首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Scant information is available on how soil phosphorus (P) availability responds to atmospheric nitrogen (N) deposition, especially in the tropical zones. This study examined the effect of N addition on soil P availability, and compared this effect between forest sites of contrasting land‐use history. Effects of N addition on soil properties, litterfall production, P release from decomposing litter, and soil P availability were studied in a disturbed (reforested pine forest with previous understory vegetation and litter harvesting) and a rehabilitated (reforested mixed pine/broadleaf forest with no understory vegetation and litter harvesting) tropical forest in southern China. Experimental N‐treatments (above ambient) were the following: Control (no N addition), N50 (50 kg N ha?1 yr?1), and N100 (100 kg N ha?1 yr?1). Results indicated that N addition significantly decreased soil P availability in the disturbed forest. In the rehabilitated forest, however, soil P availability was significantly increased by N addition. Decreases in soil P availability may be correlated with decreases in rates of P release from decomposing litter in the N‐treated plots, whereas the increase in soil P availability was correlated with an increase in litterfall production. Our results suggest that response of soil P availability to N deposition in the reforested tropical forests in southern China may vary greatly with temporal changes in tree species composition and soil nutrient status, caused by different land‐use practices.  相似文献   

2.
Humid tropical forests are often characterized by large nitrogen (N) pools, and are known to have large potential N losses. Although rarely measured, tropical forests likely maintain considerable biological N fixation (BNF) to balance N losses. We estimated inputs of N via BNF by free-living microbes for two tropical forests in Puerto Rico, and assessed the response to increased N availability using an on-going N fertilization experiment. Nitrogenase activity was measured across forest strata, including the soil, forest floor, mosses, canopy epiphylls, and lichens using acetylene (C2H2) reduction assays. BNF varied significantly among ecosystem compartments in both forests. Mosses had the highest rates of nitrogenase activity per gram of sample, with 11 ± 6 nmol C2H2 reduced/g dry weight/h (mean ± SE) in a lower elevation forest, and 6 ± 1 nmol C2H2/g/h in an upper elevation forest. We calculated potential N fluxes via BNF to each forest compartment using surveys of standing stocks. Soils and mosses provided the largest potential inputs of N via BNF to these ecosystems. Summing all components, total background BNF inputs were 120 ± 29 μg N/m2/h in the lower elevation forest, and 95 ± 15 μg N/m2/h in the upper elevation forest, with added N significantly suppressing BNF in soils and forest floor. Moisture content was significantly positively correlated with BNF rates for soils and the forest floor. We conclude that BNF is an active biological process across forest strata for these tropical forests, and is likely to be sensitive to increases in N deposition in tropical regions.  相似文献   

3.
We conducted a year‐long field experiment to investigate how nitrogen addition affected decomposition of Piscidia piscipula and Gymnopodium floribundum along a precipitation gradient in the Yucatan Peninsula, Mexico. Nitrogen addition did not affect decomposition rates at the drier sites. However, fertilization at the wettest site increased the decomposition of Gymnopodium litter and decreased the decomposition of Piscidia litter. Water‐soluble carbon and lignin, and water‐soluble carbon and nitrogen concentrations were the best predictors of decomposition for Gymnopodium and Piscidia litters, respectively. We conclude that the effects of nitrogen addition on decomposition will vary from site to site as a function of mean annual precipitation, inherent soil fertility, and species identity.  相似文献   

4.
Nitrogen (N) fixed by termites was evaluated as a N input to decomposition processes in two tropical forests, a dry deciduous forest (DDF) and the neighboring dry evergreen forest (DEF), Thailand. A diverse group of termite species were assayed by acetylene reduction method and only the wood/litter-feeding termites were found to fix N. More intensive samplings of two abundant species, Microcerotermes crassus and Globitermes sulphureus, were done across several seasons, suggesting N fixation rates of 0.21 and 0.28 kg ha−1 y−1 by termites in the DDF and DEF, respectively. Also, estimates of asymbiotic N fixation rates were 0.75 and 3.95 kg ha−1 y−1. N fixed by termites and by asymbiotic fixers is directly supplied to decomposers breaking down dead plant material and could be a major source of their N. N fixed by termites was 7–22% of that fixed by termites and asymbiotic fixers. Although N fixed by termites is a small input compared to other inputs, this N is likely important for decomposition processes.  相似文献   

5.
Nitrogen (N) is a critical limiting nutrient that regulates plant productivity and the cycling of other essential elements in forests. We measured foliar and soil nutrients in 22 young Douglas-fir stands in the Oregon Coast Range to examine patterns of nutrient availability across a gradient of N-poor to N-rich soils. N in surface mineral soil ranged from 0.15 to 1.05% N, and was positively related to a doubling of foliar N across sites. Foliar N in half of the sites exceeded 1.4% N, which is considered above the threshold of N-limitation in coastal Oregon Douglas-fir. Available nitrate increased five-fold across this gradient, whereas exchangeable magnesium (Mg) and calcium (Ca) in soils declined, suggesting that nitrate leaching influences base cation availability more than soil parent material across our sites. Natural abundance strontium isotopes (87Sr/86Sr) of a single site indicated that 97% of available base cations can originate from atmospheric inputs of marine aerosols, with negligible contributions from weathering. Low annual inputs of Ca relative to Douglas-fir growth requirements may explain why foliar Ca concentrations are highly sensitive to variations in soil Ca across our sites. Natural abundance calcium isotopes (δ44Ca) in exchangeable and acid leachable pools of surface soil measured at a single site showed 1 per mil depletion relative to deep soil, suggesting strong Ca recycling to meet tree demands. Overall, the biogeochemical response of these Douglas-fir forests to gradients in soil N is similar to changes associated with chronic N deposition in more polluted temperate regions, and raises the possibility that Ca may be deficient on excessively N-rich sites. We conclude that wide gradients in soil N can drive non-linear changes in base-cation biogeochemistry, particularly as forests cross a threshold from N-limitation to N-saturation. The most acute changes may occur in forests where base cations are derived principally from atmospheric inputs.  相似文献   

6.
Spatial scaling to some extent determines biodiversity patterns in larger organisms, but its role in microbial diversity patterns is much less understood. Some studies have shown that bacterial community similarity decreases with distance, whereas others do not support this. Here, we studied soil bacterial communities of tropical rainforest in Malaysia at two spatial scales: a local scale with samples spaced every 5 m over a 150-m transect, and a regional scale with samples 1 to 1,800 km apart. PCR-amplified soil DNA for the bacterial 16S rRNA gene targeting the V1–V3 region was pyrosequenced using Roche/454 GS FLX Titanium platform. A ranked partial Mantel test showed a weak correlation between spatial distance and whole bacterial community dissimilarity, but only at the local scale. In contrast, environmental distance was highly correlated with community dissimilarity at both spatial scales, stressing the greater role of environmental variables rather than spatial distance in determining bacterial community variation at different spatial scales. Soil pH was the only environmental parameter that significantly explained the variance in bacterial community at the local scale, whereas total nitrogen and elevation were additional important factors at the regional scale. We obtained similar results at both scales when only the most abundant OTUs were analyzed. A variance partitioning analysis showed that environmental variables contributed more to bacterial community variation than spatial distance at both scales. In total, our results support a strong influence of the environment in determining bacterial community composition in the rainforests of Malaysia. However, it is possible that the remaining spatial distance effect is due to some of the myriad of other environmental factors which were not considered here, rather than dispersal limitation.  相似文献   

7.
Global comparisons suggest that rates of N fixation in tropical rain forests may be among the highest on earth. However, data supporting this contention are rare, and the factors that regulate N fixation within the biome remain largely unknown. We conducted a full-factorial (N × P) fertilization experiment in two lowland tropical rain forests in Costa Rica to explore the effects of nutrient availability on rates of free-living N fixation in leaf litter and soil. P fertilization significantly increased N fixation rates in both leaf litter and soil, and the effect was dependent on sampling date. Fertilization with N did not affect rates of N fixation at any time. In addition, variation in N fixation rates measured in unfertilized plots at four sampling time points suggested seasonal variability in N fixation: leaf litter N fixation ranged from 0.36 kg/ha/yr in the dry season to 5.48 kg/ha/yr in the wet season. Soil N fixation showed similar patterns ranging from a dry season low of 0.26 kg/ha/yr to a wet season high of 2.71 kg/ha/yr. While the observed temporal variability suggests potential climatic control over free-living N fixation in these forests, data suggest that neither soil nor leaf litter moisture alone regulate N fixation rates. Instead, we hypothesize that a combination of ample C availability, low leaf litter N:P ratios, and high rainfall coincide during the latter portions of the rainy season and drive the highest free-living N fixation rates of the year.  相似文献   

8.
9.
西双版纳热带雨林与海南热带雨林的比较研究   总被引:23,自引:2,他引:23  
西双版纳的热带雨林与海南低地热带雨林和热带季雨林有基本一致的植物区系组成,群落中优势科无论在种数百分比还是重要值排名上均较接近,显然属于同样性质的植物区系。在生态特征上,西双版纳热带雨林群落高大,分层不明显,B层为林冠层,散生巨树常见,在生活型谱上以高位芽植物占绝对优势,大、中高位芽植物相对较多,落叶树种比例小;以中叶、纸质,全缘和复叶比例较高为特征,具有最接近海南低地湿润雨林的群落垂直结构和生态外貌,其雨林特点虽不如湿润雨林浓厚,但明显强于海南的热带常绿季雨林和山地雨林,海南常绿季雨林群落高度明显较矮,小叶比例通常较高,革质叶比例亦较高,群落具遥明显的旱生特点,海南的山地雨林群落高度较矮,A层连续,成为林冠,无散生巨树,分层明显,在生活型谱上大高位芽植物比例减少,附生植物丰富,并具有相当比例的地面芽植物;叶级虽以中叶占优势,但通常革质,非全缘和单叶比例较高,明显由于热量不足的影响而带有亚热带森林特色,在物种多样性上,西双版纳热带雨林的乔木物种多样性指数似乎与海南的低地热带雨林相当,低于海南的山地雨林群落,海南的热带雨林群落种类丰富度不同人研究的结果差异较大,如果这些用于比较的数据可靠和具有可比性的话,西双版纳热带雨林的物种多样性要比海南的山地雨林低。  相似文献   

10.
Abstract Leaf area index (LAI) is a key parameter controlling plant productivity and biogeochemical fluxes between vegetation and the atmosphere. Tropical forests are thought to have comparably high LAIs; however, precise data are scarce and environmental controls of leaf area in tropical forests are not understood. We studied LAI and stand leaf biomass by optical and leaf mass-related approaches in five tropical montane forests along an elevational transect (1,050–3,060 m a.s.l.) in South Ecuador, and conducted a meta-analysis of LAI and leaf biomass data from tropical montane forests around the globe. Study aims were (1) to assess the applicability of indirect and direct approaches of LAI determination in tropical montane forests, (2) to analyze elevation effects on leaf area, leaf mass, SLA, and leaf lifespan, and (3) to assess the possible consequences of leaf area change with elevation for montane forest productivity. Indirect optical methods of LAI determination appeared to be less reliable in the complex canopies than direct leaf mass-related approaches based on litter trapping and a thorough analysis of leaf lifespan. LAI decreased by 40–60% between 1,000 and 3,000 m in the Ecuador transect and also in the pan-tropical data set. This decrease indicates that canopy carbon gain, that is, carbon source strength, decreases with elevation in tropical montane forests. Average SLA decreased from 88 to 61 cm2 g−1 whereas leaf lifespan increased from 16 to 25 mo between 1,050 and 3,060 m in the Ecuador transect. In contrast, stand leaf biomass was much less influenced by elevation. We conclude that elevation has a large influence not only on the leaf traits of trees but also on the LAI of tropical montane forests with soil N (nitrogen) supply presumably being the main controlling factor.  相似文献   

11.
Invariably, insects are overlooked when tropical forest management issues are discussed, because there are so many species, they are taxonomically intractable and so poorly known. Often people take the view that if you look after the vegetation and vertebrates, the insects will look after themselves. This may be true for some functional groups, but for saproxylic insects, this seems unlikely. Their study deserves high priority, since they are dependent on the very resource – wood – whose removal from the ecosystem is the usual object of forest management. Given the current international effort to develop 'criteria and indicators' to monitor sustainable forest management for biodiversity values, there is a window of opportunity for sound ecological research on saproxylic insects to influence the formulation of forest policy such that their needs can be taken into account. There is already a large body of knowledge on temperate and boreal region saproxylic insects, and on the effects that logging has on them, but knowledge of the tropical forest situation lags far behind. This paper proposes a research agenda to enable the needs of saproxylic insects to be taken into account in natural forest management in the tropics. Basic questions, such as whether logging has so far had an impact on tropical saproxylic insects, and whether there are workable sampling techniques to investigate this, still remain to be addressed and deserve high priority. The links between the responses of saproxylic insects and more 'charismatic' study species need to be investigated. We also need to know whether there is a correlation between the intensity of logging and the response of saproxylic insects, and, critically, whether we would be justified in measuring some surrogate aspects of forest structure (as potential habitat for saproxylic insects) rather than the saproxylic insects themselves, and modelling this to determine likely impacts of different management regimes. We consider such an ambitious research agenda as justified given the scale of impact that forest use and management is likely to have on tropical forest insects in the future.  相似文献   

12.
We show in laboratory and field investigations that in the short‐term seagrasses obtain most of their required nitrogen from the degradation of seagrass leaves, rather than degradation of leaves exported from adjacent mangroves. Mangrove forests at our Thailand site retain the majority of their nutrients, and therefore potentially buffer seagrasses from nutrients.  相似文献   

13.
14.
Hunting can change abundances of vertebrate seed predators and seed dispersers, causing species‐specific changes in seed dispersal and seed predation and altering seedling communities. What are the consequences of these changes for the adult plant community in the next generation and beyond? Here, I derive equations showing how reduced seed dispersal reduces plant reproduction by intensifying kin competition, increasing vulnerability to natural enemies, and reducing the proportion of seeds passing through disperser guts. I parameterize these equations with available empirical data to estimate the likely effects on next‐generation abundances. I then consider the indirect effects and longer‐term feedbacks of changed seed or adult abundances on reproductive rates due to density‐dependent interactions with natural enemies and mutualists, as well as niche differentiation with competitors, and discuss their likely qualitative effects. The factors limiting seed disperser and seed predator populations in natural and hunted forests emerge as critical for determining the long‐term effects of hunting on rates of seed dispersal and seed predation. For example, where seed dispersers are held to a constant abundance by hunters, decreases in the availability of their preferred food plants are expected to lead to increased per‐seed dispersal probabilities, potentially to the point of compensating for the initial disperser decline. I close by discussing the likely reversibility of hunting‐induced changes in tropical forests and key questions and directions for future research.  相似文献   

15.
木质藤本是热带森林的一个重要组分, 直接或间接地影响着森林中树木的生长和更新, 改变森林树木的种类组成, 并且可以通过改变森林碳固定量等方式在生态系统水平上发挥作用。全球气候的变化, 以及热带森林片断化程度的加剧, 将很大程度上影响着木质藤本的多样性和丰富度, 其特殊的生物学特性将在森林动态中发挥更加重要的作用。本文结合国内外目前木质藤本研究现状, 概述了木质藤本的一般知识(包括木质藤本的定义和生物学特性等), 介绍了木质藤本全球分布格局、其多样性维持机理以及木质藤本在森林生态系统中的功能与作用, 并就存在的一些问题以及需进一步开展的工作展开了讨论。  相似文献   

16.
木质藤本及其在热带森林中的生态学功能   总被引:5,自引:0,他引:5  
木质藤本是热带森林的一个重要组分,直接或间接地影响着森林中树木的生长和更新,改变森林树木的种类组成,并且可以通过改变森林碳固定量等方式在生态系统水平上发挥作用。全球气候的变化,以及热带森林片断化程度的加剧,将很大程度上影响着木质藤本的多样性和丰富度,其特殊的生物学特性将在森林动态中发挥更加重要的作用。本文结合国内外目前木质藤本研究现状,概述了木质藤本的一般知识(包括木质藤本的定义和生物学特性等),介绍了木质藤本全球分布格局、其多样性维持机理以及木质藤本在森林生态系统中的功能与作用,并就存在的一些问题以及需进一步开展的工作展开了讨论。  相似文献   

17.
This synthesis builds on the preceding articles of this Special Section and has three goals. We first review the nascent literature that addresses indirect effects of hunting for tropical forest plant communities. Next, we highlight the potential indirect effects of hunting for other groups of organisms. Our final goal is to consider what could be done to ameliorate the demographic threats to harvest-sensitive game species caused by unsustainable hunting. Three conclusions are possible at this time concerning the impact of hunting for tropical forest plant communities: (1) Hunting tends to reduce seed movement for animal-dispersed species with very large diaspores; (2) Hunting reduces seed predation by granivorous vertebrates for species with large seeds; and (3) Hunting alters the species composition of the seedling and sapling layers. The cascading effects of hunting are already known to affect bruchid beetles and dung beetles and are likely to affect other, nongame taxa. To ameliorate these problems, several lines of research should be further explored to facilitate the development of game management plans including: (1) alternative use of sources of animal protein; (2) income supplementation for local people from sources other than wild meat; (3) outreach and extension activities for communities; (4) recognition and facilitation of the shifting of attitudes towards hunting; (5) implementation of community-based wildlife management programs in regulated-use areas such as extractive reserves; and (6) landscape-scale conservation planning that maximizes the source-sink dynamics of harvested and unharvested game populations and enforces game regulations in strictly protected areas.  相似文献   

18.
19.
Dissolved organic nitrogen (DON) is a potentially significant vector of N loss from forest ecosystems that has been characterized as an “N leak.” Although the term “leak” suggests a lack of regulation, it is clear DON losses are a function of biological and physicochemical processes that influence its production and retention across the landscape. In this study, we investigated how soil processes that influence DON cycling impact ecosystem patterns of DON loss in five northern hardwood forests that spanned a gradient of N availability, tree species composition, and moisture–edaphic characteristics. We collected soil leachate from the forest floor and at 15 and 100 cm soil depths and related solution chemistry to its physical environment. We found that DON losses were a function of ecosystem N status and increased modestly with soil N stock. We also found a unimodal pattern of DOC/DON losses across the gradient driven by low DOC/DON in the lowest N availability stand, likely due to the interaction between strongly sorbing DOM inputs from C-rich, oak-derived leaf litter with highly sorptive soils. We suggest DOM losses from forests depend on interactions between soil solution input chemistry from the forest floor, which reflects changes in tree species composition across the landscape, and soil sorptive processes where organic compounds are dynamically exchanged between solid and dissolved phases. These results emphasize the need to understand how fine-scale processes can interact to shape ecosystem patterns of DOM loss.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号