共查询到20条相似文献,搜索用时 15 毫秒
1.
The metabolism of phthalic acid (PA) and di-(2-ethylhexyl)phthalate (DEHP) in sludge-amended agricultural soil was studied with radiotracer techniques. The initial rates of metabolism of PA and DEHP (4.1 nmol/g [dry weight]) were estimated to be 731.8 and 25.6 pmol/g (dry weight) per day, respectively. Indigenous microorganisms assimilated 28 and 17% of the carbon in [ 14C]PA and [ 14C]DEHP, respectively, into microbial biomass. The rates of DEHP metabolism were much greater in sludge assays without soil than in assays with sludge-amended soil. Mineralization of [ 14C]DEHP to 14CO 2 increased fourfold after inoculation of sludge and soil samples with DEHP-degrading strain SDE 2. The elevated mineralization potential was maintained for more than 27 days. Experiments performed with strain SDE 2 suggested that the bioavailability and mineralization of DEHP decreased substantially in the presence of soil and sludge components. The microorganisms metabolizing PA and DEHP in sludge and sludge-amended soil were characterized by substrate-specific radiolabelling, followed by analysis of 14C-labelled phospholipid ester-linked fatty acids ( 14C-PLFAs). This assay provided a radioactive fingerprint of the organisms actively metabolizing [ 14C]PA and [ 14C]DEHP. The 14C-PLFA fingerprints showed that organisms with different PLFA compositions metabolized PA and DEHP in sludge-amended soil. In contrast, microorganisms with comparable 14C-PLFA fingerprints were found to dominate DEHP metabolism in sludge and sludge-amended soil. Our results suggested that indigenous sludge microorganisms dominated DEHP degradation in sludge-amended soil. Mineralization of DEHP and PA followed complex kinetics that could not be described by simple first-order equations. The initial mineralization activity was described by an exponential function; this was followed by a second phase that was described best by a fractional power function. In the initial phase, the half times for PA and DEHP in sludge-amended soil were 2 and 58 days, respectively. In the late phase of incubation, the apparent half times for PA and DEHP increased to 15 and 147 days, respectively. In the second phase (after more than 28 days), the half time for DEHP was 2.9 times longer in sludge-amended soil assays than in sludge assays without soil. Experiments with radiolabelled DEHP degraders suggested that a significant fraction of the 14CO 2 produced in long-term degradation assays may have originated from turnover of labelled microbial biomass rather than mineralization of [ 14C]PA or [ 14C]DEHP. It was estimated that a significant amount of DEHP with poor biodegradability and extractability remains in sludge-amended soil for extended periods of time despite the presence of microorganisms capable of degrading the compound (e.g., more than 40% of the DEHP added is not mineralized after 1 year). 相似文献
2.
This study was conducted to investigate the uptake, accumulation and the enhanced dissipation of di(2-ethylhexyl) phthalate (DEHP) spiked in soil (with a concentration of 117.4 ± 5.2 mg kg ?1) by eleven plants including eight maize ( Zea mays) cultivars and three forage species (alfalfa, ryegrass and teosinte). The results showed that, after 40 days of treatment, the removal rates of DEHP ranged from 66.8% (for the control) to 87.5% (for the maize cultivar of Huanong-1). Higher removal rate was observed during the first 10 days than the following days. Plants enhanced significantly the dissipation of DEHP in soil. Enhanced dissipation amount in planted soil was 13.3–122 mg pot ?1 for DEHP, and a net removal of 2.2%–20.7% of the initial DEHP was obtained compared with non-plant soil. The contribution of plant uptake to the total enhanced dissipation was <0.3%, and the enhanced dissipation of soil DEHP might be derived from plant-promoted biodegradation and sorption stronger to the soil. Nevertheless, the capability in accumulation and enhanced dissipation of DEHP from spiked soils varied within different species and cultivars. 相似文献
3.
Phthalate plasticizers such as di(2-ethylhexyl) phthalate (DEHP) are being phased out of many consumer products because of their endocrine disrupting properties and their ubiquitous presence in the environment. The concerns raised from the use of phthalates have prompted consumers, government, and industry to find alternative plasticizers that are safe, biodegradable, and have the versatility for multiple commercial applications. We examined the toxicogenomic profile of mono(2-ethylhexyl) phthalate (MEHP, the active metabolite of DEHP), the commercial plasticizer diisononyl cyclohexane-1,2-dicarboxylate (DINCH), and three recently proposed plasticizers: 1,4-butanediol dibenzoate (BDB), dioctyl succinate (DOS), and dioctyl maleate (DOM), using the immortalized TM4 Sertoli cell line. Results of gene expression studies revealed that DOS and BDB clustered with control samples while MEHP, DINCH and DOM were distributed far away from the control-DOS-BDB cluster, as determined by principle component analysis. While no significant changes in gene expression were found after treatment with BDB and DOS, treatment with MEHP, DINCH and DOM resulted in many differentially expressed genes. MEHP upregulated genes downstream of PPAR and targeted pathways of cholesterol biosynthesis without modulating the expression of PPAR’s themselves. DOM upregulated genes involved in glutathione stress response, DNA repair, and cholesterol biosynthesis. Treatment with DINCH resulted in altered expression of a large number of genes involved in major signal transduction pathways including ERK/MAPK and Rho signalling. These data suggest DOS and BDB may be safer alternatives to DEHP/MEHP than DOM or the commercial alternative DINCH. 相似文献
4.
ASDs (autism spectrum disorders) are a complex group of neurodevelopment disorders, still poorly understood, steadily rising in frequency and treatment refractory. Extensive research has been so far unable to explain the aetiology of this condition, whereas a growing body of evidence suggests the involvement of environmental factors. Phthalates, given their extensive use and their persistence, are ubiquitous environmental contaminants. They are EDs (endocrine disruptors) suspected to interfere with neurodevelopment. Therefore they represent interesting candidate risk factors for ASD pathogenesis. The aim of this study was to evaluate the levels of the primary and secondary metabolites of DEHP [di-(2-ethylhexyl) phthalate] in children with ASD. A total of 48 children with ASD (male: 36, female: 12; mean age: 11±5 years) and age- and sex-comparable 45 HCs (healthy controls; male: 25, female: 20; mean age: 12±5 years) were enrolled. A diagnostic methodology, based on the determination of urinary concentrations of DEHP metabolites by HPLC-ESI-MS (HPLC electrospray ionization MS), was applied to urine spot samples. MEHP [mono-(2-ethylhexenyl) 1,2-benzenedicarboxylate], 6-OH-MEHP [mono-(2-ethyl-6-hydroxyhexyl) 1,2-benzenedicarboxylate], 5-OH-MEHP [mono-(2-ethyl-5-hydroxyhexyl) 1,2-benzenedicarboxylate] and 5-oxo-MEHP [mono-(2-ethyl-5-oxohexyl) 1,2-benzenedicarboxylate] were measured and compared with unequivocally characterized, pure synthetic compounds (>98%) taken as standard. In ASD patients, significant increase in 5-OH-MEHP (52.1%, median 0.18) and 5-oxo-MEHP (46.0%, median 0.096) urinary concentrations were detected, with a significant positive correlation between 5-OH-MEHP and 5-oxo-MEHP ( rs = 0.668, P<0.0001). The fully oxidized form 5-oxo-MEHP showed 91.1% specificity in identifying patients with ASDs. Our findings demonstrate for the first time an association between phthalates exposure and ASDs, thus suggesting a previously unrecognized role for these ubiquitous environmental contaminants in the pathogenesis of autism. 相似文献
5.
邻苯二甲酸二(2-乙基己基)酯(DEHP)是目前使用最广泛的增塑剂之一,DEHP具有毒性,长期暴露会对机体的多个系统产生损害,特别是对雄性生殖系统的毒性作用更为明显。DEHP通过诱导氧化应激、调控细胞自噬,促进生精细胞和睾丸间质细胞凋亡、抑制睾酮合成、破坏血-睾屏障、诱导睾丸支持细胞铁死亡以及影响子代雄性的表观遗传等,造成生殖器官的病理损伤。本文就DEHP对睾丸的毒性作用及机制进行综述,拟为男性生殖障碍的防治研究提供新思路。 相似文献
6.
Mono-(2-ethylhexyl) phthalate (MEHP), the active metabolite of di-(2-ethylhexyl) phthalate (DEHP), is a widespread environmental contaminant and has been proved to have potential adverse effects on the reproductive system, carcinogenicity, liver, kidney and developmental toxicities. However, the effect of MEHP on vascular system remains unclear. The main purpose of this study was to evaluate the cytotoxic effects of MEHP on human umbilical endothelial cells (HUVEC) and its possible molecular mechanism. HUVEC cells were treated with MEHP (0, 6.25, 12.5, 25,50 and 100 µM), and the cellular apoptosis and mitochondrial membrane potential as well as intracellular reactive oxygen species were determined. In present study, MEHP induced a dose-dependent cell injury in HUVEC cell via an apoptosis pathway as characterized by increased percentage of sub-G1, activation of caspase-3, -8and -9, and increased ratio of Bax/bcl-2 mRNA and protein expression as well as cytochrome C releasing. In addition, there was obvious oxidative stress, represented by decreased glutathione level, increased malondialdehyde level and superoxide dismutase activity. N-Acetylcysteine, as an antioxidant that is a direct reactive oxygen species scavenger, could effectively block MEHP-induced reactive oxygen species generation, mitochondrial membrane potential loss and cell apoptosis. These data indicated that MEHP induced apoptosis in HUVEC cells through a reactive oxygen species-mediated mitochondria-dependent pathway. 相似文献
7.
Women exposed to phthalates during pregnancy are at increased risk for delivering preterm, but the mechanism behind this relationship is unknown. Placental corticotropin-releasing hormone (CRH) and cyclooxygenase-2 (COX-2) are key mediators of parturition and are regulated by the non-canonical NF-kB (RelB/p52) signaling pathway. In this study, we demonstrate that one of the major phthalate metabolites, mono-(2-ethylhexyl)-phthalate (MEHP), increased CRH and COX-2 mRNA and protein abundance in a dose-dependent manner in primary cultures of cytotrophoblast. This was coupled with an increase in nuclear import of RelB/p52 and its association with the CRH and COX-2 promoters. Silencing of NF-kB inducing kinase, a central signaling component of the non-canonical NF-kB pathway, blocked MEHP-induced upregulation of CRH and COX-2. These results suggest a potential mechanism mediated by RelB/p52 by which phthalates could prematurely induce pro-labor gene activity and lead to preterm birth. 相似文献
8.
Lead and di-2-ethylhexyl phthalate (DEHP) are widely distributed in the environment, and their neurotoxicity has caused a widespread concern. The complexity of environmental exposure provides the possibility of their combined exposure. The present study aims to describe a joint neurotoxicity and clarify the potential mechanism after combined exposure to lead and DEHP. A 2 × 3 factorial design was used to analyze either single effects or their interaction by a subchronic lead and DEHP exposure model of the male weaning rats. Similar to the previous study, lead or DEHP single exposure showed an increased neurotoxicity. Interestingly, our neurobehavioral test showed the rats in the combined exposure groups had a better ability of learning and memory compared with the single-exposure ones. It seemed to reflect an antagonism joint action in neurotoxicity after combined exposure. The content of dehydroepiandrosterone (DHEA) in serum and the mRNA level of brain-derived neurotrophic factor (Bdnf) in the hippocampus showed a similar trend to the ability of learning and memory. However, there was insufficient evidence to support the joint action on some indexes of oxidative stress such as malondialdehyde (MDA), the ratio of reduced glutathione(GSH) to oxidized glutathione(GSSG), γglutamylcysteine synthetase (γ-GCS), glutathione-s transferase (GST), and nuclear factor E2-related factor 2 (Nrf2) mRNA expression in the hippocampus. In a word, our current study reminded a unique antagonism joint action of neurotoxicity after combined exposure to lead and DEHP, which may contribute to understanding some shallow mechanism of the joint toxicity due to the complexity of environmental pollutant exposure. 相似文献
9.
The aim of the present study was to determine the toxicokinetics of short-term exposures to di(2-ethylhexyl) phthalate (DEHP) and its effects on ovarian cyclicity and luteal function using a sheep experimental model. For establishing the model, we examined the clearance of DEHP after intravenous (i.v.) and intramuscular (i.m.) administration of a single dose of 25 mg/kg body weight (b.w.) and after i.m. administration of two different doses (25 and 50 mg/kg b.w.; DEHP25 and DEHP50, respectively) three times a week for two months. Results showed a significant, dose-dependent effect of DEHP administration, when compared to the control group (CTL; untreated ewes; n = 6), on the duration of the ewes’ estrous cycles (17.1 ± 0.5 days, CTL; 15.1 ± 0.9 days, DEHP25; 12.0 ± 0.8 days, DEHP50; p < 0.05); 94.9% of the cycles were of regular duration (15–19 days) in CTL, but only 51.1% and 25.4% in DEHP25 and DEHP50, respectively. Corpora lutea (CL) were smaller in DEHP50 than in DEHP25 ( p < 0.05) and were smaller in both groups than in CTL ( p < 0.005), but the maximum plasma concentrations of progesterone were greater ( p < 0.05) in DEHP25 and DEHP50 than in CTL. In conclusion, the exposure of cycling ewes to DEHP causes shortening of the ovulatory cycles due mainly to a reduction in the size and lifespan of CL. However, the exposure to the phthalate is also associated with an increase in circulating concentrations of progesterone, suggesting the influence of DEHP on steroid metabolism. 相似文献
11.
Leaves of maize ( Zea mays L.) and sugar beet ( Beta vulgaris L.) were enclosed in an illuminated chamber in air for 30 min after which time 14CO 2 was released into the chamber. Two min after the 14CO 2 was released, the leaves were removed from the chamber, and small sections were cut from them. The sections were put in small wire baskets and frozen in isopentane cooled by liquid nitrogen. Approximately 1.5 min elapsed from the removal of the leaf from the illuminated chamber until the tissue was frozen. The tissue was freeze-dried, embedded in paraffin and the cellular location of the isotopic activity was determined by radiography of leaf cross sections. Isotopic activity in maize leaves was localized in bundle sheath parenchyma. In contrast, the label in sugar beet leaves was generally distributed in the mesophyll cells. The bundle sheath cells in maize contain specialized chloroplasts which appear to have a unique capacity to incorporate CO 2. Translocation from leaves of maize was 3-fold as rapid as from sugar beet leaves in the same environment. Low light intensity did not alter the distribution pattern of fixed CO 2. 相似文献
12.
Environmental stressors can induce changes in gene expression that can be useful as biomarkers. To identify potential biomarkers of water quality, we characterized full-length cDNA sequences of the serine-type endopeptidase (SP) gene from Chironomus riparius. Their expression was analyzed during different life-history stages and in response to treatment with various concentrations of di(2-ethylhexyl) phthalate (DEHP) for short and long periods of time. A comparative molecular and phylogenetic investigation was then conducted among different orders of insects using sequence database analysis. The sequence of the C. riparius SP gene was found to be most closely related to the sequence of SPs isolated from Aedes aegypti. In addition, the basal level of C. riparius SP mRNA was more highly expressed in larvae than in other life-history stages. However, the expression of C. riparius SP was primarily limited to the gut in larvae. When the effects of short-term exposure to DEHP were evaluated, C. riparius SP gene expression decreased within 1 h of treatment, regardless of dose. We also investigated expression of the C. riparius SP gene following long-term DEHP exposure (10 days) and found that it decreased significantly across all DEHP dosages. Finally, the response of the SP gene was more sensitive in C. riparius that were exposed to low concentrations of DEHP than in those that were exposed to high concentrations. These results show that suppression of the C. riparius SP gene by DEHP is as a potential biomarker that could be useful for monitoring aquatic quality. 相似文献
14.
The photo-Fenton coupled with a biological system for the removal of di-(2-ethylhexyl) phthalate (DEHP) in wastewater was analyzed. The toxicity of DEHP-containing wastewater was found to be reduced after pretreatment by the photo-Fenton reaction. The effect of different factors, such as DEHP, Fe 3+ and H 2O 2 concentrations and the reaction time, on degradation efficiency was investigated. The optimal time to stop the pretreatment process and introduce the effluent to the biological system was 60 min. The results show that effluent of DEHP-containing wastewater pretreated by the photo-Fenton method is biodegradable and that mineralization can be completed when the wastewater is subsequently treated in a biological system. The coupled Fenton and biological treatment system for the degradation of DEHP-containing wastewater can be successfully performed in a semi-continuous mode. These results indicate that the coupled photo-biological system is an effective and potential method for the treatment of DEHP-containing wastewater. 相似文献
15.
Oral administration of DEHP, 1000 mg/kg body weight, to rats daily from 6 to 15 day of gestation resulted in retardation of fetal growth and increase in fetal liver weight which contained significant quantities of DEHP. The activities of mitochondrial succinate dehydrogenase, malate dehydrogenase, cytochrome c oxidase and adenosine triphosphatase were decreased in fetal liver. The data indicate that exposure of mothers to DEHP during pregnancy could adversely affect the fetal livers by interfering with bioenergetics of the cell. 相似文献
16.
Mutations in the Autism susceptibility candidate 2 gene ( AUTS2) have been associated with a broad range of psychiatric illnesses including autism spectrum disorders, intellectual disability and schizophrenia. We previously demonstrated that the cytoplasmic AUTS2 acts as an upstream factor for the Rho family small GTPase Rac1 and Cdc42 that regulate the cytoskeletal rearrangements in neural cells. Moreover, genetic ablation of the Auts2 gene in mice has resulted in defects in neuronal migration and neuritogenesis in the developing cerebral cortex caused by inactivation of Rac1-signaling pathway, suggesting that AUTS2 is required for neural development. In this study, we conducted a battery of behavioral analyses on Auts2 heterozygous mutant mice to examine the involvement of Auts2 in adult cognitive brain functions. Auts2-deficient mice displayed a decrease in exploratory behavior as well as lower anxiety-like behaviors in the absence of any motor dysfunction. Furthermore, the capability for novel object recognition and cued associative memory were impaired in Auts2 mutant mice. Social behavior and sensory motor gating functions were, however, normal in the mutant mice as assessed by the three-chamber test and prepulse inhibition test, respectively. Together, our findings indicate that AUTS2 is critical for the acquisition of neurocognitive function. 相似文献
17.
The purpose of this 42-day study was to investigate the effects of low selenium (Se) on cellular immune function by determining cell cycle of thymus, serum IL-2 content, and mitogenesis of peripheral blood T-lymphocytes. One hundred twenty 1-day-old Avian broilers were randomly assigned to two groups of 60 each and were fed on a low-Se diet (0.0342?mg/kg Se) or a control diet (0.2?mg/kg Se), respectively. Cell cycle analysis by flow cytometry showed that low-Se diet caused an increase in G(0)G(1) phase cells that corresponded to a decrease in S-phase cells in thymus. Ultrastructurally, mitochondria injury and increased apoptotic cells with condensed nuclei were observed. Low-Se diet decreased the serum IL-2 contents and mitogenesis of peripheral blood lymphocytes to concanavalin A in comparison with those of control group. These data indicate that low-Se diet inhibits the development of thymus by arresting the cell cycle and decreasing the IL-2 content. 相似文献
19.
目的探讨邻苯二甲酸(2-乙基己基)酯(DEHP)致小鼠睾丸细胞DNA损伤及褪黑素(MT)对此损伤的拮抗作用。方法将40只CL57BL/6J雄性小鼠随机分为4组,包括对照组、MT组、DEHP组和MT+DEHP联合组。MT采用腹腔注射(剂量为15 mg·kg-1),DEHP灌胃染毒(染毒剂量为1000 mg·kg-1),每天染毒1次,连续30 d。检测睾丸组织中谷胱甘肽过氧化物酶(GSH-Px)、超氧化物歧化酶(SOD)活力和丙二醛(MDA)、8-羟基脱氧鸟嘌呤(8-OHd G)含量。单细胞凝胶电泳(彗星实验)检测睾丸细胞DNA损伤,慧星图像软件测定慧星尾长、慧尾DNA百分含量、尾矩及Olive尾矩。结果与对照组比较,DEHP组小鼠睾丸组织GSH-Px和SOD活力降低,MDA和8-OHd G含量增加,睾丸细胞彗星尾长、彗尾DNA百分含量、尾矩、Olive尾矩均显著增加,差异均有统计学意义(P<0.05);与DEHP组比较,MT+DEHP联合组小鼠睾丸组织GSH-Px和SOD活力升高,MDA和8-OHd G含量降低,睾丸细胞DNA损伤程度减轻,差异均有统计学意义(P<0.05)。结论 DEHP造成小鼠睾丸明显的氧化应激,并引起睾丸细胞DNA的损伤;MT可拮抗因DEHP染毒导致的睾丸氧化损伤。 相似文献
20.
BackgroundType 2 diabetes is associated with macro- and microvascular complications in man. Microvascular dysfunction affects both cardiac and renal function and is now recognized as a main driver of cardiovascular mortality and morbidity. However, progression of microvascular dysfunction in experimental models is often obscured by macrovascular pathology and consequently demanding to study. The obese type 2 diabetic leptin-deficient (ob/ob) mouse lacks macrovascular complications, i.e. occlusive atherosclerotic disease, and may therefore be a potential model for microvascular dysfunction. The present study aimed to test the hypothesis that these mice with an insulin resistant phenotype might display microvascular dysfunction in both coronary and renal vascular beds. Methods and ResultsIn this study we used non-invasive Doppler ultrasound imaging to characterize microvascular dysfunction during the progression of diabetes in ob/ob mice. Impaired coronary flow velocity reserve was observed in the ob/ob mice at 16 and 21 weeks of age compared to lean controls. In addition, renal resistivity index as well as pulsatility index was higher in the ob/ob mice at 21 weeks compared to lean controls. Moreover, plasma L-arginine was lower in ob/ob mice, while asymmetric dimethylarginine was unaltered. Furthermore, a decrease in renal vascular density was observed in the ob/ob mice. ConclusionIn parallel to previously described metabolic disturbances, the leptin-deficient ob/ob mice also display cardiac and renal microvascular dysfunction. This model may therefore be suitable for translational, mechanistic and interventional studies to improve the understanding of microvascular complications in type 2 diabetes. 相似文献
|