首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of temperature on the biology of Venturia canescens (Gravenhorst) (Hymenoptera: Ichneumonidae) is well understood under constant temperature conditions, but less so under more natural, fluctuating conditions. Herein we studied the influence of fluctuating temperatures on biological parameters of V. canescens. Parasitized fifth-instar larvae of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) were reared individually in incubators at six fluctuating temperature regimes (15–19.5 °C with a mean of 17.6 °C, 17.5–22.5 °C with a mean of 19.8 °C, 20–30 °C with a mean of 22.7 °C, 22.5–27.5 °C with a mean of 25 °C, 25.5-32.5 °C with a mean of 28.3 °C and 28.5–33 °C with a mean of 30 °C) until emergence and death of V. canescens adults. Developmental time from parasitism to adult eclosion, adult longevity and survival were recorded at each fluctuating temperature regime. In principle, developmental time decreased with an increase of the mean temperature of the fluctuating temperature regime. Upper and lower threshold temperatures for total development were estimated at 34.9 and 6.7 °C, respectively. Optimum temperature for development and thermal constant were 28.6 °C and 526.3 degree days, respectively. Adult longevity was also affected by fluctuating temperature, as it was significantly reduced at the highest mean temperature (7.0 days at 30 °C) compared to the lowest one (29.4 days at 17.6 °C). Survival was low at all tested fluctuating temperatures, apart from mean fluctuating temperature of 25 °C (37%). Understanding the thermal biology of V. canescens under more natural conditions is of critical importance in applied contexts. Thus, predictions of biological responses to fluctuating temperatures may be used in population forecasting models which potentially influence decision-making in IPM programs.  相似文献   

2.
The effect of temperature (26 °C, 28 °C, 30 °C and 35 °C) on the growth of native CAAT-3-2005 Microcystis aeruginosa and the production of Chlorophyll-a (Chl-a) and Microcystin-LR (MC-LR) were examined through laboratory studies. Kinetic parameters such as specific growth rate (μ), lag phase duration (LPD) and maximum population density (MPD) were determined by fitting the modified Gompertz equation to the M. aeruginosa strain cell count (cells mL−1). A 4.8-fold increase in μ values and a 10.8-fold decrease in the LPD values were found for M. aeruginosa growth when the temperature changed from 15 °C to 35 °C. The activation energy of the specific growth rate (Eμ) and of the adaptation rate (E1/LPD) were significantly correlated (R2 = 0.86). The cardinal temperatures estimated by the modified Ratkowsky model were minimum temperature = 8.58 ± 2.34 °C, maximum temperature = 45.04 ± 1.35 °C and optimum temperature = 33.39 ± 0.55 °C.Maximum MC-LR production decreased 9.5-fold when the temperature was increased from 26 °C to 35 °C. The maximum production values were obtained at 26° C and the maximum depletion rate of intracellular MC-LR was observed at 30–35 °C. The MC-LR cell quota was higher at 26 and 28 °C (83 and 80 fg cell−1, respectively) and the MC-LR Chl-a quota was similar at all the different temperatures (0.5–1.5 fg ng−1).The Gompertz equation and dynamic model were found to be the most appropriate approaches to calculate M. aeruginosa growth and production of MC-LR, respectively. Given that toxin production decreased with increasing temperatures but growth increased, this study demonstrates that growth and toxin production processes are uncoupled in M. aeruginosa. These data and models may be useful to predict M. aeruginosa bloom formation in the environment.  相似文献   

3.
《Journal of Asia》2014,17(3):349-354
Temperature-dependent development of Spodoptera exigua (Hübner) were evaluated at eight constant temperatures of 12, 15, 20, 25, 30, 33, 34 and 36 °C with a variation of 0.5 °C on sugar beet leaves. No development occurred at 12 °C and 36 °C. Total developmental time varied from 120.50 days at 15 °C to 14.50 days at 33 °C. As temperature increased from 15 °C to 33 °C, developmental rate (1/developmental time) of S. exigua increased but declined at 34 °C. The lower temperature threshold (Tmin) was estimated to be 12.98 °C and 12.45 °C, and the thermal constant (K) was 294.99 DD and 311.76 DD, using the traditional and Ikemoto–Takai linear models, respectively. The slopes of the Ikemoto–Takai linear model for different immature stages were different, violating the assumption of rate isomorphy. Data were fitted to three nonlinear models to predict the developmental rate and estimate the critical temperatures. The Tmin values estimated by Lactin-2 (12.90 °C) and SSI (13.35 °C) were higher than the value estimated by Briere-2 (8.67 °C). The estimated fastest development temperatures (Tfast) by the Briere-2, Lactin-2 and SSI models for overall immature stages development of S. exigua were 33.4 °C, 33.9 °C and 32.4 °C, respectively. The intrinsic optimum temperature (TΦ) estimated from the SSI model was 28.5 °C, in which the probability of enzyme being in its native state is maximal. The upper temperature threshold (Tmax) values estimated by these three nonlinear models varied from 34.00 °C to 34.69 °C. These findings on thermal requirements can be used to predict the occurrence, number of generations and population dynamics of S. exigua.  相似文献   

4.
The effect of different overwintering temperatures (2.5 ± 1 °C in a refrigerator or outdoor natural overwintering on wet topsoil with weak frosts) on the freezing temperature and survival rate of turions of 10 aquatic plant species with different ecological traits (free-floating habit or bottom rooting) was studied using mini thermocouples. Dormant, non-hardened turions of 9 species exhibited freezing within a narrow temperature range of ?7.0 to ?10.2 °C, while Hydrocharis morsus-ranae froze at ?3.6 °C. The survival rate of the turions after the measurements was, however, very low (0–38%). In several species, the freezing temperature of turions at the beginning of germination was not significantly different (at p < 0.05) from the dormant ones. The mean freezing temperature of outdoor hardened turions of 6 species was within a very narrow range of ?2.8 to ?3.3 °C and was thus significantly higher by 4–7 °C (p < 0.0002) than that for the non-hardened turions. It is assumed that the freezing temperatures indicate freezing of the extracellular water. The hardened turions of all 7 species were able to survive mild winter frosts under the topsoil conditions at a rate of 76–100%. These characteristics suggest that the turions of aquatic species can be hardened by weak frosts and that their frost hardiness is based on the shift from frost avoidance in non-hardened turions to frost tolerance.  相似文献   

5.
The present study reports the temperature tolerance, estimated using dynamic and static methodologies, and preferred temperature range, based on oxygen consumption rate (OCR), of juvenile meagre (Argyrosomus regius) (Asso, 1801) (3.4±0.9 g) after 30 days of acclimation at 18, 22, 26 and 30 °C. Meagre has dynamic and static thermal tolerance zones of 551 °C2 and 460 °C2, respectively and is a low resistance fish species, with a resistance zone area of 87 °C2. The OCR of juvenile meagre at the above acclimation temperatures was 370, 410, 618 and 642 mg h−1 kg1, respectively, and is significantly different (P<0.0001, n=20). The fact that OCR increases by rising temperatures and gradually decreases after 26 °C indicates that the preferred temperature range of juvenile meagre is between 26 and 30 °C. Our study suggests that meagre is unable to respond to low and high temperature variation in aquaculture facilities or its natural habitats.  相似文献   

6.
Temperature compensation in whole-animal metabolic rate is one of the responses thought, controversially, to characterize insects from low temperature environments. Temperature compensation may either involve a change in absolute values of metabolic rates or a change in the slope of the metabolic rate – temperature relationship. Moreover, assessments of compensation may be complicated by animal responses to fluctuating temperatures. Here we examined whole animal metabolic rates, at 0 °C, 5 °C, 10 °C and 15 °C, in caterpillars of the sub-Antarctic moth, Pringleophaga marioni Viette (Tineidae), following one week acclimations to 5 °C, 10 °C and 15 °C, and fluctuating temperatures of 0–10 °C, 5–15 °C, and 10–20 °C. Over the short term, temperature compensation was found following acclimation to 5 °C, but the effect size was small (3–14%). By comparison with caterpillars of 13 other lepidopteran species, no effect of temperature compensation was present, with the relationship between metabolic rate and temperature having a Q10 of 2 among species, and no effect of latitude on temperature-corrected metabolic rate. Fluctuating temperature acclimations for the most part had little effect compared with constant temperatures of the same mean value. Nonetheless, fluctuating temperatures of 5–15 °C resulted in lower metabolic rates at all test temperatures compared with constant 10 °C acclimation, in keeping with expectations from the literature. Absence of significant responses, or those of large effect, in metabolic rates in response to acclimation, may be a consequence of the unpredictable temperature variation over the short-term on sub-Antarctic Marion Island, to which P. marioni is endemic.  相似文献   

7.
《Biological Control》2007,40(3):539-546
A thermogradient apparatus was used to investigate the effect of variable dew temperatures on infection of green foxtail by the indigenous pathogen Pyricularia setariae (Ps) and the exotic pathogens Drechslera gigantea (Dg), and Exserohilum rostratum (Er) from the southern USA that showed bioherbicide potential against several grassy weeds. This device is capable of creating multiple diurnal temperature cycles, mimicking daily temperature fluctuations that occur under field conditions. Seven temperature regimes, i.e., 15/10 °C, 20/5 °C, 20/15 °C, 25/10 °C, 25/20 °C, 30/15 °C, and 30/25 °C (maximum/minimum), were used with temperature cycling from maximum to minimum and then back up to maximum in a 24 h period. Ps and Dg were much more virulent than Er on green foxtail, resulting in higher levels of disease and weed control. Dg was little affected by the dew temperatures in terms of plant infection and was more efficacious than Ps under cooler dew temperatures (15/10 °C and 20/5 °C), causing twice as much disease. This greater amount of disease coincided with higher conidial germination, appressorial formation and infection-hypha frequency by Dg at the lower temperatures. The efficacy of Ps improved as dew temperature increased, accompanied by a higher percentage of germination and more frequent appressorial production. Dg caused severe disease 2 d after inoculation whereas Ps required 4 d to initiate disease symptoms. These observations suggest that Dg is a superior candidate than Ps for green foxtail control on the Canadian prairies.  相似文献   

8.
Thermal limits of insects can be influenced by recent thermal history: here we used thermolimit respirometry to determine metabolic rate responses and thermal limits of the dominant meat ant, Iridomyrmex purpureus. Firstly, we tested the hypothesis that nest surface temperatures have a pervasive influence on thermal limits. Metabolic rates and activity of freshly field collected individuals were measured continuously while ramping temperatures from 44 °C to 62 °C at 0.25 °C/minute. At all the stages of thermolimit respirometry, metabolic rates were independent of nest surface temperatures, and CTmax did not differ between ants collected from nest with different surface temperatures. Secondly, we tested the effect of brain control on upper thermal limits of meat ants via ant decapitation experiments (‘headedness’). Decapitated ants exhibited similar upper critical temperature (CTmax) results to living ants (Decapitated 50.3±1.2 °C: Living 50.1±1.8 °C). Throughout the temperature ramping process, ‘headedness’ had a significant effect on metabolic rate in total (Decapitated CO2 140±30 µl CO2 mg−1 min−1: Living CO2 250±50 CO2 mg−1 min−1), as well as at temperatures below and above CTmax. At high temperatures (>44 °C) pre- CTmax the relationships between I. purpureus CTmax values and mass specific metabolic rates for living ants exhibited a negative slope whilst decapitated ants exhibited a positive slope. The decapitated ants also had a significantly higher Q10:25–35 °C when compared to living ants (1.91±0.43 vs. 1.29±0.35). Our findings suggest that physiological responses of ants may be able to cope with increasing surface temperatures, as shown by metabolic rates across the thermolimit continuum, making them physiologically resilient to a rapidly changing climate. We also demonstrate that the brain plays a role in respiration, but critical thermal limits are independent of respiration levels.  相似文献   

9.
A 30 day feeding trial was conducted using a freshwater fish, Labeo rohita (rohu), to determine their thermal tolerance, oxygen consumption and optimum temperature for growth. Four hundred and sixteen L. rohita fry (10 days old, 0.385±0.003 g) were equally distributed between four treatments (26, 31, 33 and 36 °C) each with four replicates for 30 days. Highest body weight gain and lowest feed conversion ratio (FCR) was recorded between 31 and 33 °C. The highest specific growth rate was recorded at 31 °C followed by 33 and 26 °C and the lowest was at 36 °C. Thermal tolerance and oxygen consumption studies were carried out after completion of growth study to determine tolerance level and metabolic activity at four different acclimation temperatures. Oxygen consumption rate increased significantly with increasing acclimation temperature. Preferred temperature decided from relationship between acclimation temperature and Q10 values were between 33 and 36 °C, which gives a better understanding of optimum temperature for growth of L. rohita. Critical thermal maxima (CTMax) and critical thermal minima (CTMin) were 42.33±0.07, 44.81±0.07, 45.35±0.06, 45.60±0.03 and 12.00±0.08, 12.46±0.04, 13.80±0.10, 14.43±0.06, respectively, and increased significantly with increasing acclimation temperatures (26, 31, 33 and 36 °C). Survival (%) was similar in all groups indicating that temperature range of 26–36 °C is not fatal to L. rohita fry. The optimum temperature range for growth was 31–33 °C and for Q10 values was 33–36 °C.  相似文献   

10.
Rising temperatures (1.4–6 °C) due to climate change have been predicted to increase cyanobacterial bloom occurrences in temperate water bodies; however, the impacts of warming on tropical cyanobacterial blooms are unknown. We examined the effects of four different temperatures on the growth rates and microcystin (MC) production of five tropical Microcystis isolates (M. ichthyoblabe (two strains), M. viridis, M. flos-aquae, and M. aeruginosa). The temperature treatments are based on current temperature range in Singapore's reservoirs (27 °C and 30 °C), as well as projected mean (33 °C) and maximum temperatures (36 °C) based on tropical climate change estimates of +6 °C in air temperature. Increasing temperatures did not significantly affect the maximum growth rates of most Microcystis strains. Higher growth rates were only observed in one M. ichthyoblabe strain at 33 °C and M. flos-aquae at 30 °C where both were isolated from the same reservoir. MC-RR and MC-LR were produced in varying amounts by all four species of Microcystis. Raised temperatures of 33 °C were found to boost total MC cell quota for three Microcystis strains although further increase to 36 °C led to a sharp decrease in total MC cell quota for all five Microcystis strains. Increasing temperature also led to higher MC-LR:MC-RR cell quota ratios in M. ichthyoblabe. Our study suggests that higher mean water temperatures resulting from climate change will generally not influence growth rates of Microcystis spp. in Singapore except for increases in M. ichthyoblabe strains. However, toxin cell quota may increase under moderate warming scenarios depending on the species.  相似文献   

11.
Most reptiles thermoregulate to achieve body temperatures needed for biological processes, such as digestion and growth. Temperatures experienced during embryogenesis may also influence post-hatching growth rate, potentially through influencing post-hatching choice of temperatures. We investigated in laboratory settings whether embryonic temperatures (constant 18 °C, 21 °C and 22 °C) influence selected body temperatures (Tsel) of juvenile tuatara (Sphenodon punctatus), providing a possible mechanism for differences in growth rates. We found that incubation temperature does not influence Tsel. Although the average daily mean Tsel was 21.6 ± 0.3 °C, we recorded individual Tsel values up to 33.5 °C in juvenile tuatara, which is higher than expected and above the panting threshold of 31–33 °C reported for adults. We found diel patterns of Tsel of juvenile tuatara, observing a general pattern of two apparent peaks and troughs per day, with Tsel being significantly lower around dawn and at 1500 h than any other time. When comparing our results with other studies on tuatara there is a remarkable consistency in mean Tsel of ~ 21 °C across tuatara of different ages, sizes and acclimatization histories. The ability of juvenile tuatara to withstand a wide range of temperatures supports their former widespread distribution throughout New Zealand and warrants further investigation into their plasticity to withstand climate warming, particularly where they have choices of habitat and the ability to thermoregulate.  相似文献   

12.
Development of immature Thrips palmi Karny was investigated at 12.5, 15, 17.5, 20, 22.5, 25, 27.5, 30, 32.5, and 35 °C, 20–40% RH and a photoperiod of 14:10 (L:D) h. Developmental time decreased with increasing temperature up to 32.5 °C in all stages. The total developmental time was longest at 12.5 °C (64.2 days) and shortest at 32.5 °C (9.2 days). The lower developmental threshold was 10.6, 10.6, 9.1, and 10.7 °C for egg, larva, prepupa, and pupa, respectively. The thermal constant required to complete the respective stage was 71.7, 59.2, 18.1, and 36.8DD. The lower threshold temperature and thermal constant were 10.6 °C and 183.3DD, respectively, for total immature development. The nonlinear relationship between developmental rate and temperature was well described by the modified Sharpe and DeMichele biophysical model (r2 = 0.905–0.998). The distribution of developmental completion of each stage was described by the 3-parameter Weibull function (r2 = 0.855–0.927). The temperature-dependent developmental models of T. palmi developed in this study could be used to predict its seasonal phenology in field and greenhouse vegetable crops.  相似文献   

13.
A viviparous lizard, Eremias multiocellata, was used to investigate the possible sexual and ontogenetic effects on selected body temperature, thermal tolerance range and the thermal dependence of locomotor performance. We show that adults are sexually dimorphic and males have larger bodies and heads than females. Adults selected higher body temperatures (34.5 vs. 32.4 °C) and could tolerate a broader range of body temperatures (8.1–46.8 vs. 9.1–43.1 °C) than juveniles. The sprint speed and maximum sprint distance increased with temperature from 21 °C to 33 °C, but decreased at 36 °C and 39 °C in both juveniles and adults. Adults ran faster and longer than juveniles at each tested temperature. Adult locomotor performance was not correlated with snout–vent length (SVL) or sex, and sprint speed was positively correlated with hindlimb length. Juvenile locomotor performance was positively correlated with both SVL and hindlimb length. The ontogenetic variation in selected body temperature, thermal tolerance and locomotor performance in E. multiocellata suggests that the effects of morphology on temperature selection and locomotor performance vary at different ontogenetic stages.  相似文献   

14.
The influence of temperatures on the life parameters of the solitary oothecal parasitoid Evania appendigaster, was investigated in the laboratory. Parasitized oothecae of Periplaneta americana were left to develop under seven constant temperatures: 15, 17, 20, 25, 30, 35, and 40 °C. At the end, we found that: (i) E. appendigaster was able to complete development within the temperature range of 17–34 °C; (ii) mean adult longevity decreased as temperature increased, with the temperature of 40 °C being fatal in a matter of hours; (iii) males lived longer than females between 15 and 30 °C; (iv) adult emergence rate was the highest at 25 °C, and (v) no wasps emerged at 15 or 40 °C. Non-emerged oothecae contained either unhatched eggs or dead larvae. We determined the theoretical lower developmental threshold and thermal constant for the complete development as 12.9 °C and 584.8 day-degrees for males, and 13.1 °C and 588.2 day-degrees for females, respectively. A good balance between faster development, maximum adult longevity and good egg viability was obtained between 25–30 °C, and that would be the best temperature range for rearing E. appendigaster.  相似文献   

15.
The purpose of this study was to determine the impact of the core to skin temperature gradient during incremental running to volitional fatigue across varying environmental conditions. A secondary aim was to determine if a “critical” core temperature would dictate volitional fatigue during running in the heat. 60 participants (n=49 male, n=11 female; 24±5 yrs, 177±11 cm, 75±13 kg) completed the study. Participants were uniformly stratified into a specific exercise temperature group (18 °C, 26 °C, 34 °C, or 42 °C) based on a 3-mile run performance. Participants were equipped with core and chest skin temperature sensors and a heart rate monitor, entered an environmental chamber (18 °C, 26 °C, 34 °C, or 42 °C), and rested in the seated position for 10 min before performing a walk/run to volitional exhaustion. Initial treadmill speed was 3.2 km h−1 with a 0% grade. Every 3 min, starting with speed, speed and grade increased in an alternating pattern (speed increased by 0.805 km h−1, grade increased by 0.5%). Time to volitional fatigue was longer for the 18 °C and 26 °C group compared to the 42 °C group, (58.1±9.3 and 62.6±6.5 min vs. 51.3±8.3 min, respectively, p<0.05). At the half-way point and finish, the core to skin gradient for the 18 °C and 26 °C groups was larger compared to 42 °C group (halfway: 2.6±0.7 and 2.0±0.6 vs. 1.3±0.5 for the 18 °C, 26 °C and 42 °C groups, respectively; finish: 3.3±0.7 and 3.5±1.1 vs. 2.1±0.9 for the 26 °C, 34 °C, and 42 °C groups, respectively, p<0.05). Sweat rate was lower in the 18 °C group compared to the 26 °C, 34 °C, and 42 °C groups, 3.6±1.3 vs. 7.2±3.0, 7.1±2.0, and 7.6±1.7 g m−2 min−1, respectively, p<0.05. There were no group differences in core temperature and heart rate response during the exercise trials. The current data demonstrate a 13% and 22% longer run time to exhaustion for the 18 °C and 26 °C group, respectively, compared to the 42 °C group despite no differences in beginning and ending core temperatures or baseline 3-mile run time. This capacity difference appears to result from a magnified core to skin gradient via an environmental temperature advantageous to convective heat loss, and in part from an increased sweat rate.  相似文献   

16.
Egg parasitism of Trichogramma pretiosum strain RV when presented with eggs of Anticarsia gemmatalis and Pseudoplusia includens was investigated at 18, 20, 22, 25, 28, 30 and 32 °C. The number of eggs parasitized per day decreased for both hosts as a function of the age of parasitoids, reaching 80% of lifetime parasitism more rapidly as temperature increased; on the 4th day at 32 °C and on the 12th day at 18 °C. The lifetime number of parasitized P. includens eggs achieved by the parasitoid maintained at 20 °C (44.95 ± 3.94) differed from the results recorded at 32 °C (28.5 ± 1.33). Differently, the lifetime number of A. gemmatalis parasitized eggs did not differ among the temperatures. When T. pretiosum reached 100% of lifetime parasitism, each adult female had parasitized from 28.5 ± 1.33 to 44.95 ± 3.94 and from 29.58 ± 2.80 to 45.36 ± 4.50 P. includens and A. gemmatalis eggs, respectively. Also, the longevity of these adult T. pretiosum females, for which P. includens or A. gemmatalis eggs were offered, was inversely correlated with temperature. Not only were the survival curves of those adult T. pretiosum females of type I when they were presented with eggs of A. gemmatalis but also with eggs of P. includens, i.e., there was an increase in the mortality rate with time as the temperature increased. In conclusion, T. pretiosum strain RV parasitism was impacted by temperature when on both host eggs; however, the parasitoid still exhibited high survival and, more importantly, high number of parasitized A. gemmatalis and P. includens eggs even at the extremes tested temperatures of 18 and 32 °C. Those results indicate that T. pretiosum strain RV might be well adapted to this studied temperature range and, thus, be potentially suitable for use in biological control programs of P. includens and A. gemmatalis in different geographical areas that fits in this range. It is important to emphasize the results here presented are from laboratory studies and, therefore, field trials still need to be carried out in the future with this strain in order to support the full development of the technology intend to use this egg parasitoid in soybean fields worldwide.  相似文献   

17.
We used a quasi-adiabatic calorimeter and respirometry apparatus to measure heat loss from the feet of 3- to 4-d-old mallard ducklings (Anas platyrhynchos). We found that, at cool (<20 °C) operative temperatures, foot conductance increased in proportion to operative temperature, Te, rather than water temperature. We combined these results with those of an earlier study to develop a heat transfer model for swimming ducklings. This model includes separate thermal conductances to air (0.027 W/°C-animal), to water through the down (0.035[1+2.05×10−7Te4]) W/°C-animal, and to water through the feet (2.01×10−8Te4 W/°C-animal). The overall conductance by all three routes is only 21% greater when swimming compared to standing in air at the same operative temperature. Interestingly, ducklings can maintain body temperature >39 °C while swimming in 5 °C water, but not when restrained in a calorimeter with 5 °C water. Peak oxygen consumption is greater when swimming, and apparently exercise metabolism substitutes almost completely for thermoregulatory heat production.  相似文献   

18.
Predation is a key source of seed mortality in many weed species and thus is a part of natural control. In the field, the intensity of seed predation by invertebrates varies during the course of a year. One source of this variation is fluctuations in ambient temperature. Here, the effect of temperature on seed consumption is investigated for the first time, using two abundant carabid seed predators, Pseudoophonus rufipes and Harpalus affinis (Coleoptera: Carabidae), and dandelion (Taraxacum officinale) as a model system. Field collected individuals were sexed, kept at one of six constant temperatures between 10 and 28 °C and provided with a surplus of seed. Seed consumption was recorded over a period of 4 days. Averaged over all the temperatures, the smaller H. affinis consumed 12.2 seeds day?1 and larger P. rufipes 29 seeds day?1. On average, females consumed more seeds than males. Seed consumption by both species increased with temperature. In H. affinis the increase was linear and different for males and females. In P. rufipes the consumption was similar in both sexes but curvilinear because there was no further increase in consumption above 20 °C. Assuming a linear relationship between temperature and consumption at up to 20 °C we calculated the temperature at which seed consumption ceased (?0.1 to 0.3 °C in H. affinis and 6.3–6.9 °C in P. rufipes) and the increment in seed consumption per 1 °C increase in temperature above this threshold (0.4–1.0 and 1.5–4.2 seeds individual?1 day?1, respectively) for the two species. Thus, it is possible to calculate the average daily consumption of each species over a range of temperatures up to 20 °C.  相似文献   

19.
《Process Biochemistry》2014,49(3):357-364
A yeast cell-free enzyme system containing an intact fermentation assembly and that is capable of bio-ethanol production at elevated temperatures in the absence of living cells was developed to address the limitations associated with conventional fermentation processes. The presence of both yeast glycolytic and fermentation enzymes in the system was verified by SDS-PAGE and LC–MS/MS Q-TOF analyses. Quantitative measurements verified sufficient quantities of the co-factors ATP (1.8 mM) and NAD+ (0.11 mM) to initiate the fermentation process. Bio-ethanol was produced at a broad temperature range of 30–60 °C but was highly specific to a pH range of 6.0–7.0. The final bio-ethanol production at 30, 40, 50, and 60 °C was 3.37, 3.83, 1.94, and 1.60 g/L, respectively, when a 1% glucose solution was used, and the yield increased significantly with increasing cell-free enzyme concentrations. A comparative study revealed better results for the conventional fermentation system (4.46 g/L) at 30 °C than the cell-free system (3.37 g/L); however, the efficacy of the cell-free system increased with temperature, reaching a maximum (3.83 g/L) at 40 °C, at which the conventional system could only produce 0.48 g/L bio-ethanol. Successful bio-ethanol production using a single yeast cell-based enzyme system at higher temperatures will lead to the development of novel strategies for efficient bio-ethanol production through SSF.  相似文献   

20.
《Journal of Asia》2014,17(3):445-449
The developmental time and survival of overwintering Sericinus montela Gray pupae were studied at four constant temperatures (15.0, 20.0, 25.0, and 30.0 °C), 40 ± 10% relative humidity, and 10:14 h light:dark cycle. The developmental time of both sexes decreased with increasing temperature between 15.0 °C (70.18 days for females and 55.28 days for males) and 30.0 °C (19.60 days for females and 13.78 days for males). The development periods of females were longer than those of males at each constant temperature. The relationship between the developmental rate and temperature was fitted by a linear model and a nonlinear developmental rate model (Lactin 1). The mortality of overwintered S. montela pupae was lowest at 25.0 °C (16.7%) and highest at 15.0 °C (36.7%). The lower developmental thresholds were 12.38 and 12.16 °C for females and males, respectively. The distribution of development completion for females and males was described by the two-parameter Weibull distribution equation (r2 = 0.87 for females and r2 = 0.94 for males). The date for the cumulative 50% adult emergence was within one or two days of that predicted using the Lactin 1 model. The temperature-dependent developmental model for S. montela could be applied to predict the timing of spring emergence in different geographical locations and will be helpful in developing a full-cycle phenology model for S. montela.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号