首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
2.
Alternative splicing (AS) regulates a variety of biological activities in numerous tissues and organs, including the nervous system. However, the existence and specific roles of AS events during peripheral nerve repair and regeneration remain largely undetermined. In the current study, by mapping splice-crossing sequence reads, we identified AS events and relevant spliced genes in rat sciatic nerve stumps following sciatic nerve crush. AS-related genes at 1, 4, 7, and 14 days post nerve crush were compared with those at 0 day to discover alternatively spliced genes induced by sciatic nerve crush. These injury-induced alternatively spliced genes were then categorized to diseases and biological functions, genetic networks, and canonical signaling pathways. Bioinformatic analysis indicated that these alternatively spliced genes were mainly correlated to immune response, cellular growth, and cellular function maintenance. Our study elucidated AS events following peripheral nerve injury and might help deepen our understanding of the molecular mechanisms underlying peripheral nerve regeneration.  相似文献   

3.
Unlike mammals, teleost fish are able to mount an efficient and robust regenerative response following optic nerve injury. Although it is clear that changes in gene expression accompany axonal regeneration, the extent of this genomic response is not known. To identify genes involved in successful nerve regeneration, we analyzed gene expression in zebrafish retinal ganglion cells (RGCs) regenerating their axons following optic nerve injury. Microarray analysis of RNA isolated by laser capture microdissection from uninjured and 3-day post-optic nerve injured RGCs identified 347 up-regulated and 29 down-regulated genes. Quantitative RT-PCR and in situ hybridization were used to verify the change in expression of 19 genes in this set. Gene ontological analysis of the data set suggests regenerating neurons up-regulate genes associated with RGC development. However, not all regeneration-associated genes are expressed in differentiating RGCs indicating the regeneration is not simply a recapitulation of development. Knockdown of six highly induced regeneration-associated genes identified two, KLF6a and KLF7a, that together were necessary for robust RGC axon re-growth. These results implicate KLF6a and KLF7a as important mediators of optic nerve regeneration and suggest that not all induced genes are essential to mount a regenerative response.  相似文献   

4.

Background  

Protein expression profiles throughout 28 days of peripheral nerve regeneration were characterized using an established rat sciatic nerve transection injury model. Reverse phase protein microarrays were used to identify the spatial and temporal expression profile of multiple proteins implicated in peripheral nerve regeneration including growth factors, extracellular matrix proteins, and proteins involved in adhesion and migration. This high-throughput approach enabled the simultaneous analysis of 3,360 samples on a nitrocellulose-coated slide.  相似文献   

5.
Differential gene expression in the rat after injury of dorsal root ganglion neurons in vivo, and simulation injury of Schwann cells and oligodendrocytes in vitro was analyzed using high-density cDNA microarrays. The analyses were carried out to study the genetic basis of peripheral nerve regeneration, and to compare gene regulation in glia of the central (oligodendrocyte) and peripheral (Schwann cell) nervous systems. The genes showing significant differential regulation in the three study groups represented all aspects of cellular metabolism. However, two unexpected observations were made. Firstly, a number of identical genes were differentially regulated in activated Schwann cells, activated oligodendrocytes and regenerating DRG neurons. Specifically, a group of 113 out of 210 genes that were down-regulated in Schwann cells upon lipopolysaccharide (LPS) treatment, were identical to genes up-regulated in the injured, regenerating DRG. Furthermore, a group of 53 out of 71 genes that were down-regulated in interferon gamma (IFN-gamma)/LPS-activated oligodendrocytes, were identical to genes up-regulated in the DRG neurons. Finally, 22 genes were common to these three groups, i.e., down-regulated in activated oligodendrocytes, down-regulated in activated Schwann cells, and up-regulated in regenerating DRG neurons. Secondly, a group of 16 cell-cycle and proliferation-related genes were up-regulated in the DRG following sciatic nerve crush, despite the absence of cells undergoing mitosis in the DRG, or any significant presence of apoptosis-related gene expression. Therefore, it appears that in these three cell types, large sets of genes are reciprocally regulated upon injury and/or activation. This suggests that the activation of the injury-related gene expression program in cell derivatives of the neuroectoderm involves, in part, highly conserved genetic elements.  相似文献   

6.
Interleukin-6 plays an important role in peripheral nerve regeneration. We recently reported that IL-6 targets Schwann cells in the peripheral nerve for its function. In this study, we analyzed genes whose expression is regulated by IL-6 in a cell line derived from Schwann cells, the peripheral glia, using the Illumina gene microarray. At measurements 3 and 12 h after IL-6 treatment, 35 genes were found to be upregulated by IL-6. Most upregulated genes were proinflammatory genes that are known to be induced in inflammatory conditions. Interestingly, the expression of immunoproteasome subunits was upregulated by IL-6 in Schwann cells. Treatment with forskolin, an agent that mimics axonal signaling, suppressed the expression of IL-6-inducible genes. Finally, we found for the first time that sciatic nerve injury induced immunoproteasome expression in vivo. These findings indicate that IL-6 is involved in peripheral nerve regeneration by regulating proinflammatory signaling in Schwann cells.  相似文献   

7.
The goldfish optic nerve can regenerate after injury. To understand the molecular mechanism of optic nerve regrowth, we identified genes whose expression is specifically up-regulated during the early stage of optic nerve regeneration. A cDNA library constructed from goldfish retina 5 days after transection was screened by differential hybridization with cDNA probes derived from axotomized or normal retina. Of six cDNA clones isolated, one clone was identified as the Na,K-ATPase catalytic subunit alpha3 isoform by high- sequence homology. In northern hybridization, the expression level of the mRNA was significantly increased at 2 days and peaked at 5-10 days, and then gradually decreased and returned to control level by 45 days after optic nerve transection. Both in situ hybridization and immunohistochemical staining have revealed the location of this transient retinal change after optic nerve transection. The increased expression was observed only in the ganglion cell layer and optic nerve fiber layer at 5-20 days after optic nerve transection. In an explant culture system, neurite outgrowth from the retina 7 days after optic nerve transection was spontaneously promoted. A low concentration of ouabain (50-100 nm ) completely blocked the spontaneous neurite outgrowth from the lesioned retina. Together, these data indicate that up-regulation of the Na,K-ATPase alpha3 subunit is involved in the regrowth of ganglion cell axons after axotomy.  相似文献   

8.
P311 accelerates nerve regeneration of the axotomized facial nerve   总被引:9,自引:0,他引:9  
In axotomized adult neurons, a process of axonal regrowth and re-establishment of the neuronal function has to be activated. Developmentally regulated factors may be reactivated during neuronal regeneration. Here we identify a gene, previously designated P311, that is up-regulated in the axotomized facial motoneurons. Ectopically expressed P311 localizes in the cytoplasm and the nucleus. Over-expression of P311 induces p21(WAF1/Cip1) expression, leading PC12 cells to differentiate and to have neuron-like morphologies. Adenovirus-mediated P311 gene transfer promotes neurite outgrowth of postnatal dorsal root ganglion neurons and embryonic hippocampal neurons in vitro. This effect is abolished by the activation of Rho kinase. P311 also facilitates nerve regeneration following facial nerve injury in vivo. Our data provide evidence that genes involved in the differentiation process contribute to the regeneration of injured mature neurons, and may provide a practical molecular target.  相似文献   

9.
One of the most striking features of neurons in the mature peripheral nervous system is their ability to survive and to regenerate their axons following axonal injury. To perform a comprehensive survey of the molecular mechanisms that underlie peripheral nerve regeneration, we analyzed a cDNA library derived from the distal stumps of post-injured sciatic nerve which was enriched in non-myelinating Schwann cells using cDNA microarrays. The number of up- and down-regulated genes in the transected sciatic nerve was 370 and 157, respectively, of the 9596 spotted genes. In the up-regulated group, the number of known genes was 216 and the number of expressed sequence tag (EST) sequences was 154. In the down-regulated group, the number of known genes was 103 and that of EST sequences was 54. We obtained several genes that were previously reported to be involved in regeneration of the injured neurons, such as cathepsin D, ninjurin 1, tenascin C, and co-receptor for glial cell line-derived neurotrophic factor family of trophic factors. In addition to unknown genes, there seemed to be a lot of annotated genes whose role in nerve regeneration remains unknown.  相似文献   

10.
Pleiotrophin (PTN) is a member of the family of heparin-binding growth factors that displays mitogenic activities and promotes neurite outgrowth in vitro. In vivo, PTN is widely expressed along pathways of developing axons during the late embryonic and early postnatal period. Although the level of PTN gene expression is very low during adulthood, activation of the gene may occur during recovery from injury and seems to play an important role in tissue regeneration processes. In this study, we investigated whether PTN was involved in the regenerative process of injured peripheral nerves. To refer localization of the fluorescent markers to myelinated axons, we developed a specific computer tool for colocalization of fluorescence images with phase contrast images. Immunohistochemical analysis showed PTN in different types of nonneural cells in distal nerve segments, including Schwann cells, macrophages, and endothelial cells, but not in axons. Schwann cells exhibited PTN immunoreactivity as early as 2 days after injury, whereas PTN-positive macrophages were found 1 week later. Strong PTN immunoreactivity was noted in endothelial cells at all time points. These findings support the idea that PTN participates in the adaptive response to peripheral nerve injury. A better understanding of its contribution may suggest new strategies for enhancing peripheral nerve regeneration.  相似文献   

11.
应用cDNA微阵列技术筛选大鼠脊髓损伤修复相关基因   总被引:2,自引:0,他引:2  
Xiao L  Ma ZL  Li X  Lin QX  Que HP  Liu SJ 《生理学报》2005,57(6):705-713
脊髓损伤是一类常见的、高致残率的中枢神经系统疾病,由于多种复杂因素影响其损伤后的修复过程,损伤脊髓的再生能力非常有限。本研究采用cDNA微阵列技术筛选大鼠脊髓损伤后出现的差异表达基因。实验组动物在T8-T9进行脊髓全横断手术,对照组动物只打开椎板;4.5d后取脊髓进行RNA提取并在反转录过程中进行Cy3/Cy5标记,然后与预制的、带有4041条特异性探针的芯片进行杂交。Cy5/Cy3信号比值≥2.0视为脊髓损伤后出现差异表达的基因。通过筛选,我们得到了65个上调表达基因(21个已知基因,30个已知EST和14个未知基因)和79个下调基因(20个已知基因,42个已知EST和17个未知基因)。进一步通过半定量RT-PCR对其中的5个上调已知基因(Timpl,Tagln,Vim,Fc gamma receptor,Ctss)和三个下调已知基因(stearyl-CoA desaturase,F2,Ensa)的表达情况进行了验证,结果显示与芯片结果一致。这些基因可能在脊髓损伤后的修复过程中起一定的作用,对其深入研究将有助于揭示脊髓损伤修复的分子机制。  相似文献   

12.
Peripheral nerve injury and regeneration are complex processes and involve multiple molecular and signalling components. However, the involvement of long non‐coding RNA (lncRNA) in this process is not fully clarified. In this study, we evaluated the expression of the lncRNA maternally expressed gene 3 (MEG3) in rats after sciatic nerve transection and explored its potential mechanisms. The expression of lncRNA MEG3 was up‐regulated following sciatic nerve injury and observed in Schwann cells (SCs). The down‐regulation of lncRNA MEG3 in SCs enhanced the proliferation and migration of SCs via the PTEN/PI3K/AKT pathway. The silencing of lncRNA MEG3 promoted the migration of SCs and axon outgrowth in rats after sciatic nerve transection and facilitated rat nerve regeneration and functional recovery. Our findings indicated that lncRNA MEG3 may be involved in nerve injury and injured nerve regeneration in rats with sciatic nerve defects by regulating the proliferation and migration of SCs. This gene may provide a potential therapeutic target for improving peripheral nerve injury.  相似文献   

13.
1. The responses of periphery (PNS) and central nervous systems (CNS) towards nerve injury are different: while injured mammalian periphery nerons can successfully undergo regeneration, axons in the central nervous system are usually not able to regenerate.2. In the present study, the genes which were differentially expressed in the PNS and CNS following nerve injury were identified and compared by microarray profiling techniques.3. Sciatic nerve crush and hemisection of the spinal cord of adult mice were used as the models for nerve injury in PNS and CNS respectively.4. It was found that of all the genes examined, 14% (80/588) showed changes in expression following either PNS or CNS injury, and only 3% (18/588) showed changes in both types of injuries.5. Among all the differentially expressed genes, only 8% (6/80) exhibited similar changes in gene expression (either up- or down-regulation) following injury in both PNS and CNS nerve injuries.6. Our results indicated that microarray expression profiling is an efficient and useful method to identify genes that are involved in the regeneration process following nerve injuries, and several genes which are differentially expressed in the PNS and/or CNS following nerve injuries were identified in the present study.  相似文献   

14.
15.
CLIP3 (cytoplasmic linker protein 3) is a 547 amino acid residue cytoplasmic protein that localises to Golgi stacks and tubulovesicular elements juxtaposed to Golgi cisternae. Composed of three Ank (ankyrin) repeats and two CAP-Gly (cytoskeleton-associated protein-glycine) domains, CLIP3 may function as a cytoplasmic linker protein that is involved in TGN–endosome dynamics. To define the expression and role of CLIP3 during peripheral nervous system degeneration and regeneration, we created an acute sciatic nerve injury (SNI) model in adult rats. Western blot analyses revealed prominent up-regulation of CLIP3 and PCNA (proliferating cell nuclear antigen) protein levels at 3?days after SNI. Immunohistochemistry displayed that the expression of CLIP3 was noticeably increased in the injured nerve. Immunofluorescence further revealed that the CLIP3 and PCNA proteins colocalised respectively with S100 in the cytoplasm of Schwann cells. The expression profile of the SC/neuron co-cultures demonstrated that CLIP3 and PCNA protein levels were markedly expressed during the early stage of myelination. These results suggest that CLIP3 is likely associated with the myelination of proliferating Schwann cells, and nerve tissue regeneration after peripheral nerve injury. CLIP3 and PCNA expression during early myelination may be related to the direct uptake and transport of lipids and cholesterol, which were derived from the degenerating myelin, by Schwann cells to prepare for the formation of myelin sheath-like structures around regenerated axons after SNI.  相似文献   

16.
17.
18.
Gene therapy has developed a new strategy to treat a variety of ischemic diseases using angiogenic growth factors. However, the endogenous expression pattern of angiogenesis-related factors in response to muscle injury is not fully characterized. In the present study, we investigated the expression of angiogenesis-related factors, vascular endothelial growth factor, angiopoietin-1, -2, monocyte chemoattractant protein-1, and their receptors during muscle regeneration. Mice underwent freeze injury, and then the gastrocnemius muscles were isolated 1, 3, 5, 7, 10, 14, and 28 days after surgery. Generally, changes in gene expression were most dramatic during the early stage of muscle regeneration, and were attenuated as angiogenesis progressively developed and then returned to steady-state levels. VEGF mRNA began to increase from day 3 and peaked at day 5 after muscle injury. VEGF receptors, Flt-1, KDR/Flk-1, and neuropilin-1 mRNAs were increased from 3- to 9-fold at day 3 after muscle injury. At the same time, angiopoietin-1 and angiopoietin-2 mRNA were increased by 3- and 15-fold respectively, concomitantly with an increase in their receptors and Tie-2 mRNA. Finally, MCP-1 and CC-chemokine receptor 2 mRNAs were sharply up-regulated by 1600- and 100-fold, respectively, at day 3 after muscle injury. These results suggest that the molecular events implicated in angiogenesis occur at an early stage of muscle regeneration.  相似文献   

19.
BACKGROUND: Ethylnitrosourea (ENU), a monofunctional alkylating agent, induces apoptosis and cell cycle arrest in neuroepithelial cells, neural stem cells in the fetal central nervous system (CNS). These effects occur immediately after the administration of ENU to pregnant animals resulting in fetal brain anomalies and long-term effects include brain tumors in the offspring. METHODS: Changes in gene expression were investigated in the fetal CNS after ENU administration to pregnant rats using microarray to identify the genes involved in the injury and recovery of the fetal CNS. RESULTS: The up-regulation of 21 genes in injury and 15 genes in recovery phases and down-regulation of 5 genes in injury and 3 genes in recovery phases were identified. The genes up-regulated in the injury phase contained p53-target genes that mediate apoptosis and cell cycle arrest, and those in the recovery phase contained cell proliferation-promoting genes. The genes down-regulated in the injury phase contained cholesterol biosynthesis-related genes. In addition, there were some genes that have not been identified to be involved in the CNS injury and recovery. CONCLUSIONS: The present study will provide a better understanding of the mechanisms of development, regeneration and carcinogenesis of the CNS as well as the mechanisms of ENU-induced fetal CNS injury and recovery.  相似文献   

20.
汤晓丽  邓立彬  李桂林  刘双梅  林加日  谢金燕  刘俊  孔繁君  梁尚栋 《遗传》2012,34(2):198-207,253,257
糖尿病神经病变(Diabetic neuropathy,DN)是糖尿病在神经系统发生的多种并发病变的总称。文章旨在筛选2型糖尿病早期大鼠外周神经节差异表达的基因。采用Illumina大鼠基因表达芯片,比较糖尿病模型与非糖尿病大鼠外周神经节基因表达谱差异。结果表明,全基因组12 604个已知基因中,158个基因差异表达。糖尿病组与非糖尿病组相比,87个基因表达上调,71个表达下调。对差异表达的基因进行GO分析,发现上调基因所参与的最显著(P<0.001)的几个生物学过程都与神经细胞骨架及运动功能有关;下调基因所参与的最显著的生物学过程主要与"对病毒/生物刺激/其它生物的反应"有关。KEGG(Kyoto encyclopedia of genes and genomes)分析显示,差异表达的基因所参与的最显著(P<0.001)的生物学通路为代谢通路。结果表明:高血糖可导致糖尿病大鼠外周神经节代谢紊乱;高血糖可能通过免疫炎症反应、改变神经细胞骨架及运动功能相关的基因的表达,继而损害外周神经节的结构和功能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号