共查询到20条相似文献,搜索用时 8 毫秒
1.
We examine the joint contribution of urban expansion and climate change on heat stress over the Sydney region. A Regional Climate Model was used to downscale present (1990–2009) and future (2040–2059) simulations from a Global Climate Model. The effects of urban surfaces on local temperature and vapor pressure were included. The role of urban expansion in modulating the climate change signal at local scales was investigated using a human heat-stress index combining temperature and vapor pressure. Urban expansion and climate change leads to increased risk of heat-stress conditions in the Sydney region, with substantially more frequent adverse conditions in urban areas. Impacts are particularly obvious in extreme values; daytime heat-stress impacts are more noticeable in the higher percentiles than in the mean values and the impact at night is more obvious in the lower percentiles than in the mean. Urban expansion enhances heat-stress increases due to climate change at night, but partly compensates its effects during the day. These differences are due to a stronger contribution from vapor pressure deficit during the day and from temperature increases during the night induced by urban surfaces. Our results highlight the inappropriateness of assessing human comfort determined using temperature changes alone and point to the likelihood that impacts of climate change assessed using models that lack urban surfaces probably underestimate future changes in terms of human comfort. 相似文献
2.
Douglas H. Erwin 《Current biology : CB》2009,19(14):R575-R583
3.
US national parks are challenged by climate and other forms of broad-scale environmental change that operate beyond administrative boundaries and in some instances are occurring at especially rapid rates. Here, we evaluate the climate change exposure of 289 natural resource parks administered by the US National Park Service (NPS), and ask which are presently (past 10 to 30 years) experiencing extreme (<5th percentile or >95th percentile) climates relative to their 1901–2012 historical range of variability (HRV). We consider parks in a landscape context (including surrounding 30 km) and evaluate both mean and inter-annual variation in 25 biologically relevant climate variables related to temperature, precipitation, frost and wet day frequencies, vapor pressure, cloud cover, and seasonality. We also consider sensitivity of findings to the moving time window of analysis (10, 20, and 30 year windows). Results show that parks are overwhelmingly at the extreme warm end of historical temperature distributions and this is true for several variables (e.g., annual mean temperature, minimum temperature of the coldest month, mean temperature of the warmest quarter). Precipitation and other moisture patterns are geographically more heterogeneous across parks and show greater variation among variables. Across climate variables, recent inter-annual variation is generally well within the range of variability observed since 1901. Moving window size has a measureable effect on these estimates, but parks with extreme climates also tend to exhibit low sensitivity to the time window of analysis. We highlight particular parks that illustrate different extremes and may facilitate understanding responses of park resources to ongoing climate change. We conclude with discussion of how results relate to anticipated future changes in climate, as well as how they can inform NPS and neighboring land management and planning in a new era of change. 相似文献
4.
《Current biology : CB》2014,24(24):R1166-R1168
5.
Background
Recent studies suggest that environmental changes may tip the balance between interacting species, leading to the extinction of one or more species. While it is recognized that evolution will play a role in determining how environmental changes directly affect species, the interactions among species force us to consider the coevolutionary responses of species to environmental changes.Methodology/Principle Findings
We use simple models of competition, predation, and mutualism to organize and synthesize the ways coevolution modifies species interactions when climatic changes favor one species over another. In cases where species have conflicting interests (i.e., selection for increased interspecific interaction strength on one species is detrimental to the other), we show that coevolution reduces the effects of climate change, leading to smaller changes in abundances and reduced chances of extinction. Conversely, when species have nonconflicting interests (i.e., selection for increased interspecific interaction strength on one species benefits the other), coevolution increases the effects of climate change.Conclusions/Significance
Coevolution sets up feedback loops that either dampen or amplify the effect of environmental change on species abundances depending on whether coevolution has conflicting or nonconflicting effects on species interactions. Thus, gaining a better understanding of the coevolutionary processes between interacting species is critical for understanding how communities respond to a changing climate. We suggest experimental methods to determine which types of coevolution (conflicting or nonconflicting) drive species interactions, which should lead to better understanding of the effects of coevolution on species adaptation. Conducting these experiments across environmental gradients will test our predictions of the effects of environmental change and coevolution on ecological communities. 相似文献6.
Background
Climate change directly affects species by altering their physical environment and indirectly affects species by altering interspecific interactions such as predation and competition. Recent studies have shown that the indirect effects of climate change may amplify or counteract the direct effects. However, little is known about the the relative strength of direct and indirect effects or their potential to impact population persistence.Methodology/Principal Findings
We studied the effects of altered precipitation and interspecific interactions on the low-density tiller growth rates and biomass production of three perennial grass species in a Kansas, USA mixed prairie. We transplanted plugs of each species into local neighborhoods of heterospecific competitors and then exposed the plugs to a factorial manipulation of growing season precipitation and neighbor removal. Precipitation treatments had significant direct effects on two of the three species. Interspecific competition also had strong effects, reducing low-density tiller growth rates and aboveground biomass production for all three species. In fact, in the presence of competitors, (log) tiller growth rates were close to or below zero for all three species. However, we found no convincing evidence that per capita competitive effects changed with precipitation, as shown by a lack of significant precipitation × competition interactions.Conclusions/Significance
We found little evidence that altered precipitation will influence per capita competitive effects. However, based on species'' very low growth rates in the presence of competitors in some precipitation treatments, interspecific interactions appear strong enough to affect the balance between population persistence and local extinction. Therefore, ecological forecasting models should include the effect of interspecific interactions on population growth, even if such interaction coefficients are treated as constants. 相似文献7.
8.
A model is presented for predicting the response of global familydiversity to global environmental change. The model assumesthat three primary mechanisms determine diversity: the capacityto survive the absolute minimum temperature of a site, the abilityto complete the life cycle in a given length and warmth of thegrowing season, and the capacity to expand leaves in a definedregime of precipitation and vegetation transpiration. The directeffects of CO2 on vegetation transpiration are also included. About one-third of the floristic regions of the world exhibitincreased diversity with a 3°C increase in temperature,a 10% increase in precipitation, and a doubling of the CO2 concentration.The addition of CO2 offsets the increased rates of transpiration,caused by global warming through its capacity to reduce transpiration.As a consequence, the diversity of dry regions displayed thegreatest increase in diversity due to increased CO2. 相似文献
9.
M.R. ScarfÌ M. RomanÒ R. Di Pietro O. Zeni A. Doria G.P. Gallerano E. Giovenale G. Messina A. Lai G. Campurra D. Coniglio M. D'Arienzo 《Journal of biological physics》2003,29(2-3):171-176
The aim of the present study is toinvestigate the genotoxic effect of THzradiation in human peripheral bloodlymphocytes following 20 minutes exposureto 1 mW average power Free Electron Laserradiation in the frequency range 120–140GHz. For this purpose 9 healthy donors wereemployed and cytokinesis block techniquewas applied to study micronucleusfrequency and cell proliferation. Theresults obtained indicate that all theelectromagnetic conditions adopted so far do not alter the investigated parameters,suggesting absence of direct chromosomaldamage and alteration of cell cyclekinetics (two tailed paired Student's test:p>0.05 in all cases). 相似文献
10.
Anthony J. Meyer 《The Western journal of medicine》1987,147(6):716-718
Preventing the acquired immunodeficiency syndrome (AIDS) requires an unprecedented response from public health professionals, particularly educators and communicators involved with health promotion. Health promotion is defined and discussed in the light of recent experience in a broad range of public health programs. Increased sophistication is needed in the application of social science within health promotion and increased facility in mobilizing cross-sectorial resources to achieve public health objectives and generate confidence in approaching AIDS prevention. 相似文献
11.
Projected Loss of a Salamander Diversity Hotspot as a Consequence of Projected Global Climate Change
Background
Significant shifts in climate are considered a threat to plants and animals with significant physiological limitations and limited dispersal abilities. The southern Appalachian Mountains are a global hotspot for plethodontid salamander diversity. Plethodontids are lungless ectotherms, so their ecology is strongly governed by temperature and precipitation. Many plethodontid species in southern Appalachia exist in high elevation habitats that may be at or near their thermal maxima, and may also have limited dispersal abilities across warmer valley bottoms.Methodology/Principal Findings
We used a maximum-entropy approach (program Maxent) to model the suitable climatic habitat of 41 plethodontid salamander species inhabiting the Appalachian Highlands region (33 individual species and eight species included within two species complexes). We evaluated the relative change in suitable climatic habitat for these species in the Appalachian Highlands from the current climate to the years 2020, 2050, and 2080, using both the HADCM3 and the CGCM3 models, each under low and high CO2 scenarios, and using two-model thresholds levels (relative suitability thresholds for determining suitable/unsuitable range), for a total of 8 scenarios per species.Conclusion/Significance
While models differed slightly, every scenario projected significant declines in suitable habitat within the Appalachian Highlands as early as 2020. Species with more southern ranges and with smaller ranges had larger projected habitat loss. Despite significant differences in projected precipitation changes to the region, projections did not differ significantly between global circulation models. CO2 emissions scenario and model threshold had small effects on projected habitat loss by 2020, but did not affect longer-term projections. Results of this study indicate that choice of model threshold and CO2 emissions scenario affect short-term projected shifts in climatic distributions of species; however, these factors and choice of global circulation model have relatively small affects on what is significant projected loss of habitat for many salamander species that currently occupy the Appalachian Highlands. 相似文献12.
The realized species richness of tropical forests cannot yet be reliably mapped at a regional scale due to lack of systematically collected data. An estimate of the potential species richness (PSR), however, can be produced through the use of species distribution modelling. PSR is interpretable as a climatically determined upper limit to observed species richness. We mapped current PSR and future PSR under climate change scenarios for Mesoamerica by combining the spatial distributions of 2000 tree species as predicted by generalized additive models built from herbaria records and climate layers. An explanatory regression tree was used to extract conditional rules describing the relationship between PSR and climate. The results were summarized by country, ecoregion and protected area status in order to investigate current and possible future variability in PSR in the context of regional biodiversity conservation. Length of the dry season was found to be the key determinant of PSR. Protected areas were found to have higher median PSR values than unprotected areas in most of the countries within the study area. Areas with exceptionally high PSR, however, remain unprotected throughout the region. Neither changes in realized species richness nor extinctions will necessarily follow changes in modelled PSR under climate change. However model output suggests that an increase in temperature of around 3°C, combined with a 20 percent decrease in rainfall could lead to a widespread reduction of around 15 percent of current PSR, with values of up to 40 percent in some moist lower montane tropical forests. The modelled PSR of dry forest ecoregions was found to be relatively stable. Some cooler upper montane forests in northern Mesoamerica, where few species of tropical origin are currently found, may gain PSR if species are free to migrate. 相似文献
13.
植物对全球气候变化的响应近年来已成为植物学研究热点之一,而有性生殖阶段对环境的变化最敏感。本文较系统地综述了过去数十年气候变化主要因子温度、温室气体、紫外线B辐射和气溶胶对植物花期、授粉受精和生殖产量等有性生殖过程的影响。主要概括:(1)温度适度升高促使大部分植物花期提前,加速授粉受精过程,但同时使传粉者活动期和花期分离而影响授粉受精,其部分增加生殖产量,但温度过高则减少产量。(2)温室气体中水汽过多或过少都减少植物生殖产量;CO2浓度升高一般有利于植物授粉受精,增加生殖产量;O3浓度增加则不利于植物生殖生长。(3)增强的UV-B辐射影响植物花期,不利于授粉受精,对生殖产量影响复杂。(4)气溶胶排放量增加对植物生殖产量的影响依据气溶胶浓度、植物冠层结构和环境条件不同而异。最后分析总结了国内外相关研究中仍存在的不足之处,为更好理解和深入研究植物对气候变化的响应机制提供参考。 相似文献
14.
目前全球变暖已经致使地球上生物群系的格局发生了显著的变化。高纬度地区的植物生长由此变得更加活跃,而热带地区植物生长的趋势仍然是一个具有争论的问题。西双版纳热带植物园地处中国西南地区,20世纪70年代以来,这里气候发生了显著的变化,其气温以每10年0.18℃的速度上升。本研究利用西双版纳热带植物园中的48种热带植物(28科)的株高生长数据(1974~2003年)来分析其对西双版纳区域气候变化的长期变化响应,通过对株高与气候因子的相关分析选出对植物株高生长影响最大的气候因子。结果表明,植物在研究期间的株高生长年间波动比较强烈,但没有表现出明显的趋势;植物的株高生长主要受到干热季(3、4月份)的日照时数(负)与月均最低气温(正)所影响,而干热季正是这些植物每年开始萌叶的时期;另外,降雨并没有对引种植物株高生长产生显著的影响;从2个关键因子的长期变化趋势来看,西双版纳气候变化将有利于保护植物的生长,进而将有利于植物园内热带植物的保护与保存。 相似文献
15.
Prithwiraj De Anita G. Amin Eloise Valli Mark D. Perkins Michael McNeil Delphi Chatterjee 《PloS one》2015,10(12)
Globally, tuberculosis is slowly declining each year and it is estimated that 37 million lives were saved between 2000 and 2013 through effective diagnosis and treatment. Currently, diagnosis relies on demonstration of the bacteria, Mycobacterium tuberculosis (Mtb), in clinical specimens by serial sputum microscopy, culture and molecular testing. Commercial immunoassay lateral flow kits developed to detect Mtb lipoglycan lipoarabinomannan (LAM) in urine as a marker of active TB exhibit poor sensitivity, especially in immunocompetent individuals, perhaps due to low abundance of the analyte. Our present study was designed to develop methods to validate the presence of LAM in a quantitative fashion in human urine samples obtained from culture-confirmed TB patients. Herein we describe, a consolidated approach for isolating LAM from the urine and quantifying D-arabinose as a proxy for LAM, using Gas Chromatography/Mass Spectrometry. 298 urine samples obtained from a repository were rigorously analyzed and shown to contain varying amounts of LAM-equivalent ranging between ~10–40 ng/mL. To further substantiate that D-arabinose detected in the samples originated from LAM, tuberculostearic acid, the unique 10-methyloctadecanoic acid present at the phosphatidylinositol end of LAM was also analyzed in a set of samples and found to be present confirming that the D-arabinose was indeed derived from LAM. Among the 144 samples from culture-negative TB suspects, 30 showed presence of D-arabinose suggesting another source of the analyte, such as disseminated TB or from non-tuberculosis mycobacterium. Our work validates that LAM is present in the urine samples of culture-positive patients in small but readily detectable amounts. The study further substantiates LAM in urine as a powerful biomarker for active tuberculosis. 相似文献
16.
This study was conducted to estimate the health risk to workers exposed to 1-bromopropane (1-BP) used as a cleaning solvent in their workplaces. Fifty samples from 10 workplaces that use 1-BP as a cleaning solvent were obtained to assess 1-BP concentrations. An exposure assessment revealed central tendency exposure (CTE) and reasonable maximum exposure (RME) levels of 82.1 and 214.8 mg/m3, respectively. For risk characterization, the 1-BP exposure concentrations for reproductive and developmental toxicities were calculated as 2.8 and 8.5 mg/m3, respectively, and compared with the reference concentrations in the workplace. The CTE and RME hazard quotients (HQ) were, respectively, 29.4 and 77.0 for reproductive toxicity and 9.6 and 25.2 for developmental toxicity. The results of our 1-BP risk assessment indicated that the CTE-HQs for both categories were higher than the acceptable risk value of 1, indicating that 1-BP may be considered as harmful to workers. 相似文献
17.
气候变化对5种植物分布的潜在影响 总被引:1,自引:0,他引:1
吴建国 《热带亚热带植物学报》2010,18(5):511-522
利用CART(分类和回归树Classification and regression tree)模型,采用A2和B2气候情景,模拟分析了气候变化对观光木(Tsoongiodendron odorum)、鹅掌楸(Liriodendron chinense)、独叶草(Kingdonia uniflora)、草苁蓉(Boschniakia rossica)和刺五加(Acanthopanax senticosus)分布范围及空间格局的影响。结果表明:与目前适宜分布范围相比,气候发生变化后,观光木的分布范围变化不大,其它植物则缩小;观光木的新适宜与总适宜分布范围扩大,而其它植物缩小;草丛蓉和刺五加的目前适宜、新适宜及总适宜分布范围缩小幅度较大,鹅掌楸和独叶草次之;观光木和鹅掌楸向目前适宜分布区北部区域扩展,独叶草向西南区域扩展,草丛蓉和刺五加的适宜范围在2081~2100年会散失。气候变化下,这些植物的适宜分布范围随年降水量和年均气温的变化不一致,观光木的目前适宜、独叶草的新适宜及总适宜分布范围与年降水量和年均气温,以及草苁蓉的分布范围与降水量的相关性不显著(P0.05)。这些植物的空间分布格局将随气候变化而发生变化。 相似文献
18.
杉木(Cunninghamia lanceolata)是我国主要的造林树种之一,具有重要的药用、经济和生态服务功能。在全球变暖趋势持续的背景下,气候成为制约物种生存和发展的重要因素,其中空间分布和生态位变化对生态过程的解释至关重要。基于211个杉木分布点和20个环境变量,利用MaxEnt模型和R语言的ecospat软件包对杉木适生区和生态位的变化进行研究,分析杉木对未来气候持续变暖的响应。结果表明杉木当前潜在适生区219.67万km2,约占国土总面积的22.88%,主要分布在我国800 mm等降水量线以东的地区,年均温、昼夜温差日均值和最干月降雨量是影响杉木分布的最主要环境变量。未来杉木适生区分布将沿着经纬度方向迁移,高度和低度适生区面积均不断减少。主成分分析(PCA)表明杉木气候生态位在不同时段不同代表性浓度路径下发生转移和扩展,气候生态位中心将向年均温和最暖季降雨量移动。生态位重叠指数均呈现不断下降的趋势,且RCP8.5情景下的生态位重叠率下降最为明显。结果表明全球气候变暖会改变物种的空间分布区域,并将对现存的生态系统产生不同程度的影响。杉木与气候变化关系的研究拓展了人们对气候变化与植物物种生态特征的认识,为杉木乃至乔木树种的保护和利用提供了理论依据。 相似文献
19.
The aim of this study was to investigate the environmental impact and the human health risks associated with metals exposure in the Catalan stretch of the Ebro River, Spain. The concentrations of the following elements were determined in soils and tap water: As, Cd, Cr, Cu, Hg, Mn, Ni, and Pb. Carcinogenic and non-carcinogenic risks were separately assessed for adults and children. Relatively low metal concentrations in tap water were found. It indicates that water intake is not a relevant source of metals for human health impact in the area under evaluation. In turn, the levels of metals in soils were similar or less than those found in a number of recent worldwide surveys. The presence of industrial facilities located upstream the Ebro River, including a chloralkali plant, should not mean additional non-carcinogenic risks for the population living in the area. The results of the current study allow us to establish that the concentrations of most carcinogenic elements (with the exception of As) should not mean potential health risks for the local population. However, because of the relatively high levels of geological origin found for As, a continued monitoring of these elements would be desirable. 相似文献
20.
Increasing sand temperatures resulting from climate change may negatively impact sea turtle nests by altering sex ratios and decreasing reproductive output. We analyzed the effect of nest shading and watering on sand temperatures as climate mitigation strategies in a beach hatchery at Playa Grande, Costa Rica. We set up plots and placed thermocouples at depths of 45cm and 75cm. Half of the plots were shaded and half were exposed to the sun. Within these exposure treatments, we applied three watering treatments over one month, replicating local climatic conditions experienced in this area. We also examined gravimetric water content of sand by collecting sand samples the day before watering began, the day after watering was complete, and one month after completion. Shading had the largest impact on sand temperature, followed by watering and depth. All watering treatments lowered sand temperature, but the effect varied with depth. Temperatures in plots that received water returned to control levels within 10 days after watering stopped. Water content increased at both depths in the two highest water treatments, and 30 days after the end of water application remained higher than plots with low water. While the impacts of watering on sand temperature dissipate rapidly after the end of application, the impacts on water content are much more lasting. Although less effective at lowering sand temperatures than shading, watering may benefit sea turtle clutches by offsetting negative impacts of low levels of rain in particularly dry areas. Prior to implementing such strategies, the natural conditions at the location of interest (e.g. clutch depth, environmental conditions, and beach characteristics) and natural hatchling sex ratios should be taken into consideration. These results provide insight into the effectiveness of nest shading and watering as climate mitigation techniques and illustrate important points of consideration in the crafting of such strategies. 相似文献