首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An extract of the whole brain of the frog Rana ridibunda contained high concentrations of substance P-like immunoreactivity, measured with an antiserum directed against the COOH-terminal region of mammalian substance P and neurokinin B-like immunoreactivity, measured with an antiserum directed against the NH2-terminus of neurokinin B. The primary structure of the substance P-related peptide (ranakinin) was established as: Lys-Pro-Asn-Pro-Glu-Arg-Phe-Tyr-Gly-Leu-Met-NH2. Mammalian substance P was not present in the extract. The primary structure of the neurokinin B-related peptide was established as: Asp-Met-His-Asp-Phe-Phe-Val-Gly-Leu-Met-NH2. This amino acid sequence is the same as that of mammalian neurokinin B. Ranakinin was equipotent with substance P and [Sar9,Met(O2)11]substance P in inhibiting the binding of 125I-Bolton-Hunter-[Sar9,Met(O2)11]substance P, a selective radioligand for the NK1 receptor, to binding sites in rat submandibular gland membranes (IC50 1.6 +/- 0.3 nM; n = 5). It is concluded that ranakinin is a preferred agonist for the mammalian NK1 tachykinin receptor subtype.  相似文献   

2.
C J Mussap  E Burcher 《Peptides》1990,11(4):827-836
The cyclic tachykinin scyliorhinin II (SCYII) has high affinity for the [neurokinin B (NKB)-preferring] NK3 receptor. SCYII was iodinated using [125I]-Bolton-Hunter reagent and the product BHSCYII purified using reverse phase HPLC. In rat brain membranes, binding of BHSCYII and of the relatively unselective radioligand [125I]-Bolton-Hunter eledoisin (BHELE) was saturable, reversible and to an NK3 site. In competition studies, the rank order of potency in inhibiting binding of BHSCYII and BHELE was: SCYII greater than or equal to [MePhe7]-NKB approximately senktide greater than NKB greater than or equal to kassinin greater than or equal to eledoisin greater than [Pro7]-NKB greater than neurokinin A greater than neuropeptide K greater than or equal to substance P greater than [Sar9, Met(O2)11]-substance P. In "cold" saturation experiments, binding of BHELE occurred to a single class of high affinity sites (KD, 18.6 +/- 0.91 nM). Binding of BHSCYII was of greater affinity than for BHELE and could be resolved into a high (KD, 1.33 +/- 0.98 nM; 27% of sites) and low affinity (KD, 9.84 +/- 2.75; 73% of sites) component. The total number of binding sites was similar for both radioligands (BHSCYII, 8.27 +/- 0.98; BHELE, 7.94 +/- 0.32 fmol/mg wet weight). In vitro autoradiography in slide-mounted sections of rat brain showed identical binding patterns for both radioligands (100 pM), with dense binding localized predominantly to the cortex, Ammon's horn field 1, premammillary nuclei and interpeduncular nucleus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
In membranes of dogfish brain and stomach, two binding sites for tachykinins were identified. One site specifically bound [125I]-Bolton-Hunter substance P (BH-SP) and the rank potency of tachykinins to compete for BH-SP binding revealed similarities with the rank potency of an NK1 receptor. The pharmacology of the other site, which specifically bound [125I]-Bolton-Hunter scyliorhinin II (BH-Scy II), did not resemble any of the mammalian tachykinin receptors. The rank potency to inhibit BH-Scy II binding to this second site was: scyliorhinin II approximately scyliorhinin I greater than eledoisin approximately substance P approximately neurokinin A greater than phyllomedusin approximately physalaemin greater than [Sar9Met(O2)11]substance P. Neurokinin B and senktide did not displace BH-Scy II binding. In addition, nucleotide analogues inhibited BH-SP binding but not BH-Scy II binding. Our binding data suggest the existence of a mammalian-like NK1 receptor and of a nonmammalian tachykinin receptor in the dogfish.  相似文献   

4.
J C Reubi 《Life sciences》1985,36(19):1829-1836
Cyclic octapeptide analogues of somatostatin (SS) like SMS 201-995 [H-(D) Phe-Cys-Phe-(D) Trp-Lys-Thr-Cys-Thr(ol)] or its Tyr3-derivative 204-090, displaced [125I-Tyr11]-SS 100% from pancreatic membranes but only 62-75% from brain membranes; the remaining sites were displaced by SS. These data indicate that some mini-somatostatins bind to a subpopulation of SS receptors in rat brain. The iodinated Tyr3-derivative (125I-204-090) can be considered a selective radioligand for one rat brain SS receptor subpopulation: It shows saturable and high affinity binding (KD = 0.29 nM; Bmax = 350 fmoles/mg protein) to rat cortex. The pharmacological properties of 125I-204-090 binding sites are similar to those of [125I-Tyr11]-SS sites. Distribution of these sites correspond to SS receptor-rich areas such as cortex, hippocampus, striatum, pituitary, pancreatic beta-cell. SS as well as SMS 201-995 bind to these sites with high affinity. The stability and high specific vs non-specific binding ratio makes 204-090 a radioligand of choice to measure this SS receptor subpopulation in CNS but also the SS receptors in pituitary and pancreas.  相似文献   

5.
6.
Highly selective agonists for substance P receptor subtypes.   总被引:30,自引:1,他引:29  
U Wormser  R Laufer  Y Hart  M Chorev  C Gilon    Z Selinger 《The EMBO journal》1986,5(11):2805-2808
The existence of a third tachykinin receptor (SP-N) in the mammalian nervous system was demonstrated by development of highly selective agonists. Systematic N-methylation of individual peptide bonds in the C-terminal hexapeptide of substance P gave rise to agonists which specifically act on different receptor subtypes. The most selective analog of this series, succinyl-[Asp6,Me-Phe8]SP6-11, elicits half-maximal contraction of the guinea pig ileum through the neuronal SP-N receptor at a concentration of 0.5 nM. At least 60,000-fold higher concentrations of this peptide are required to stimulate the other two tachykinin receptors (SP-P and SP-E). The action of selective SP-N agonists in the guinea pig ileum is antagonized by opioid peptides, suggesting a functional counteraction between opiate and SP-N receptors. These results indicate that the tachykinin receptors are distinct entities which may mediate different physiological functions.  相似文献   

7.
The distribution and nature of (somatostatin) SRIF receptors and receptor mRNAs was studied in the brain and periphery of various laboratory animals using in situ hybridisation, autoradiography and radioligand binding. The messenger RNA (mRNA) expression of SRIF receptors msst1, msst2, msst3, msst4 and msst5 was studied in the adult mouse brain by in situ hybridisation histochemistry using specific oligonucleotide probes and compared to that of adult rats. As observed in rat brain, sst3 receptor mRNA is prominently expressed across the mouse brain, although equivalent binding has not yet been identified in situ. Sst1 and sst2 receptor mRNA expression, was prominent and again comparable to that observed in rat brain, whereas sst4 and especially sst5 receptor mRNA show comparatively low levels, although the former appears to be widely distributed while the latter could only be identified in a few nuclei. Altogether, the data are compatible with current knowledge, i.e. sst1 and sst2 receptor mRNA is prominent (both receptors have been functionally identified in the brain and for sst2 in the periphery), sst3 mRNA is highly expressed but in the absence of any functional correlate remains elusive. The expression of sst4 mRNA is comparatively low (especially when compared to what is seen in the lung, where high densities of sst4 receptors are present) and it remains to be seen whether sst5 receptor mRNA, which is confined to a few nuclei, will play a role in the brain, keeping in mind that high levels are found in the pituitary. Radioligand binding studies were performed in CCL39 cells expressing the five human recombinant receptors and compared to binding in membranes of rat cerebral cortex with [125I]Tyr11-SRIF14 which in the presence of 120 mM labels primarily sst1 receptor as suggested by the better correlation hsst1 and similar rank order of potency. The profile of [125I]Tyr3-octreotide labelled sites in rat cortex correlates better with recombinant sst2 than sst3 or sst5 binding profiles. Finally, [125I]LTT-SRIF28-labelled sites in rat lung express a sst4 receptor profile in agreement with previous findings. SRIF receptor autoradiography was performed in the brain and peripheral tissue of rat and/or guinea-pig using a number of ligands known to label recombinant SRIF receptors: [125I]LTT-SRIF28, [125I]CGP 23996, [125I]Tyr10-CST, or [125I]Tyr3-octreotide. Although, [125I]Tyr10-CST has been shown to label all five recombinant SRIF receptors, it is apparent that this radioligand is not useful for autoradiographic studies. By contrast, the other three ligands show good signal to noise ratios in rat or guinea-pig brain, rat lung, rat pancreas, or guinea-pig ileum. In most tissues, [125I]Tyr3-octreotide represents a prominent part of the binding (when compared to [125I]LTT-SRIF28 and [125I]CGP 23996), suggesting that sst2 receptors are strongly expressed in most tissues; it is only in rat lung that [125I]LTT-SRIF28 and [125I]CGP 23996 show marked binding, whereas [125I]Tyr3-octreotide does apparently label no sites, in agreement with the sole presence of sst4 receptors in this tissue.  相似文献   

8.
Adenosine modifies the catalytic activity of adenylate cyclase through both inhibitory (A1 or Ri) as well as stimulatory (A2 or Ra) cell surface receptors. We developed 125I-labeled N6-2-(4-aminophenyl)ethyladenosine as a selective ligand to probe the structure of A1 receptors. The binding of this radioligand to rat cerebral cortex or adipocyte membranes is saturable, reversible, and of high affinity (KD approximately 2 nM). A1 receptor agonists antagonize binding stereoselectivity and with a potency order appropriate for A1 receptors. The heterobifunctional cross-linking reagent N-succinimidyl-6-(4-azido-2-nitrophenylamino)hexanoate covalently couples the radioligand to a protein of Mr = 38,000 in both tissues as demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Inhibition of covalent labeling by adenosine analogs exhibited the stereoselectivity and potency order typical of A1 receptor ligands. Guanine nucleotides reduced both specific binding and covalent incorporation of the radioligand, evidence that the radioligand is an A1 receptor agonist. These results suggest that the A1 receptor binding subunit of both brain and adipocytes resides on a protein of Mr = 38,000. The new radioligand should prove useful in studying the structure and regulation of A1 receptors.  相似文献   

9.
Methylation of 2-125I-lysergic acid diethylamide (125I-LSD) at the N1 position produces a new derivative, N1-methyl-2-125I-lysergic acid diethylamide (125I-MIL), with improved selectivity and higher affinity for serotonin 5-HT2 receptors. In rat frontal cortex homogenates, specific binding of 125I-MIL represents 80-90% of total binding, and the apparent dissociation constant (KD) for serotonin 5-HT2 receptors is 0.14 nM (using 2 mg of tissue/ml). 125I-MIL also displays a high affinity for serotonin 5-HT1C receptors, with an apparent dissociation constant of 0.41 nM at this site. 125I-MIL exhibits at least 60-fold higher affinity for serotonin 5-HT2 receptors than for other classes of neurotransmitter receptors, with the dopamine D2 receptor as its most potent secondary binding site. Studies of the association and dissociation kinetics of 125I-MIL reveal a strong temperature dependence, with very slow association and dissociation rates at 0 degree C. Autoradiographic experiments confirm the improved specificity of 125I-MIL. Selective labeling of serotonin receptors was observed in all brain areas examined. In vivo binding studies in mice indicate that 125I-MIL is the best serotonin receptor label yet described, with the highest frontal cortex to cerebellum ratio of any serotonergic radioligand. 125I-MIL is a promising ligand for both in vitro and in vivo labeling of serotonin receptors in the mammalian brain.  相似文献   

10.
Binding studies have shown that [125I]NKA is a selective ligand of tachykinin septide-sensitive binding sites from membranes of the rat submaxillary gland. Indeed, this ligand bound with high affinity to a single population of sites. In addition, competition studies indicated that natural tachykinins and tachykinin-related compounds had a similar affinity for these sites than for those labeled with [3H]ALIE-124, a selective ligand of septide-sensitive binding sites. Moreover, selective tachykinin NK2, or NK3 agonists or antagonists exhibited weak or no affinity for [125I]NKA binding sites. As indicated by Ki values of several compounds, the pharmacological characteristics of the septide-sensitive binding sites (labeled with [125I]NKA) largely differ from those of classic NK1 binding sites, as determined on crude synaptosomes from the rat brain using [125I]Bolton-Hunter substance P (SP) as ligand. Indeed, several tachykinins including neurokinin A (NKA), neuropeptide K (NPK), neuropeptide gamma (NKgamma), and neurokinin B, as well as some SP and NKA analogues or C-terminal fragments such as septide, ALIE-124, SP(6-11), NKA(4-10), which have a weak affinity for classic tachykinin NK1 binding sites exhibited a high affinity for the septide-sensitive binding sites. In contrast, SP, classic selective NK1 agonists, and antagonists had a high affinity for both types of binding sites. The presence of a large population of tachykinin septide-sensitive binding sites in the rat submaxillary gland may thus explain why NPK and NPgamma induce salivary secretion and may potentiate the SP-evoked response in spite of the absence of tachykinin NK2 receptors in this tissue.  相似文献   

11.
Although neurokinin A (NKA), a tachykinin peptide with sequence homology to substance P (SP), is a weak competitor of radiolabeled SP binding to the NK-1 receptor (NK-1R), more recent direct binding studies using radiolabeled NKA have demonstrated an unexpected high-affinity interaction with this receptor. To document the site of interaction between NKA and the NK-1R, we have used a photoreactive analogue of NKA containing p-benzoyl-L-phenylalanine (Bpa) substituted in position 7 of the peptide. Peptide mapping studies of the receptor photolabeled by (125)I-iodohistidyl(1)-Bpa(7)NKA have established that the site of photoinsertion is located within a segment of the receptor extending from residues 178 to 190 (VVCMIEWPEHPNR). We have previously shown that (125)I-BH-Bpa(8)SP, a photoreactive analogue of SP, covalently attaches to M(181) within this same receptor sequence. Importantly, both of these peptides ((125)I-iodohistidyl(1)-Bpa(7)NKA and (125)I-BH-Bpa(8)SP) have the photoreactive amino acid in an equivalent position within the conserved tachykinin carboxyl-terminal tail. In this report, we also show that site-directed mutagenesis of M(181) to A(181) in the NK-1R results in a complete loss of photolabeling of both peptides to this receptor site, indicating that the equivalent position of SP and NKA, when bound to the NK-1R, contact the same residue.  相似文献   

12.
Neuropeptide Y receptor in the rat brain   总被引:6,自引:0,他引:6  
The specific binding of the chloramine-T iodinated neuropeptide Y (125I-NPY) to membranes from rat cerebral cortex was investigated using equilibrium binding and kinetic methods. The equilibrium binding of 125I-NPY at 37 degrees C was characterized by a Kd value of 0.38 nM. The receptor densities in the cerebral cortex, hypothalamus and cerebellum were 0.45 pmol/mg, 0.47 pmol/mg and 0.04 pmol/mg protein respectively. The binding site for 125I-NPY was sensitive to treatment with proteolytic enzymes and thiol reagents. The binding showed a sharp optimum at pH 7-7.7 and was inhibited by increasing concentrations of Mg2+.  相似文献   

13.
14.
Mesolimbic dopaminergic neurotransmission is modulated by dynorphin peptides binding to kappa-opioid receptors. The interaction between dynorphin and dopamine systems makes the kappa-opioid receptor a potential drug discovery target for the development of therapeutic agents for schizophrenia and drug abuse. This study reports the specificity and parameters of [3H]U69593 binding in the insular cortex, a representative corticolimbic area of the human brain. The results demonstrate that the radioligand [3H]U69593 labels a single population of receptors in human insular cortex with an affinity in the low nanomolar range. The pharmacological profile for inhibition of [3H]U69593 binding was determined in this brain region using drugs known to bind to mu, kappa and delta opioid receptors. The results show that kappa-opioid selective agonists and antagonists inhibit binding of this ligand in human brain with comparable affinities and rank order as previously described for rat and guinea pig brain and the cloned kappa1-opioid receptor subtype.  相似文献   

15.
Fenoldopam (SKF 82526), a dopamine agonist which exhibits D-1 receptor subtype selectivity, was evaluated as a radioligand for this receptor subtype. In saturation studies in rat striatal membrane preparations, [3H]-fenoldopam appeared to label a single binding site with a KD of 2.3 +/- 0.1 nM and a Bmax of 590 +/- 40 fmoles/mg protein. In competition binding experiments, binding was shown to be stereoselective, and rank ordering of affinities of dopaminergic and non-dopaminergic compounds closely correlated with potencies of these compounds in stimulating or inhibiting dopamine-sensitive adenylate cyclase (D-1) and in binding to D-1 sites labelled with the antagonist [3H]-cis-flupenthixol. The most potent competitors were the recently identified D-1 selective antagonists, SCH 23390 and SKF R-83566. [3H]-Fenoldopam was also used to assess agonist/D-1 receptor interactions. The results suggest that [3H]-fenoldopam is a useful and selective agonist radioligand for the D-1 receptor.  相似文献   

16.
125I-Aminopotentidine (125I-APT), a reversible probe of high specific radioactivity and high affinity and selectivity for the H2 receptor, was used to characterize and localize this histamine receptor subtype in human brain samples obtained at autopsy. On membranes of human caudate nucleus, specific 125I-APT binding at equilibrium revealed a single component, with a dissociation constant of 0.3 nM and maximal capacity of about 100 fmol/mg of protein. At 0.2 nM, 125I-APT specific binding, as defined with tiotidine, an H2-receptor antagonist chemically unrelated to iodoaminopotentidine, represented 40-50% of the total. Specific 125I-APT binding was inhibited by a series of typical H2-receptor antagonists that displayed apparent dissociation constants closely similar to corresponding values at the reference biological system, i.e., guinea pig atrium. This indicates that the pharmacology of the H2 receptor is the same in the human brain as on this reference system. However, histamine was about 10-fold more potent in inhibiting 125I-APT binding to membranes of human brain than of guinea pig brain. 125I-APT binding was also inhibited by amitriptyline and mianserin, two antidepressant drugs, in micromolar concentrations corresponding to effective plasma concentrations of treated patients. The distribution of H2 receptors was established autoradiographically with 125I-APT on a series of coronal sections of human brain after assessing the pharmacological specificity of the labeling. The highest density of 125I-APT sites was found in the basal ganglia, various parts of the limbic system, e.g., hippocampus or amygdaloid complex, and the cerebral cortex. H2 receptors displayed a laminar distribution in cerebral cortex and hippocampal formation. A low density of sites was found in cerebellum as well as in hypothalamus, the brain area where all the perikarya and the largest number of axons of histaminergic neurons are found. The widespread distribution of H2 receptors in the human brain is consistent with the alleged modulatory role of histamine mediated by this subtype of receptor.  相似文献   

17.
The tachykinin neurokinin 1 receptors (NK1Rs) regulation of acetylcholine release and its interaction with the enkephalin/mu opioid receptors (MORs) transmission was investigated in the limbic/prefrontal (PF) territory of the dorsal striatum. Using double immunohistochemistry, we first showed that in this territory, cholinergic interneurons contain tachykinin NK1Rs and co-express MORs in the last part of the light period (afternoon). In slices of the striatal limbic/PF territory, following suppression of the dopaminergic inhibitory control of acetylcholine release, application of the tachykinin NK1R antagonist, SSR240600, markedly reduced the NMDA-induced acetylcholine release in the morning but not in the afternoon when the enkephalin/MOR regulation is operational. In the afternoon, the NK1R antagonist response required the suppression of the enkephalin/MOR inhibitory control of acetylcholine release by βfunaltrexamine. The pharmacological profile of the tachykinin NK1R regulation tested by application of the receptor agonists [[Pro9]substance P, neurokinin A, neuropeptide K, and substance P(6–11)] and antagonists (SSR240600, GR205171, GR82334, and RP67580) indicated that the subtype of tachykinin NK1R implicated are the new NK1-sensitive receptor binding site. Therefore, in the limbic/PF territory of the dorsal striatum, endogenous tachykinin facilitates acetylcholine release via a tachykinin NK1R subtype. In the afternoon, the tachykinin/NK1R and the enkephalin/MOR transmissions interact to control cholinergic transmission.  相似文献   

18.
采用放射性配基结合分析法,对大鼠大脑皮质的5-HT受体作了检定,并观察了老年大鼠(36月龄)大脑皮质中该受体的变化。证实大鼠大脑皮质存在着丰富的、高亲和力和单一结合位点的5-HT受体。老年大鼠大脑皮质中5-HT受体的数目较成年大鼠(3月龄)明显减少,但亲和力无改变。应用荧光分光技术测定了成年和老年大鼠脑干和大脑皮质5-HT含量,证实老年大鼠上述两个脑区的5-HT含量均有降低。本研究的结果提示,老年大鼠中枢5-HT系统的功能减低,这一变化可能与老年期的一些表现如睡眠障碍、体温低、记忆力减退和易患精神疾病等有关。  相似文献   

19.
The human platelet contains a functional 5-hydroxytryptamine (5-HT) receptor that appears to resemble the 5-HT2 subtype. In this study, we have used the iodinated derivative [125I]iodolysergic acid diethylamide ([125I]iodoLSD) in an attempt to label 5-HT receptors in human platelet and frontal cortex membranes under identical assay conditions to compare the sites labelled in these two tissues. In human frontal cortex, [125I]iodoLSD labelled a single high-affinity site (KD = 0.35 +/- 0.02 nM). Displacement of specific [125I]iodoLSD binding indicated a typical 5-HT2 receptor inhibition profile, which demonstrated a significant linear correlation (r = 0.97, p less than 0.001, n = 17) with that observed using [3H]ketanserin. However, [125I]iodoLSD (Bmax = 136 +/- 7 fmol/mg of protein) labelled significantly fewer sites than [3H]ketanserin (Bmax = 258 +/- 19 fmol/mg of protein) (p less than 0.001, n = 6). In human platelet membranes, [125I]iodoLSD labelled a single site with affinity (KD = 0.37 +/- 0.03 nM) similar to that in frontal cortex. The inhibition profile in the platelet showed significant correlation with that in frontal cortex (r = 0.96, p less than 0.001, n = 16). We conclude that the site labelled by [125I]iodoLSD in human platelet membranes is biochemically similar to that in frontal cortex and most closely resembles the 5-HT2 receptor subtype, although the discrepancy in binding capacities of [125I]iodoLSD and [3H]ketanserin raises a question about the absolute nature of this receptor.  相似文献   

20.
Specific binding sites for cholecystokinin (CCK) have been characterized in a particulate membrane fraction of rat cerebral cortex using a biologically active 125I-labeled derivative of the C-terminal octapeptide of CCK (CCK-8) prepared by reaction with the iodinated form of the imidoester (125IIE), methyl-p-hydroxybenzimidate. The time course of binding to cortical membranes was rapid, temperature dependent, and saturable. Half-maximal binding at 24 degrees C was reached in 30 min and full binding at 120 min. At 37 degrees C there was only a slight increase in 125IIE-CCK-8 bound after 15 min. The addition of a large excess of CCK-8 after 30 min of binding at 24 degrees C caused a prompt and rapid decline in radioligand bound showing that the interaction was reversible. There was a progressive decline in the amount of 125IIE-CCK-8 bound to membranes with increasing concentrations of CCK-8 and other structurally related peptides. CCK-8 displaced 50% of the radioligand at 4 nM, CCK-33 at 10 nM, and gastrin (desulfated CCK-8) at 60 nM. Secretin, a structurally unrelated peptide, was unable to displace the radioligand from cortical membranes at 1.0 microM. Finally, 125IIE-CCK-8 exposed to cortical membranes or to buffers that had previously contained such membranes for 60 min at 24 degrees C bound equally as well to fresh cortical membranes as control radioligand that had not been exposed to the same conditions. Thus the 125I-CCK-8 radioligand used in this study was highly resistant to degradative processes in rat brain tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号