学报》2021,41(11):4367-4378
生物多样性保护对维持城市生态系统功能具有重要意义。以39种厦门市重点保护植物为对象,通过物种分布模型MaxENT获得物种潜在分布栅格图,利用空间保护优先化定量工具Zonation软件识别理论上既适宜重点保护植物生存又能够保证景观连通性的区域,获得本地重点保护植物景观保护等级。根据2020年全球生物多样性目标,将景观保护等级最高的17%区域视为多物种空间优先保护区,结合Zonation模型生成的随景观丧失物种加权灭绝风险曲线,将保护等级最高的8%区域划为一级保护区,保护等级在8%-17%范围内的区域划为二级保护区。利用MaxENT模型中的jackknife刀切法发现海拔是对本地重点保护植物分布影响最大的环境因子,优先保护区集中分布于海拔较低的海岸带区域。将优先保护区与自然保护地建设现状、厦门市生态功能区规划、土地利用规划、城市总体规划对比发现厦门市岛外西部、北部的优先保护区得到了较好保护;岛外的西南部及东南部、岛内的东部及南部海岸带的优先保护区被建设用地大规模占用,已纳入自然保护地范围的区域较少,存在大量的海岸带优先保护区保护空缺;岛外东南部的部分优先保护区虽未被占用,但规划中属发展备用地,缺乏生态保护。为避免优先保护区面积的进一步萎缩,应重点关注海岸带区域优先保护区的生态保护,将目前属于发展备用地的优先保护区转划为生态留白空间,针对一级、二级优先保护区分别实施刚性和弹性的生态保育措施,在保护生物多样性的同时,严控对海岸带区域优先保护区的进一步开发利用,协调优先保护区内保护与开发利用间的关系。  相似文献   

8.
Across large parts of the world, wildlife has to coexist with human activity in highly modified and fragmented landscapes. Combining concepts from population viability analysis and spatial reserve design, this study develops efficient quantitative methods for identifying conservation core areas at large, even national or continental scales. The proposed methods emphasize long-term population persistence, are applicable to both fragmented and natural landscape structures, and produce a hierarchical zonation of regional conservation priority. The methods are applied to both observational data for threatened butterflies at the scale of Britain and modelled probability of occurrence surfaces for indicator species in part of Australia. In both cases, priority landscapes important for conservation management are identified.  相似文献   

9.
Species responses are influenced by processes operating at multiple scales, yet many conservation studies and management actions are focused on a single scale. Although landscape-level habitat conditions (i.e., habitat amount, fragmentation and landscape quality) are likely to drive the regional persistence of spatially structured populations, patch-level factors (i.e., patch size, isolation, and quality) may also be important. To determine the spatial scales at which habitat factors influence the regional persistence of endangered Ord's kangaroo rats (Dipodomys ordii) in Alberta, Canada, we simulated population dynamics under a range of habitat conditions. Using a spatially-explicit population model, we removed groups of habitat patches based on their characteristics and measured the resulting time to extinction. We used proportional hazards models to rank the influence of landscape and interacting patch-level variables. Landscape quality was the most influential variable followed by patch quality, with both outweighing landscape- and patch-level measures of habitat quantity and fragmentation/proximity. Although habitat conservation and restoration priorities for this population should be in maximizing the overall quality of the landscape, population persistence depends on how this goal is achieved. Patch quality exerted a significant influence on regional persistence, with the removal of low quality road margin patches (sinks) reducing the risk of regional extinction. Strategies for maximizing overall landscape quality that omit patch-level considerations may produce suboptimal or detrimental results for regional population persistence, particularly where complex local population dynamics (e.g., source-sink dynamics) exist. This study contributes to a growing body literature that suggests that the prediction of species responses and future conservation actions may best be assessed with a multi-scale approach that considers habitat quality and that the success of conservation actions may depend on assessing the influences of habitat factors at multiple scales.  相似文献   

10.
景观遗传学:概念与方法   总被引:2,自引:0,他引:2  
薛亚东  李丽 《生态学报》2011,31(6):1756-1762
全球变化下的物种栖息地丧失和破碎化给生物多样性保护带来了新的问题和挑战,生物多样性保护必须由单纯的物种保护上升到栖息地景观的保护。景观遗传学是定量确定栖息地景观特征对种群遗传结构影响的一门交叉学科,在生物保护及自然保护区管理方面有巨大的潜力。从生物多样性保护的角度评述了景观结构与遗传多样性的关系,介绍了景观遗传学的基本概念,研究尺度和方法,并对景观遗传学当前的研究焦点及面临的挑战做了总结。  相似文献   

11.
12.
生物多样性保护的景观规划途径   总被引:97,自引:1,他引:96  
景观规划设计在生物多样性保护中起着决定性的作用。基于不同的保护哲学,生物多样性保护的景观规划途径主要可分为两种:一是以物种为核心的景观规划途径,另一种是以景观元素为核心和出发点的规划途径。前者首先确定物种,然后根据物种的生态特性来设计景观格局,后者则以各种尺度的景观元素作为保护对象,根据其空间位置和关系设计景观格局。多种空间战略被认为有利于生物多样性的保护,包括保护核心栖息地、建立缓冲区、构筑廊道、增加景观异质性和引入或恢复栖息地。落实这些空间战略必须首先回答选择什么和在什么地方设计上述景观元素的问题。对此,目前尚没有很好的答案。传统的生物保护战略被动地强调现存濒危物种和景观元素的保护,如果将物种运动和生态过程作为一个能动的景观控制过程来对待,我们将会有一种全新的景观规划途径。其中有三个方面的概念对这种新的景观规划途径有启发意义:即景观的空间构型对生态过程的作用,生物进化空间轨迹与景观格局设计及景观阻力与潜在的生态基础设施的设计。景观生态安全格局正是在这些方向上的一个新的探索。  相似文献   

13.
王宜成 《生态学报》2013,33(11):3258-3268
传统的自然保护区设计方法是打分法和Gap分析法,这两种方法简单易行但可靠性不高;地理信息系统(GIS)在保护区设计领域的应用也为人熟悉.关注近年来快速发展而国内使用不多的两种方法——数学建模和计算机模拟.数学建模主要用来从一组备选地块中选择一部分组成自然保护区,包括线性和非线性模型,用启发式算法或最优化算法求解.启发式算法具有速度快、灵活等优点,但解通常不是最优的,不能保证稀缺资源的最优化利用.最优化算法运算效率低,变量较多比如数百时就可能遇到计算困难,但解是最优的.预计两种算法都将继续发展.计算机模拟主要用于保护区评价、功能区划分、预测特定环境比如空间特征和气候变化对物种的影响等,多用启发式算法,与其它软件结合把结果以图画显示出来.两种方法特别是计算机模拟均要求保护区设计者有较强的专业知识.讨论了两种方法面临的问题和新的研究方向,至少包括:1)基础数据依然需要完善;2)一些新的因素比如动态性和不确定性如何在模型中考虑并与其它因素结合;3)气候变化预景下模拟参数如何评估和调整;4)如何协调保护与发展的关系;5)方法的实际应用需要研究者与决策者之间建立交流机制;6)多领域专家和相关利益方应有机会参与保护区设计.  相似文献   

14.
Conserving animals beyond protected areas is critical because even the largest reserves may be too small to maintain viable populations for many wide-ranging species. Identification of landscape features that will promote persistence of a diverse array of species is a high priority, particularly, for protected areas that reside in regions of otherwise extensive habitat loss. This is the case for Emas National Park, a small but important protected area located in the Brazilian Cerrado, the world's most biologically diverse savanna. Emas Park is a large-mammal global conservation priority area but is too small to protect wide-ranging mammals for the long-term and conserving these populations will depend on the landscape surrounding the park. We employed novel, noninvasive methods to determine the relative importance of resources found within the park, as well as identify landscape features that promote persistence of wide-ranging mammals outside reserve borders. We used scat detection dogs to survey for five large mammals of conservation concern: giant armadillo (Priodontes maximus), giant anteater (Myrmecophaga tridactyla), maned wolf (Chrysocyon brachyurus), jaguar (Panthera onca), and puma (Puma concolor). We estimated resource selection probability functions for each species from 1,572 scat locations and 434 giant armadillo burrow locations. Results indicate that giant armadillos and jaguars are highly selective of natural habitats, which makes both species sensitive to landscape change from agricultural development. Due to the high amount of such development outside of the Emas Park boundary, the park provides rare resource conditions that are particularly important for these two species. We also reveal that both woodland and forest vegetation remnants enable use of the agricultural landscape as a whole for maned wolves, pumas, and giant anteaters. We identify those features and their landscape compositions that should be prioritized for conservation, arguing that a multi-faceted approach is required to protect these species.  相似文献   

15.
基于景观遗传学的滇金丝猴栖息地连接度分析   总被引:1,自引:0,他引:1  
薛亚东  李丽  李迪强  吴巩胜  周跃  吕玺喜 《生态学报》2011,31(20):5886-5893
结合景观遗传学,应用最小费用距离模型对物种栖息地进行连接度分析,能够为生物多样性保护和自然保护区管理提供更加真实准确及可实践操作的指导。选取滇金丝猴这一珍稀濒危物种,结合景观遗传学,应用最小费用距离模型对其栖息地进行了连接度和潜在扩散廊道分析。并且通过连接度的分析和制图绘制出了更为准确的种群间潜在扩散廊道,确定了受人工障碍影响的廊道及敏感区域。结果表明,研究区内的5个亚群中,仅S3亚群内的5个猴群保持着较好的连接度,总体来说,各亚群内的连接度相对于各亚群间连接度保持的较好。除S3亚群中猴群间的潜在扩散廊道较为理想外,其余种群间的潜在扩散廊道均受人工斑块的影响,多数廊道被人工障碍阻断,或面临即将被阻断的情况,对于滇金丝猴的扩散交流影响较大。敏感区域多集中在中南部的3个亚群间,这些敏感区域应作为景观恢复及保护区规划的重要优先区域。  相似文献   

16.
Climate change is a major threat to global biodiversity that will produce a range of new selection pressures. Understanding species responses to climate change requires an interdisciplinary perspective, combining ecological, molecular and environmental approaches. We propose an applied integrated framework to identify populations under threat from climate change based on their extent of exposure, inherent sensitivity due to adaptive and neutral genetic variation and range shift potential. We consider intraspecific vulnerability and population‐level responses, an important but often neglected conservation research priority. We demonstrate how this framework can be applied to vertebrates with limited dispersal abilities using empirical data for the bat Plecotus austriacus. We use ecological niche modelling and environmental dissimilarity analysis to locate areas at high risk of exposure to future changes. Combining outlier tests with genotype–environment association analysis, we identify potential climate‐adaptive SNPs in our genomic data set and differences in the frequency of adaptive and neutral variation between populations. We assess landscape connectivity and show that changing environmental suitability may limit the future movement of individuals, thus affecting both the ability of populations to shift their distribution to climatically suitable areas and the probability of evolutionary rescue through the spread of adaptive genetic variation among populations. Therefore, a better understanding of movement ecology and landscape connectivity is needed for predicting population persistence under climate change. Our study highlights the importance of incorporating genomic data to determine sensitivity, adaptive potential and range shift potential, instead of relying solely on exposure to guide species vulnerability assessments and conservation planning.  相似文献   

17.
Understanding how landscape structure influences biodiversity patterns and ecological processes are essential in ecological research and conservation practices. Forest discontinuity is a primary driver affecting the population persistence and genetic structure of forest‐dwelling species. However, the actual impacts on populations are highly species‐specific. In this study, we tested whether dispersal capability and host specialization are associated with susceptibility to forest discontinuity using three closely related, sympatric fungivorous ciid beetle species (two host specialists, Octotemnus assimilis and O. crassus; one host generalist, O. kawanabei). Landscape genetic analyses and the estimation of effective migration surfaces (EEMS) method consistently demonstrated contrasting differences in the relationships between genetic structure and configuration of forest land cover. Octotemnus assimilis, one of the specialists with a presumably higher dispersal capability due to lower wing loading, lacked a definite spatial genetic structure in our study landscape. The remaining two species showed clear spatial genetic structure, but the results of landscape genetic analyses differed between the two species: while landscape resistance appeared to describe the spatial genetic structure of the specialist O. crassus, genetic differentiation of the generalist O. kawanabei was explained by geographic distance alone. This finding is consistent with the prediction that nonforest areas act more strongly as barriers between specialist populations. Our results suggest that differences in host range can influence the species‐specific resistance to habitat discontinuity among closely related species inhabiting the same landscape.  相似文献   

18.
Landscape moderation of biodiversity patterns and processes - eight hypotheses   总被引:10,自引:0,他引:10  
Understanding how landscape characteristics affect biodiversity patterns and ecological processes at local and landscape scales is critical for mitigating effects of global environmental change. In this review, we use knowledge gained from human-modified landscapes to suggest eight hypotheses, which we hope will encourage more systematic research on the role of landscape composition and configuration in determining the structure of ecological communities, ecosystem functioning and services. We organize the eight hypotheses under four overarching themes. Section A: 'landscape moderation of biodiversity patterns' includes (1) the landscape species pool hypothesis-the size of the landscape-wide species pool moderates local (alpha) biodiversity, and (2) the dominance of beta diversity hypothesis-landscape-moderated dissimilarity of local communities determines landscape-wide biodiversity and overrides negative local effects of habitat fragmentation on biodiversity. Section B: 'landscape moderation of population dynamics' includes (3) the cross-habitat spillover hypothesis-landscape-moderated spillover of energy, resources and organisms across habitats, including between managed and natural ecosystems, influences landscape-wide community structure and associated processes and (4) the landscape-moderated concentration and dilution hypothesis-spatial and temporal changes in landscape composition can cause transient concentration or dilution of populations with functional consequences. Section C: 'landscape moderation of functional trait selection' includes (5) the landscape-moderated functional trait selection hypothesis-landscape moderation of species trait selection shapes the functional role and trajectory of community assembly, and (6) the landscape-moderated insurance hypothesis-landscape complexity provides spatial and temporal insurance, i.e. high resilience and stability of ecological processes in changing environments. Section D: 'landscape constraints on conservation management' includes (7) the intermediate landscape-complexity hypothesis-landscape-moderated effectiveness of local conservation management is highest in structurally simple, rather than in cleared (i.e. extremely simplified) or in complex landscapes, and (8) the landscape-moderated biodiversity versus ecosystem service management hypothesis-landscape-moderated biodiversity conservation to optimize functional diversity and related ecosystem services will not protect endangered species. Shifting our research focus from local to landscape-moderated effects on biodiversity will be critical to developing solutions for future biodiversity and ecosystem service management.  相似文献   

19.
Recent work has shown that evaluating functional trait distinctiveness, the average trait distance of a species to other species in a community offers promising insights into biodiversity dynamics and ecosystem functioning. However, the ecological mechanisms underlying the emergence and persistence of functionally distinct species are poorly understood. Here, we address the issue by considering a heterogeneous fitness landscape whereby functional dimensions encompass peaks representing trait combinations yielding positive population growth rates in a community. We identify four ecological cases contributing to the emergence and persistence of functionally distinct species. First, environmental heterogeneity or alternative phenotypic designs can drive positive population growth of functionally distinct species. Second, sink populations with negative population growth can deviate from local fitness peaks and be functionally distinct. Third, species found at the margin of the fitness landscape can persist but be functionally distinct. Fourth, biotic interactions (positive or negative) can dynamically alter the fitness landscape. We offer examples of these four cases and guidelines to distinguish between them. In addition to these deterministic processes, we explore how stochastic dispersal limitation can yield functional distinctiveness. Our framework offers a novel perspective on the relationship between fitness landscape heterogeneity and the functional composition of ecological assemblages.  相似文献   

20.
Species distribution in a metacommunity varies according to their traits, the distribution of environmental conditions and connectivity among localities. These ingredients contribute to coexistence across spatial scales via species sorting, patch dynamics, mass effects and neutral dynamics. These mechanisms however seldom act in isolation and the impact of landscape configuration on their relative importance remains poorly understood. We present a new model of metacommunity dynamics that simultaneously considers these four possible mechanisms over spatially explicit landscapes and propose a statistical approach to partition their contribution to species distribution. We find that landscape configuration can induce dispersal limitations that have negative consequences for local species richness. This result was more pronounced with neutral dynamics and mass effect than with species sorting or patch dynamics. We also find that the relative importance of the four mechanisms varies not only among landscape configurations, but also among species, with some species being mostly constrained by dispersal and/or drift and others by sorting. Changes in landscape properties might lead to a shift in coexistence mechanisms and, by extension, to a change in community composition. This confirms the importance of considering landscape properties for conservation and management. Our results illustrate the idea that ecological communities are the results of multiple mechanisms acting at the same time and complete our understanding of spatial processes in competitive metacommunities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号