首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The most common form of newborn chronic lung disease, bronchopulmonary dysplasia (BPD), is thought to be caused by oxidative disruption of lung morphogenesis, which results in decreased pulmonary vasculature and alveolar simplification. Although cellular redox status is known to regulate cellular proliferation and differentiation, redox-sensitive pathways associated with these processes in developing pulmonary epithelium are unknown. Redox-sensitive pathways are commonly regulated by cysteine thiol modifications. Therefore two thiol oxidoreductase systems, thioredoxin and glutathione, were chosen to elucidate the roles of these pathways on cell death. Studies herein indicate that thiol oxidation contributes to cell death through impaired activity of glutathione-dependent and thioredoxin (Trx) systems and altered signaling through redox-sensitive pathways. Free thiol content decreased by 71% with hyperoxic (95% oxygen) exposure. Increased cell death was observed during oxygen exposure when either the Trx or the glutathione-dependent system was pharmacologically inhibited with aurothioglucose (ATG) or buthionine sulfoximine, respectively. However, inhibition of the Trx system yielded the smallest decrease in free thiol content (1.44% with ATG treatment vs 21.33% with BSO treatment). Although Trx1 protein levels were unchanged, Trx1 function was impaired during hyperoxic treatment as indicated by progressive cysteine oxidation. Overexpression of Trx1 in H1299 cells utilizing an inducible construct increased cell survival during hyperoxia, whereas siRNA knockdown of Trx1 during oxygen treatment reduced cell viability. Overall, this indicated that a comparatively small pool of proteins relies on Trx redox functions to mediate cell survival in hyperoxia, and the protective functions of Trx1 are progressively lost by its oxidative inhibition. To further elucidate the role of Trx1, potential Trx1 redox protein–protein interactions mediating cytoprotection and cell survival pathways were determined by utilizing a substrate trap (mass action trapping) proteomics approach. With this method, known Trx1 targets were detected, including peroxiredoxin-1 as well as novel targets, including two HSP90 isoforms (HSP90AA1 and HSP90AB1). Reactive cysteines within the structure of HSP90 are known to modulate its ATPase-dependent chaperone activity through disulfide formation and S-nitrosylation. Whereas HSP90 expression is unchanged at the protein level during hyperoxic exposure, siRNA knockdown significantly increased hyperoxic cell death by 2.5-fold, indicating cellular dependence on HSP90 chaperone functions in response to hyperoxic exposure. These data support the hypothesis that hyperoxic impairment of Trx1 has a negative impact on HSP90-oxidative responses critical to cell survival, with potential implications for pathways implicated in lung development and the pathogenesis of BPD.  相似文献   

3.
[目的]本研究旨在克隆鉴定家蝇Musca domestica中8-羟基鸟嘌吟糖苷酶1(8-hydroxyguanine glycosylase 1,OGG1)编码基因Mdogg1,明确其是否参与家蝇氧化应激调控.[方法]根据家蝇转录组数据,利用RT-PCR克隆Mdogg1基因cDNA序列,并进行生物信息学分析;利用qR...  相似文献   

4.
《Autophagy》2013,9(8):1181-1183
Metabolic and therapeutic stress activates several signal transduction pathways and releases damageassociated molecular pattern molecules (DAMPs) that regulate cell death and cell survival. The prototypical DAMP, high-mobility group box 1 protein (HMGB1) is released with sustained autophagy, late apoptosis and necrosis. Our recent findings reveal that the HMGB1 protein triggers autophagy or apoptosis in cancer cells, depending on its redox status. Reducible HMGB1 binds to the receptor for advanced glycation end products (RAGE), induces Beclin 1-dependent autophagy and promotes pancreatic or colon tumor cell line resistance to chemotherapeutic agents or ionizing radiation. In contrast, oxidized HMGB1 increases the cytotoxicity of these agents and induces apoptosis via the mitochondrial pathway. This suggests a new function for HMGB1 within the tumor microenvironment, regulating cell death and survival and suggests that it plays an important functional role in cross-regulating apoptosis and autophagy.  相似文献   

5.
The development of the mammalian cochlea is an example of patterning in the peripheral nervous system. Sensory hair cells and supporting cells in the cochlea differentiate via regional and cell fate specification. The Notch signaling components shows both distinct and overlapping expression patterns of Notch1 receptor and its ligands Jagged1 (Jag1) and Jagged2 (Jag2) in the developing auditory epithelium of the rat. On embryonic day 16 (E16), many precursor cells within the K?lliker's organ immunostained for the presence of both Notch1 and Jag1, while the area of hair cell precursors did not express either Notch1 and Jag1. During initial events of hair cell differentiation between E18 and birth, Notch1 and Jag1 expression predominated in supporting cells and Jag2 in nascent hair cells. Early after birth, Jag2 expression decreased in hair cells while the pattern of Notch1 expression now included both supporting cells and hair cells. We show that the normal pattern of hair cell differentiation is disrupted by alteration of Notch signaling. A decrease of either Notch1 or Jag1 expression by antisense oligonucleotides in cultures of the developing sensory epithelium resulted in an increase in the number of hair cells. Our data suggest that the Notch1 signaling pathway is involved in a complex interplay between the consequences of different ligand-Notch1 combinations during cochlear morphogenesis and the phases of hair cell differentiation.  相似文献   

6.
Spontaneous electrical activity generated by developing sensory cells and neurons is crucial for the maturation of neural circuits. The full maturation of mammalian auditory inner hair cells (IHCs) depends on patterns of spontaneous action potentials during a ‘critical period’ of development. The intrinsic spiking activity of IHCs can be modulated by inhibitory input from cholinergic efferent fibres descending from the brainstem, which transiently innervate immature IHCs. However, it remains unknown whether this transient efferent input to developing IHCs is required for their functional maturation. We used a mouse model that lacks the α9-nicotinic acetylcholine receptor subunit (α9nAChR) in IHCs and another lacking synaptotagmin-2 in the efferent terminals to remove or reduce efferent input to IHCs, respectively. We found that the efferent system is required for the developmental linearization of the Ca2+-sensitivity of vesicle fusion at IHC ribbon synapses, without affecting their general cell development. This provides the first direct evidence that the efferent system, by modulating IHC electrical activity, is required for the maturation of the IHC synaptic machinery. The central control of sensory cell development is unique among sensory systems.  相似文献   

7.
《Developmental cell》2022,57(22):2584-2598.e11
  1. Download : Download high-res image (151KB)
  2. Download : Download full-size image
  相似文献   

8.
To determine whether Bmi-1 deficiency could lead to renal tubulointerstitial injury by mitochondrial dysfunction and increased oxidative stress in the kidney, 3-week-old Bmi-1-/- mice were treated with the antioxidant N-acetylcysteine (NAC, 1 mg mL−1) in their drinking water, or pyrro-quinoline quinone (PQQ, 4 mg kg−1 diet) in their diet for 2 weeks, and their renal phenotypes were compared with vehicle-treated Bmi1-/- and wild-type mice. Bmi-1 was knocked down in human renal proximal tubular epithelial (HK2) cells which were treated with 1 mm NAC for 72 or 96 h, and their phenotypes were compared with control cells. Five-week-old vehicle-treated Bmi-1-/- mice displayed renal interstitial fibrosis, tubular atrophy, and severe renal function impairment with decreased renal cell proliferation, increased renal cell apoptosis and senescence, and inflammatory cell infiltration. Impaired mitochondrial structure, decreased mitochondrial numbers, and increased oxidative stress occurred in Bmi-1-/- mice; subsequently, this caused DNA damage, the activation of TGF-β1/Smad signaling, and the imbalance between extracellular matrix synthesis and degradation. Oxidative stress-induced epithelial-to-mesenchymal transition of renal tubular epithelial cells was enhanced in Bmi-1 knocked down HK2 cells. All phenotypic alterations caused by Bmi-1 deficiency were ameliorated by antioxidant treatment. These findings indicate that Bmi-1 plays a critical role in protection from renal tubulointerstitial injury by maintaining redox balance and will be a novel therapeutic target for preventing renal tubulointerstitial injury.  相似文献   

9.
Hair cells of the mammalian cochlea are specialized for the dynamic coding of sound stimuli. The transduction of sound waves into electrical signals depends upon mechanosensitive hair bundles that project from the cell's apical surface. Each stereocilium within a hair bundle is composed of uniformly polarized and tightly packed actin filaments. Several stereociliary proteins have been shown to be associated with hair bundle development and function and are known to cause deafness in mice and humans when mutated. The growth of the stereociliar actin core is dynamically regulated at the actin filament barbed ends in the stereociliary tip. We show that Eps8, a protein with actin binding, bundling, and barbed-end capping activities in other systems, is a novel component of the hair bundle. Eps8 is localized predominantly at the tip of the stereocilia and is essential for their normal elongation and function. Moreover, we have found that Eps8 knockout mice are profoundly deaf and that IHCs, but not OHCs, fail to mature into fully functional sensory receptors. We propose that Eps8 directly regulates stereocilia growth in hair cells and also plays a crucial role in the physiological maturation of mammalian cochlear IHCs. Together, our results indicate that Eps8 is critical in coordinating the development and functionality of mammalian auditory hair cells.  相似文献   

10.
Sphingolipid signaling plays an important role in the regulation of central cellular processes, including cell growth, survival, and differentiation. Many of the essential pathways responsible for sphingolipid biogenesis, and key cellular responses to changes in sphingolipid balance, are conserved between mammalian and yeast cells. Here we demonstrate a novel function for the survival factor Svf1p in the yeast sphingolipid pathway and provide evidence that Svf1p regulates the generation of a specific subset of phytosphingosine. Genetic analyses suggest that Svf1p acts in concert with Lcb4p and Lcb3p to generate a localized pool of phytosphingosine distinct from phytosphingosine generated by Sur2p. This subset is implicated in cellular responses to stress, as loss of SVF1 is associated with defects in the diauxic shift and the oxidative stress response. A genetic interaction between SVF1 and SUR2 demonstrates that both factors are required for optimal growth and survival, and phenotypic similarities between svf1delta sur2delta and ypk1delta suggest that pathways controlled by Svf1p and Sur2p converge on a signaling cascade regulated by Ypk1p. Loss of YPK1 together with disruption of either SVF1 or SUR2 is lethal. Together, these data suggest that compartmentalized generation of distinct intracellular subsets of sphingoid bases may be critical for activation of signaling pathways that control cell growth and survival.  相似文献   

11.
12.
13.
MicroRNAs have been shown to be involved in various cell processes, including proliferation, apoptosis and differentiation. However, little is known about their function in granulopoiesis. In the present study, overexpression and knockdown experiments revealed that miR-15b was required to block the proliferation of NB4 and HL60 cells and induce them differentiated to granulocyte lineage. Moreover, we identified CCNE1 as a direct target of miR-15b, and demonstrated that CCNE1 was involved in cell differentiation and proliferation in acute promyelocytic leukemia cells. In addition, we demonstrated a novel pathway in which miR-15b regulated cells arrested in the G0/G1 phase and promoted terminal differentiation of cells by targeting CCNE1, which could modulate the cell cycle effort pRb in APL cells. These events blocked cell proliferation and promoted granulocyte differentiation. In conclusion, our data highlighted, for the first time, the important role of miR-15b in myeloid differentiation and suggested the potential role of miR-15b in cancer therapy.  相似文献   

14.
Survivin expression and Ras activation are regulated by hematopoietic growth factors. We investigated whether activated Ras could circumvent growth factor-regulated Survivin expression and if a Ras/Survivin axis mediates growth factor independent survival and proliferation in hematopoietic cells. Survivin expression is up-regulated by IL-3 in Ba/F3 and CD34+ cells and inhibited by the Ras inhibitor, farnesylthiosalicylic acid. Over-expression of constitutively activated H-Ras (CA-Ras) in Ba/F3 cells blocked down-modulation of Survivin expression, G0/G1 arrest, and apoptosis induced by IL-3 withdrawal, while dominant-negative (DN) H-Ras down-regulated Survivin. Survivin disruption by DN T34A Survivin blocked CA-Ras-induced IL-3-independent cell survival and proliferation; however, it did not affect CA-Ras-mediated enhancement of S-phase, indicating that the anti-apoptotic activity of CA-Ras is Survivin dependent while its S-phase enhancing effect is not. These results indicate that CA-Ras modulates Survivin expression independent of hematopoietic growth factors and that a CA-Ras/Survivin axis regulates survival and proliferation of transformed hematopoietic cells.  相似文献   

15.
16.
<正>Characterized by multicellular migratory behavior and cooperative ability,collective cell migration plays critical roles in developmental,physiological and pathological processes,such as organogenesis,wound healing and tumor metastasis (Friedl and Gilmour,2009).Molecular features of collective cell migration including collective polarization,coordinated cytoskeletal activity,and guidance signaling have been recently investigated in a variety of in vivo and in vitro model systems (Scarpa and Mayor,2016),but many other aspects of regulatory mechanisms remain unexplored.  相似文献   

17.
Disturbed cell autophagy is found in various cardiovascular disease conditions. Biomechanical stimuli induced by laminar blood flow have important protective actions against the development of various vascular diseases. However, the impacts and underlying mechanisms of shear stress on the autophagic process in vascular endothelial cells (ECs) are not entirely understood. Here we investigated the impacts of shear stress on autophagy in human vascular ECs. We found that shear stress induced by laminar flow, but not that by oscillatory or low-magnitude flow, promoted autophagy. Time-course analysis and flow cessation experiments confirmed that this effect was not a transient adaptive stress response but appeared to be a sustained physiological action. Flow had no effect on the mammalian target of rapamycin-ULK pathway, whereas it significantly upregulated Sirt1 expression. Inhibition of Sirt1 blunted shear stress-induced autophagy. Overexpression of wild-type Sirt1, but not the deacetylase-dead mutant, was sufficient to induce autophagy in ECs. Using both of gain- and loss-of-function experiments, we showed that Sirt1-dependent activation of FoxO1 was critical in mediating shear stress-induced autophagy. Shear stress also induced deacetylation of Atg5 and Atg7. Moreover, shear stress-induced Sirt1 expression and autophagy were redox dependent, whereas Sirt1 might act as a redox-sensitive transducer mediating reactive oxygen species-elicited autophagy. Functionally, we demonstrated that flow-conditioned cells are more resistant to oxidant-induced cell injury, and this cytoprotective effect was abolished after inhibition of autophagy. In summary, these results suggest that Sirt1-mediated autophagy in ECs may be a novel mechanism by which laminar flow produces its vascular-protective actions.Vascular endothelial cells (ECs) are fundamentally important in maintaining structural and functional homeostasis of blood vessels. Normal biological functions of ECs are highly sensitive to the biomechanical stimuli induced by blood flow, of which shear stress acting on the surface of EC has been recognized to be one of the most important vasoactive factors in EC.1, 2 A relatively high level of laminar shear stress is cytoprotective, whereas abnormal (low-magnitude or oscillatory) shear stress is a detrimental cellular stress to ECs.1 Transduction of the mechanical signals involves multiple messenger molecules and signaling proteins, which collectively regulate important endothelial functions, such as gene expression, proliferation, migration, morphogenesis, permeability, thrombogenicity, and inflammation.2Autophagy (also known as macroautophagy) is an evolutionarily conserved cellular stress response.3, 4 Autophagy is a cellular self-digestion process, which is responsible for degradation of misfolded proteins and damaged organelles. Autophagic process is mainly mediated by the formation of autophagosome, a double-membrane vacuole structure containing engulfed cellular components. This process requires expression of a group of key genes involved in autophagy, including LC3A, beclin-1, Atg5, Atg7, and Atg12, for example.3, 5 Autophagosomes fuse with lysosomes, forming autolysosomes, where the cellular components are degraded by various hydrolases in an acidified environment.4, 5 In ECs, an autophagic response can be initiated by different stress stimuli.6, 7, 8 It is noted that the cellular outcome following autophagy induction in ECs varies depending on the nature of stimuli and specific experimental settings.6, 7, 9, 10 Moreover, there is evidence showing that autophagy may also be involved in modulating other EC functions such as angiogenesis and cellular senescence.11, 12 Therefore, understanding the regulatory mechanisms of autophagy in ECs will be important for discovery of strategies to protect normal endothelial functions. Recently, Guo et al. provided some evidence indicating that the autophagic process in EC might be affected by shear stress.13 This argument, however, was only based on observations of changed expression levels of LC3 and beclin-1; further experimental evidence is needed to confirm such an effect of shear stress on autophagy. More importantly, the mechanisms underlying this phenomenon are not understood. Different signaling pathways may be involved in modulating autophagy in ECs.14, 15, 16 For example, inhibition of the mTOR (mammalian target of rapamycin) pathway by rapamycin-induced endothelial autophagy and prevented energy stress-triggered cell damage.16 There is also evidence indicating a potential role of Sirt1.14 Moreover, accumulating evidence has suggested that reactive oxygen species (ROS) are closely implicated in modulating autophagic responses via complex interactions with other autophagy-related factors.15 Despite of these results, the signaling mechanisms of shear stress-regulated autophagy in EC remain to be defined. Hence, here we aim to delineate the impacts and underlying mechanisms of shear stress on autophagy in human vascular ECs.  相似文献   

18.
Macrophages exert a wide variety of functions, which necessitate a high level of plasticity on the chromatin level. In the work presented here, we analyzed the role of the polycomb group protein Bmi1 during the acute response of bone marrow derived macrophages (BMDM) to lipopolysaccharide (LPS). Unexpectedly, we observed that Bmi1 was rapidly induced at the protein level and transiently phosphorylated upon LPS treatment. The induction of Bmi1 was dependent on MAP-kinase signaling. LPS treatment of BMDM in the absence of Bmi1 resulted in a pronounced increase in expression of the anti-inflammatory cytokine interleukin-10 (IL-10). Our results identify Bmi1 as a repressor of IL-10 expression during macrophage activation.  相似文献   

19.
Filamin A regulates cell spreading and survival via beta1 integrins   总被引:1,自引:0,他引:1  
Cell spreading and exploration of topographically complex substrates require tightly-regulated interactions between extracellular matrix receptors and the cytoskeleton, but the molecular determinants of these interactions are not defined. We examined whether the actin-binding proteins cortactin, vinculin and filamin A are involved in the formation of the earliest extensions of cells spreading over collagen or poly-L-lysine-coated smooth and beaded substrates. Spreading of human gingival fibroblasts was substantially reduced on beaded or poly-L-lysine-coated substrates. Filamin A, vinculin and cortactin were found in cell extensions on smooth collagen. HEK-293 cells also spread rapidly on smooth collagen and formed numerous cell extensions enriched with filamin A. Knockdown of filamin A in HEK-293 cells by short hairpin RNA reduced spreading and the number of cell extensions. Blocking beta1 integrin function significantly reduced cell spreading and localization of filamin A to cell extensions. Conversely, filamin A-knockdown reduced beta1 integrin-collagen binding as measured by 12G10 antibody, suggesting co-dependence between filamin A and beta1 integrin functions. TUNEL staining showed higher percentages of apoptosis after filamin A-knockdown in spreading cells. Chelation of [Ca2+]i with BAPTA/AM reduced spreading of wild-type and filamin A-knockdown cells, however wild-type cells showed recruitment of filamin A to the subcortex, indicating independent roles of filamin A and [Ca2+]i in cell spreading. We conclude that filamin A integrates with beta1 integrins to mediate cell spreading and prevent apoptosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号