首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A gene encoding acidic, thermostable and raw starch hydrolysing α-amylase was cloned from an extreme thermophile Geobacillus thermoleovorans and expressed. The ORF of 1650 bp encodes a 515 amino acid protein (Gt-amy) with a signal peptide of 34 amino acids at the N-terminus. Seven conserved sequences of GH-13 family have been found in its sequence. The specific enzyme activity of recombinant Gt-amy is 1723 U mg−1 protein with a molecular mass of 59 kDa. It is optimally active at pH 5.0 and 80 °C with t1/2 values of 283, 184 and 56 min at 70, 80 and 90 °C, respectively. The activation energy required for its temperature deactivation is 84.96 kJ mol−1. Ca2+ strongly inhibits Gt-amy at 10 mM concentration, and inhibition kinetics with Ca2+ reveals that inhibition occurs as a result of binding to a lower affinity secondary Ca2+ binding site in the active centre in a mixed-type inhibition manner. The Km and kcat of the Gt-amy are 0.315 mg mL−1 and 2.62 × 103 s−1, respectively. Gt-amy is Ca2+-independent at the concentration used in industrial starch saccharification, and hydrolyses raw corn and wheat starches efficiently, and thus, is applicable in starch saccharification at the industrial sub-gelatinization temperatures.  相似文献   

2.
A thermophilic Bacillus sp. strain AN-7, isolated from a soil in India, produced an extracellular pullulanase upon growth on starch–peptone medium. The enzyme was purified to homogeneity by ammonium sulfate precipitation, anion exchange and gel filtration chromatography. The optimum temperature and pH for activity was 90 °C and 6.0. With half-life time longer than one day at 80 °C the enzyme proves to be thermostable in the pH range 4.5–7.0. The pullulanase from Bacillus strain lost activity rapidly when incubated at temperature higher than 105 °C or at pH lower than 4.5. Pullulanase was completely inhibited by the Hg2+ ions. Ca2+, dithiothreitol, and Mn2+ stimulated the pullulanase activity. Kinetic experiments at 80 °C and pH 6.0 gave Vmax and Km values of 154 U mg−1 and 1.3 mg ml−1. The products of pullulan were maltotriose and maltose. This proved that the purified pullulanase (pullulan-6-glucanohydrolase, EC 3.2.1.41) from Bacillus sp. AN-7 is classified under pullulanase type I. To our knowledge, this Bacillus pullulanase is the most highly thermostable type I pullulanase known to date.  相似文献   

3.
《Process Biochemistry》2010,45(7):1052-1056
A new enzyme was isolated from the fungus combs in the nest of Odontotermes formosanus and identified as a laccase. The single laccase was purified with a purification factor of 16.83 by ammonium sulphate precipitation and anion exchange chromatography, to a specific activity of 211.11 U mg−1. Its molecular mass was 65 kDa. The optimum pH value and temperature were 4.0 °C and 10 °C with ABTS as the substrate, respectively. The enzyme activity stabilized at temperatures between 10 °C and 30 °C and decreased rapidly when the temperature was above 30 °C. The Vmax and Km values were 3.62 μmol min−1 mg−1 and 119.52 μM, respectively. Ethanol concentration affected laccase activity, inhibiting 60% of enzyme activity at a concentration of 70%. Metal ions of Mg2+, Ba2+ and Fe2+ showed inhibition on enzyme activity of 17.2%, 5.3% and 9.4%, respectively, with the increase of metal ions concentration from 1 mM to 5 mM. Especially Fe2+ strongly inhibited enzyme activity up to 89% inhibition at a concentration of 1 mM.  相似文献   

4.
《Process Biochemistry》2010,45(1):88-93
A fibrinolytic protease (FP84) was purified from Streptomyces sp. CS684, with the aim of isolating economically viable enzyme from a microbial source. SDS-PAGE and fibrin zymography of the purified enzyme showed a single protein band of approximately 35 kDa. Maximal activity was at 45 °C and pH 7–8, and the enzyme was stable between pH 6 and 9 and below 40 °C. It exhibited fibrinolytic activity, which is stronger than that of plasmin. FP84 hydrolyzed Bβ-chains of fibrinogen, but did not cleave Aα- and γ-chains. Km, Vmax and Kcat values for azocasein were 4.2 mg ml−1, 305.8 μg min−1 mg−1 and 188.7 s−1, respectively. The activity was suppressed by Co2+, Zn2+, Cu2+ and Fe2+, but slightly enhanced by Ca2+ and Mg+2. Additionally, the activity was slightly inhibited by aprotinin and PMSF, but significantly inhibited by pefabloc, EDTA and EGTA. The first 15 amino acids of N-terminal sequence were GTQENPPSSGLDDID. They are highly similar to those of serine proteases from various Streptomyces strains, but different with known fibrinolytic enzymes. These results suggest that FP84 is a novel serine metalloprotease with potential application in thrombolytic therapy.  相似文献   

5.
《Cell calcium》2010,47(5-6):347-355
TPEN (N,N,N′,N′-tetrakis(2-pyridylmethyl)-ethylenediamine) is a membrane-permeable heavy-metal ion chelator with a dissociation constant for Ca2+ comparable to the Ca2+ concentration ([Ca2+]) within the intracellular Ca2+ stores. It has been used as modulator of intracellular heavy metals and of free intraluminal [Ca2+], without influencing the cytosolic [Ca2+] that falls in the nanomolar range. In our previous studies, we gave evidence that TPEN modifies the Ca2+ homeostasis of striated muscle independent of this buffering ability. Here we describe the direct interaction of TPEN with the ryanodine receptor (RyR) Ca2+ release channel and the sarcoplasmic reticulum (SR) Ca2+ pump (SERCA). In lipid bilayers, at negative potentials and low [Ca2+], TPEN increased the open probability of RyR, while at positive potentials it inhibited channel activity. On permeabilized skeletal muscle fibers of the frog, but not of the rat, 50 μM TPEN increased the number of spontaneous Ca2+ sparks and induced propagating events with a velocity of 273 ± 7 μm/s. Determining the hydrolytic activity of the SR revealed that TPEN inhibits the SERCA pump, with an IC50 = 692 ± 62 μM and a Hill coefficient of 0.88 ± 0.10. These findings provide experimental evidence that TPEN directly modifies both the release of Ca2+ from and its reuptake into the SR.  相似文献   

6.
《Process Biochemistry》2007,42(3):344-351
A strategy that optimization of medium compositions for maximum biomass followed by feeding of sucrose for maximum polysaccharide synthesis was developed for enhancing polysaccharide production in suspension culture of protocorm-like bodies (PLBs) of Dendrobium huoshanense C.Z. Tang et S.J. Cheng. In growth stage, the original half-strength MS medium was optimized with carbon sources, nitrogen sources and metal ion combinations. The effects of different carbon sources on PLBs growth were remarkable and sucrose at 35 g l−1 was the most suitable. Sole nitrate nitrogen of 30 mmol l−1 was the best for PLBs growth. Metal ions (Ca2+, Fe2+, Mn2+ and Zn2+) showed different influences on PLBs growth. The optimal concentration of Ca2+, Fe2+, Mn2+ and Zn2+ was 4.5 mmol l−1, 0.1 mmol l−1, 0.5 mmol l−1 and 0.06 mmol l−1, respectively. In the optimized medium (sucrose, nitrate, Ca2+, Fe2+, Mn2+ and Zn2+ concentration as described above, the other component concentration seen in half-strength MS), 33.9 g DW l−1 PLBs were harvested after 30 days of culture and biomass increase was improved 245% as compared with that in the original medium. In production stage, polysaccharide synthesis was significantly improved by the feeding sucrose. The maximum polysaccharide production (22 g l−1) was obtained in the case of 50 g l−1 sucrose feeding at day 30 of culture, which was about 109-fold higher than that in the original medium without feeding of sucrose.  相似文献   

7.
Ten different seaweed species were compared on the basis of lead uptake at different pH conditions. The brown seaweed, Turbinaria conoides, exhibited maximum lead uptake (at pH 4.5) and hence was selected for further studies. Sorption isotherms, obtained at different pH (4–5) and temperature (25–35 °C) conditions were fitted using Langmuir and Sips models. According to the Langmuir model, the maximum lead uptake of 439.4 mg/g was obtained at optimum pH (4.5) and temperature (30 °C). The Sips model better described the sorption isotherms with high correlation coefficients at all conditions examined. Various thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated indicating that the present system was a spontaneous and endothermic process. Through potentiometric titrations, number of binding sites (carboxyl groups) and pK1 were determined as 4.1 mmol/g and 4.4, respectively. The influence of co-ions (Na+, K+, Mg2+ and Ca2+) on lead uptake was well pronounced in the case of divalent ions compared to monovalent ions. The solution of 0.1 M HCl successfully eluted all lead ions from lead-loaded T. conoides biomass. The regeneration experiments revealed that the alga could be successfully reused for five cycles without any loss in lead biosorption capacity. A glass column (2 cm i.d. and 35 cm height) was used to study the continuous lead biosorption performance of T. conoides. At 25 cm (bed height), 5 ml/min (flow rate) and 100 mg/l (initial lead concentration), T. conoides exhibited lead uptake of 220.1 mg/g. The column was successfully eluted using 0.1 M HCl, with elution efficiency of 99.7%.  相似文献   

8.
《Process Biochemistry》2007,42(1):83-88
The piceid-β-d-glucosidase that hydrolyzes the β-d-glucopyranoside bond of piceid to release resveratrol was isolated from Aspergillus oryzae sp.100 strain, and the enzyme was purified and characterized. The enzyme was purified to one spot in SDS polyacrylamide gel electrophoresis, and its molecular weight was about 77 kDa. The optimum temperature of the piceid-β-d-glucosidase was 60 °C, and the optimum pH was 5.0. The piceid-β-d-glucosidase was stable at less than 60 °C, and pH 4.0–5.0. Ca2+, Mg2+ and Zn2+ ions have no significant effect on enzyme activity, but Cu2+ ion inhibits enzyme activity strongly. The Km value was 0.74 mM and the Vmax value was 323 nkat mg−1 for piceid.  相似文献   

9.
Thiazides block Na+ reabsorption while enhancing Ca2+ reabsorption in the kidney. As previously demonstrated in immortalized mouse distal convoluted tubule (MDCT) cells, chlorothiazide application induced a robust plasma membrane hyperpolarization, which increased Ca2+ uptake. This essential thiazide-induced hyperpolarization was prevented by the Cl channel inhibitor 5-Nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), implicating NPPB-sensitive Cl channels, however the nature of these Cl channels has been rarely described in the literature. Here we show that MDCT cells express a dominant, outwardly rectifying Cl current at extracellular pH 7.4. This constitutive Cl current was more permeable to larger anions (Eisenman sequence I; I > Br  Cl) and was substantially inhibited by > 100 mM [Ca2+]o, which distinguished it from ClC-K2/barttin. Moreover, the constitutive Cl current was blocked by NPPB, along with other Cl channel inhibitors (4,4′-diisothiocyanatostilbene-2,2′-disulfonate, DIDS; flufenamic acid, FFA). Subjecting the MDCT cells to an acidic extracellular solution (pH < 5.5) induced a substantially larger outwardly rectifying NPPB-sensitive Cl current. This acid-induced Cl current was also anion permeable (I > Br > Cl), but was distinguished from the constitutive Cl current by its rectification characteristics, ion sensitivities, and response to FFA. In addition, we have identified similar outwardly rectifying and acid-sensitive currents in immortalized cells from the inner medullary collecting duct (mIMCD-3 cells). Expression of an acid-induced Cl current would be particularly relevant in the acidic IMCD (pH < 5.5). To our knowledge, the properties of these Cl currents are unique and provide the mechanisms to account for the Cl efflux previously speculated to be present in MDCT cells.  相似文献   

10.
Thermal limits of insects can be influenced by recent thermal history: here we used thermolimit respirometry to determine metabolic rate responses and thermal limits of the dominant meat ant, Iridomyrmex purpureus. Firstly, we tested the hypothesis that nest surface temperatures have a pervasive influence on thermal limits. Metabolic rates and activity of freshly field collected individuals were measured continuously while ramping temperatures from 44 °C to 62 °C at 0.25 °C/minute. At all the stages of thermolimit respirometry, metabolic rates were independent of nest surface temperatures, and CTmax did not differ between ants collected from nest with different surface temperatures. Secondly, we tested the effect of brain control on upper thermal limits of meat ants via ant decapitation experiments (‘headedness’). Decapitated ants exhibited similar upper critical temperature (CTmax) results to living ants (Decapitated 50.3±1.2 °C: Living 50.1±1.8 °C). Throughout the temperature ramping process, ‘headedness’ had a significant effect on metabolic rate in total (Decapitated CO2 140±30 µl CO2 mg−1 min−1: Living CO2 250±50 CO2 mg−1 min−1), as well as at temperatures below and above CTmax. At high temperatures (>44 °C) pre- CTmax the relationships between I. purpureus CTmax values and mass specific metabolic rates for living ants exhibited a negative slope whilst decapitated ants exhibited a positive slope. The decapitated ants also had a significantly higher Q10:25–35 °C when compared to living ants (1.91±0.43 vs. 1.29±0.35). Our findings suggest that physiological responses of ants may be able to cope with increasing surface temperatures, as shown by metabolic rates across the thermolimit continuum, making them physiologically resilient to a rapidly changing climate. We also demonstrate that the brain plays a role in respiration, but critical thermal limits are independent of respiration levels.  相似文献   

11.
Leifsonia xyli HS0904 can stereoselectively catalyze the bioreduction of 3,5-bis(trifluoromethyl) acetophenone (BTAP) to its corresponding alcohol, which is a valuable chiral intermediate in the pharmaceuticals. In this study, a new carbonyl reductase derived from L. xyli HS0904 was purified and its biochemical properties were determined in detail. The carbonyl reductase was purified by 530-fold with a specific activity of 13.2 U mg−1 and found to be a homodimer with a molecular mass of 49 kDa, in which the subunit molecular-weight was about 24 kDa. The purified enzyme exhibited a maximum enzyme activity at 34 °C and pH 7.2, and retained over 90% of its initial activity at 4 °C and pH 7.0 for 24 h. The addition of various additives, such as Ca2+, Mg2+, Mn2+, l-cysteine, l-glutathione, urea, PEG 1000 and PEG 4000, could enhance the enzyme activity. The maximal reaction rate (Vmax) and apparent Michaelis–Menten constant (Km) of the purified carbonyl reductase for BTAP and NADH were confirmed as 33.9 U mg−1, 0.383 mM and 69.9 U mg−1, 0.412 mM, respectively. Furthermore, this enzyme was found to have a broad spectrum of substrate specificity and can asymmetrically catalyze the reduction of a variety of ketones and keto esters.  相似文献   

12.
《Process Biochemistry》2010,45(3):363-368
The sulfidogenic activity of two mesophilic sulfate reducing enrichment cultures was studied in H2-fed membrane bioreactors. The two enrichment cultures had different origins; one of them was a mesophilic and the other a psychrotolerant mesophilic culture. The operational temperatures of the reactors were gradually changed: for one the temperature was increased from 9 to 30 °C and for the other it was decreased from 35 to 9 °C. The specific sulfidogenic activities were 21–31, 52–53 and 57–92 mmol SO42− g VSS−1 d−1 at 9, 15 and 30–35 °C, respectively. The sulfate reduction rate of the SRB stabilized to a lower level after the temperature was decreased. The percent electron flow to sulfate reduction was on average 24–32, 50 and 47–69% at 9, 15 and 30–35 °C, respectively. The capability of mesophilic SRB to oxidize electron donor decreased as the temperature was decreased. The results indicate that starting of the reactor operation at 9 °C resulted in higher sulfidogenic activity at sub-optimal temperatures and selective enrichment of the psychrotolerant species improved. The start-up of the reactor at 35 °C resulted in decreased sulfidogenic activity as the temperature was decreased. This indicates that the operational temperature of bioreactors with mesophilic SRB can be decreased to 15–20 °C and the sulfidogenic activity will decrease by 10–40%. Moreover, an operational temperature of 9 °C seems to be close to the lower limit of active sulfate reduction for the mesophilic enrichment cultures used in this study.  相似文献   

13.
Phragmites karka (Retz.) Trin, ex. steud, a perennial reed with creeping rhizome from the family Poaceae, is distributed as pure population in brackish water swamps. Populations primarily propagate using ramets but also produce numerous seeds which form part of the seed bank after dispersal and are exposed to extremes of temperature, drought, and salinity stress. Seeds were germinated under a range of salinity (0, 100, 200, 300, 400, 500 mM NaCl) and temperature (10/20 °C, 15/25 °C, 20/30 °C, 25/35 °C, night/day) regimes in 12 h light:12 h dark photoperiod or in complete darkness with 0, 5, 10, 25 mM CaCl2. Salinity, absence of light and high temperature (25/35 °C) reduced germination while calcium generally reversed this effect, more so at cooler temperature regimes. Calcareous soil around Karachi would help alleviate the salinity effect on the germination of P. karka and facilitate its survival.  相似文献   

14.
Thermophilic fungus Thermomyces lanuginosus CBS 395.62/b strain is able to grow and synthesise extracellular α-galactosidase in media containing galactomannan such as locust bean gum (LBG) or guar gum (GG). Production of extracellular α-galactosidase was enhanced from 1.2 U/mL to 4–6 U/mL meaning about 3–5 times increase by optimisation of medium composition. This enzyme was purified to homogeneity by partial precipitation with 2-propanol and different liquid chromatographical steps. The developed purification protocol yielded 22% of enzyme activity with 900 purified fold. Molecular mass of the purified α-galactosidase enzyme was estimated to be 53 kDa. Maximal catalytic activity of the enzyme was obtained in the acidic pH range between pH 4.6 and 4.8 and in the temperature range 60–66 °C. More than 95% of enzyme activity was remaining after 1-day incubation at 70 °C and on pH in the range from 4.0 to 7.0. The enzyme activity was significantly stimulated by Mg2+, Mn2+ and K+ ions, while considerably inhibited by the presence of Ca2+, Ag+ and Hg2+.  相似文献   

15.
At present there is no standardised heat tolerance test (HTT) procedure adopting a running mode of exercise. Current HTTs may misdiagnose a runner's susceptibility to a hyperthermic state due to differences in exercise intensity. The current study aimed to establish the repeatability of a practical running test to evaluate individual's ability to tolerate exercise heat stress. Sixteen (8M, 8F) participants performed the running HTT (RHTT) (30 min, 9 km h−1, 2% elevation) on two separate occasions in a hot environment (40 °C and 40% relative humidity). There were no differences in peak rectal temperature (RHTT1: 38.82±0.47 °C, RHTT2: 38.86±0.49 °C, Intra-class correlation coefficient (ICC)=0.93, typical error of measure (TEM)=0.13 °C), peak skin temperature (RHTT1: 38.12±0.45, RHTT2: 38.11±0.45 °C, ICC=0.79, TEM=0.30 °C), peak heart rate (RHTT1: 182±15 beats min−1, RHTT2: 183±15 beats min−1, ICC=0.99, TEM=2 beats min−1), nor sweat rate (1721±675 g h−1, 1716±745 g h−1, ICC=0.95, TEM=162 g h−1) between RHTT1 and RHTT2 (p>0.05). Results demonstrate good agreement, strong correlations and small differences between repeated trials, and the TEM values suggest low within-participant variability. The RHTT was effective in differentiating between individuals physiological responses; supporting a heat tolerance continuum. The findings suggest the RHTT is a repeatable measure of physiological strain in the heat and may be used to assess the effectiveness of acute and chronic heat alleviating procedures.  相似文献   

16.
The effect of Ca2+ applied in high concentrations (50 and 300 µM) was addressed on the generation of reactive oxygen species in isolated mitochondria from guinea-pig brain. The experiments were performed in the presence of ADP, a very effective inhibitor of mitochondrial permeability transition. Moderate increase in H2O2 release from mitochondria was induced by Ca2+ applied in 50 µM, but not in 300 µM concentration as measured with Amplex red fluorescent assay starting with a delay of 100-150 sec after exposure to Ca2+. Parallel measurements of membrane potential (ΔΨm) by safranine fluorescence showed a transient depolarization by Ca2+ followed by the recovery of ΔΨm to a value, which was more negative than that observed before addition of Ca2+ indicating a relative hyperpolarization. NAD(P)H fluorescence was also increased by Ca2+ given in 50 µM concentration. In mitochondria having high ΔΨm in the presence of oligomycin or ATP, the basal rate of release of H2O2 was significantly higher than that observed in a medium containing ADP and Ca2+ no longer increased but rather decreased the rate of H2O2 release. With 300 µM Ca2+ only a loss but no tendency of a recovery of ΔΨm was detected and H2O2 release was unchanged. It is suggested that in the presence of nucleotides the effect of Ca2+ on mitochondrial ROS release is related to changes in ΔΨm; in depolarized mitochondria, in the presence of ADP, moderate increase in H2O2 release is induced by calcium, but only in ≤ 100 µM concentration, when after a transient Ca2+-induced depolarization mitochondria became more polarized. In highly polarized mitochondria, in the presence of ATP or oligomycin, where no hyperpolarization follows the Ca2+-induced depolarization, Ca2+ fails to stimulate mitochondrial ROS generation. These effects of calcium (≤ 300 µM) are unrelated to mitochondrial permeability transition.  相似文献   

17.
《Process Biochemistry》2014,49(12):2149-2157
The cell-bound cholesterol oxidase from the Rhodococcus sp. NCIM 2891 was purified three fold by diethylaminoethyl–sepharose chromatography. The estimated molecular mass (SDS-PAGE) and Km of the enzyme were ∼55.0 kDa and 151 μM, respectively. The purified cholesterol oxidase was immobilized on chitosan beads by glutaraldehyde cross-linking reaction and immobilization was confirmed by Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray analysis. The optimum temperature (45 °C, 5 min) for activity of the enzyme was increased by 5 °C after immobilization. Both the free and immobilized cholesterol oxidases were found to be stable in many organic solvents except for acetone. Fe2+ and Pb2+ at 0.1 mM of each acted as inhibitors, while Ag+, Ca2+, Ni2+ and Zn2+ activated the enzyme at similar concentration. The biotransformation of cholesterol (3.75 mM) with the cholesterol oxidase immobilized beads (3.50 U) leads to ∼88% millimolar yield of cholestenone in a reaction time of 9 h at 25 °C. The immobilized enzyme retains ∼67% activity even after 12 successive batches of operation. The biotransformation method thus, shows a great promise for the production of pharmaceutically important cholestenone.  相似文献   

18.
The effect of temperature (26 °C, 28 °C, 30 °C and 35 °C) on the growth of native CAAT-3-2005 Microcystis aeruginosa and the production of Chlorophyll-a (Chl-a) and Microcystin-LR (MC-LR) were examined through laboratory studies. Kinetic parameters such as specific growth rate (μ), lag phase duration (LPD) and maximum population density (MPD) were determined by fitting the modified Gompertz equation to the M. aeruginosa strain cell count (cells mL−1). A 4.8-fold increase in μ values and a 10.8-fold decrease in the LPD values were found for M. aeruginosa growth when the temperature changed from 15 °C to 35 °C. The activation energy of the specific growth rate (Eμ) and of the adaptation rate (E1/LPD) were significantly correlated (R2 = 0.86). The cardinal temperatures estimated by the modified Ratkowsky model were minimum temperature = 8.58 ± 2.34 °C, maximum temperature = 45.04 ± 1.35 °C and optimum temperature = 33.39 ± 0.55 °C.Maximum MC-LR production decreased 9.5-fold when the temperature was increased from 26 °C to 35 °C. The maximum production values were obtained at 26° C and the maximum depletion rate of intracellular MC-LR was observed at 30–35 °C. The MC-LR cell quota was higher at 26 and 28 °C (83 and 80 fg cell−1, respectively) and the MC-LR Chl-a quota was similar at all the different temperatures (0.5–1.5 fg ng−1).The Gompertz equation and dynamic model were found to be the most appropriate approaches to calculate M. aeruginosa growth and production of MC-LR, respectively. Given that toxin production decreased with increasing temperatures but growth increased, this study demonstrates that growth and toxin production processes are uncoupled in M. aeruginosa. These data and models may be useful to predict M. aeruginosa bloom formation in the environment.  相似文献   

19.
Taste and odor (T & O) episodes always cause strong effects on drinking water supply system. Luanhe River diversion into Tianjin City in China is an important drinking water resource. Massive growth of a benthic filamentous cyanobacterium with geosmin production in the open canal caused a strong earthy odor episode in Tianjin. On the basis of the morphological and molecular identification of this cyanobacterium as Oscillatoria limosa Agardh ex Gomont, the genetic basis for geosmin biosynthesis and factors influencing growth and geosmin production of O. limosa CHAB 7000 were studied in this work. A 2268-bp open reading frame, encoding 755 amino acids, was amplified and characterized as the geosmin synthase gene (geo), followed by a cyclic nucleotide-binding protein gene (cnb). Phylogenetic analysis implied that the evolution of the geosmin genes in O. limosa CHAB 7000 might involve a horizontal gene transfer event. Examination on the growth and geosmin production of O. limosa CHAB 7000 at different light intensities showed that the maximum geosmin production was observed at 10 μmol photons m−2 s−1, while the optimum growth was at 60 μmol photons m−2 s−1. Under three temperature conditions (15 °C, 25 °C, and 35 °C), the maximum growth and geosmin production were observed at 25 °C. Most amounts of geosmin were retained in cells during the growth phase, but high temperature and low light intensity increased the release of geosmin into the medium, implying that O. limosa CHAB 7000 had a high potential harm for the release of geosmin from its cells at these adverse conditions.  相似文献   

20.
《Aquatic Botany》2005,81(2):157-173
The main photosynthesis and respiration parameters (dark respiration rate, light saturated production rate, saturation irradiance, photosynthetic efficiency) were measured on a total of 23 macrophytes of the Thau lagoon (2 Phanerogams, 5 Chlorophyceae, 10 Rhodophyceae and 6 Phaeophyceae). Those measurements were performed in vitro under controlled conditions, close to the natural ones, and at several seasons. Concomitantly, measurements of pigment concentrations, carbon, phosphorous and nitrogen contents in tissues were performed. Seasonal intra-specific variability of photosynthetic parameters was found very high, enlightening an important acclimatation capacity. The highest photosynthetic capacities were found for Chlorophyceae (e.g. Monostroma obscurum thalli at 17 °C, 982 μmol O2 g−1 dw h−1 and 9.1 μmol O2 g−1 dw h−1/μmol photons m−2 s−1, respectively for light saturated net production rate and photosynthetic efficiency) and Phanerogams (e.g. Nanozostera noltii leaves at 25 °C, 583 μmol O2 g−1 dw h−1 and 2.6 μmol O2 g−1 dw h−1/μmol photons m−2 s−1 respectively for light saturated net production rate and photosynthetic efficiency). As expected, species with a high surface/volume ratio were found to be more productive than coarsely branched thalli and thick blades shaped species. Contrary to Rd (ranging 6.7–794 μmol O2 g−1 dw h−1, respectively for Rytiphlaea tinctoria at 7 °C and for Dasya sessilis at 25 °C) for which a positive relationship with water temperature was found whatever the species studied, the evolution of P/I curves with temperature exhibited different responses amongst the species. The results allowed to show summer nitrogen limitation for some species (Gracilaria bursa-pastoris and Ulva spp.) and to propose temperature preferences based on the photosynthetic parameters for some others (N. noltii, Zostera marina, Chaetomorpha linum).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号