首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

[Purpose]

αB-crystallin is a small heat shock protein that acts as a molecular chaperone under various stress conditions. Microtubules, which consist of tubulin, are related to maintain the intracellular organelles and cellular morphology. These two proteins have been shown to be related to the properties of different types of myofibers based on their contractile properties. The response of these proteins during muscular atrophy, which induces a myofibril component change, is not clearly understood.

[Methods]

We performed 15 days of hindlimb unloading on rats to investigate the transitions of these proteins by analyzing their absolute quantities. Protein contents were analyzed in the soleus, plantaris, and gastrocnemius muscles of the unloading and control groups (N = 6).

[Results]

All three muscles were significantly atrophied by hindlimb unloading (P < 0.01): soleus (47.5%), plantaris (16.3%), and gastrocnemius (21.3%) compared to each control group. αB-crystallin was significantly reduced in all three examined unloaded hindlimb muscles compared to controls (P < 0.01) during the transition of the myosin heavy chain to fast twitch muscles. α-Tubulin responded only in the unloaded soleus muscle. Muscle atrophy induced the reduction of αB-crystallin and α-tubulin expressions in plantar flexor muscles with a shift to the fast muscle fiber compared to the control.

[Conclusion]

The novel finding of this study is that both proteins, αB-crystallin and α-tubulin, were downregulated in slow muscles (P < 0.01); However, α-tubulin was not significantly reduced compared to the control in fast muscles (P < 0.01).  相似文献   

2.
The calcium-activated phosphatase calcineurin (Cn) transduces physiological signals through intracellular pathways to influence the expression of specific genes. Here, we characterize a naturally occurring splicing variant of the CnAβ catalytic subunit (CnAβ1) in which the autoinhibitory domain that controls enzyme activation is replaced with a unique C-terminal region. The CnAβ1 enzyme is constitutively active and dephosphorylates its NFAT target in a cyclosporine-resistant manner. CnAβ1 is highly expressed in proliferating myoblasts and regenerating skeletal muscle fibers. In myoblasts, CnAβ1 knockdown activates FoxO-regulated genes, reduces proliferation, and induces myoblast differentiation. Conversely, CnAβ1 overexpression inhibits FoxO and prevents myotube atrophy. Supplemental CnAβ1 transgene expression in skeletal muscle leads to enhanced regeneration, reduced scar formation, and accelerated resolution of inflammation. This unique mode of action distinguishes the CnAβ1 isoform as a candidate for interventional strategies in muscle wasting treatment.  相似文献   

3.
Skeletal muscle is one of the most sensitive tissues to mechanical loading, and unloading inhibits the regeneration potential of skeletal muscle after injury. This study was designed to elucidate the specific effects of unloading stress on the function of immunocytes during muscle regeneration after injury. We examined immunocyte infiltration and muscle regeneration in cardiotoxin (CTX)-injected soleus muscles of tail-suspended (TS) mice. In CTX-injected TS mice, the cross-sectional area of regenerating myofibers was smaller than that of weight-bearing (WB) mice, indicating that unloading delays muscle regeneration following CTX-induced skeletal muscle damage. Delayed infiltration of macrophages into the injured skeletal muscle was observed in CTX-injected TS mice. Neutrophils and macrophages in CTX-injected TS muscle were presented over a longer period at the injury sites compared with those in CTX-injected WB muscle. Disturbance of activation and differentiation of satellite cells was also observed in CTX-injected TS mice. Further analysis showed that the macrophages in soleus muscles were mainly Ly-6C-positive proinflammatory macrophages, with high expression of tumor necrosis factor-α and interleukin-1β, indicating that unloading causes preferential accumulation and persistence of proinflammatory macrophages in the injured muscle. The phagocytic and myotube formation properties of macrophages from CTX-injected TS skeletal muscle were suppressed compared with those from CTX-injected WB skeletal muscle. We concluded that the disturbed muscle regeneration under unloading is due to impaired macrophage function, inhibition of satellite cell activation, and their cooperation.  相似文献   

4.
Effects of hindlimb unloading during the first 3 months after birth on the development of soleus muscle fibers were studied in rats. The mean absolute weigh and cross-sectional area of whole soleus muscle in the unloaded rats were -1/3 and 1/4 of those in the controls, respectively. But the unloading did not affect the lengths of muscle, at 90 degrees of ankle joint angle, and of muscle fibers sampled from tendon to tendon, and the total sarcomere number. Since the total number of fibers in soleus was not affected either, the inhibited increase of muscle mass following unloading was mainly due to the smaller CSA of individual fibers. Numbers of both myonuclei and satellite cells were significantly less in unloaded than control rats. The % distribution of fibers expressing pure type I myosin heavy chain was significantly less in unloaded than controls (-23 %). Further, muscle fibers with multiple innervation were noted in the unloaded rats. It is suggested that the development and/or differentiation of soleus muscle fibers are closely associated with gravitational loading and that the growth-associated increase in fiber number may be genetically programmed.  相似文献   

5.
研究发现在甘油诱导的小鼠肌肉损伤修复过程中可能存在肌间脂的沉积,而肌肉分泌因子(myokines)作为特殊的蛋白参与了肌肉与脂肪的多种生理过程.为研究肌肉内注射甘油后对肌间脂生成的影响,以及注射后肌肉分泌因子在肌肉损伤后修复及肌间脂沉积过程中的表达趋势,本文选用三月龄C57BL/6品系小鼠,右腿胫骨前肌注射50% HBSS(V/V)甘油,左腿胫骨前肌注射等量的HBSS缓冲液作为对照.取注射后不同时期小鼠的胫骨前肌,冰冻切片技术检测肌肉再生及肌间脂沉积状况,实时定量PCR检测各分泌因子(IL-6、IL-15、MSTN、FNDC5、FGF21、myonectin和Insl6)的mRNA表达变化,酶联免疫分析(ELISA)检测分泌因子的蛋白表达变化.结果表明,在甘油诱导的肌肉损伤再生修复过程中存在肌间脂的生成,同时IL-6、Insl6、FGF21和IL-15的mRNA相对表达量在肌肉损伤修复过程中的前、中期变化明显,而MSTN和myonectin的mRNA相对表达量则在中、后期变化明显. IL-6、Insl6的蛋白表达量在前、中期明显升高.综上所述,甘油注射可引起肌肉损伤修复,并在这一过程中伴随着肌间脂的沉积,而肌肉分泌因子作为肌肉与脂肪之间的信息交换因子可能参与了肌肉损伤后的再生修复以及肌间脂的形成.  相似文献   

6.
7.
Alterations in muscle play an important role in common diseases and conditions. Reactive oxygen species (ROS) are generated during hindlimb unloading due, at least in part, to the activation of xanthine oxidase (XO). The major aim of this study was to determine the mechanism by which XO activation causes unloading-induced muscle atrophy in rats, and its possible prevention by allopurinol, a well-known inhibitor of this enzyme. For this purpose we studied one of the main redox sensitive signalling cascades involved in skeletal muscle atrophy i.e. p38 MAPKinase, and the expression of two well known muscle specific E3 ubiquitin ligases involved in proteolysis, the Muscle atrophy F-Box (MAFbx; also known as atrogin-1) and Muscle RING (Really Interesting New Gene) Finger-1 (MuRF-1). We found that hindlimb unloading induced a significant increase in XO activity and in the protein expression of the antioxidant enzymes CuZnSOD and Catalase in skeletal muscle. The most relevant new fact reported in this paper is that inhibition of XO with allopurinol, a drug widely used in clinical practice, prevents soleus muscle atrophy by ∼20% after hindlimb unloading. This was associated with the inhibition of the p38 MAPK-MAFbx pathway. Our data suggest that XO was involved in the loss of muscle mass via the activation of the p38MAPK-MAFbx pathway in unloaded muscle atrophy. Thus, allopurinol may have clinical benefits to combat skeletal muscle atrophy in bedridden, astronauts, sarcopenic, and cachexic patients.  相似文献   

8.
Hindlimb unloading of rats results in a diminished ability of skeletal muscle arterioles to constrict in vitro and elevate vascular resistance in vivo. The purpose of the present study was to determine whether alterations in the mechanical environment (i.e., reduced fluid pressure and blood flow) of the vasculature in hindlimb skeletal muscles from 2-wk hindlimb-unloaded (HU) rats induces a structural remodeling of arterial microvessels that may account for these observations. Transverse cross sections were used to determine media cross-sectional area (CSA), wall thickness, outer perimeter, number of media nuclei, and vessel luminal diameter of feed arteries and first-order (1A) arterioles from soleus and the superficial portion of gastrocnemius muscles. Endothelium-dependent dilation (ACh) was also determined. Media CSA of resistance arteries was diminished by hindlimb unloading as a result of decreased media thickness (gastrocnemius muscle) or reduced vessel diameter (soleus muscle). ACh-induced dilation was diminished by 2 wk of hindlimb unloading in soleus 1A arterioles, but not in gastrocnemius 1A arterioles. These results indicate that structural remodeling and functional adaptations of the arterial microvasculature occur in skeletal muscles of the HU rat; the data suggest that these alterations may be induced by reductions in transmural pressure (gastrocnemius muscle) and wall shear stress (soleus muscle).  相似文献   

9.
We have previously shown that activation of Gαi2, an α subunit of the heterotrimeric G protein complex, induces skeletal muscle hypertrophy and myoblast differentiation. To determine whether Gαi2 is required for skeletal muscle growth or regeneration, Gαi2-null mice were analyzed. Gαi2 knockout mice display decreased lean body mass, reduced muscle size, and impaired skeletal muscle regeneration after cardiotoxin-induced injury. Short hairpin RNA (shRNA)-mediated knockdown of Gαi2 in satellite cells (SCs) leads to defective satellite cell proliferation, fusion, and differentiation ex vivo. The impaired differentiation is consistent with the observation that the myogenic regulatory factors MyoD and Myf5 are downregulated upon knockdown of Gαi2. Interestingly, the expression of microRNA 1 (miR-1), miR-27b, and miR-206, three microRNAs that have been shown to regulate SC proliferation and differentiation, is increased by a constitutively active mutant of Gαi2 [Gαi2(Q205L)] and counterregulated by Gαi2 knockdown. As for the mechanism, this study demonstrates that Gαi2(Q205L) regulates satellite cell differentiation into myotubes in a protein kinase C (PKC)- and histone deacetylase (HDAC)-dependent manner.  相似文献   

10.
Myotendinous junctions (MTJs) are specialized sites on the muscle surface where forces generated by myofibrils are transmitted across the sarcolemma to the extracellular matrix. At the ultrastructural level, the interface between the sarcolemma and extracellular matrix is highly folded and interdigitated at these junctions. In this study, the effect of exercise and growth hormone (GH) treatments on the changes in MTJ structure that occur during muscle unloading, has been analyzed. Twenty hypophysectomized rats were assigned randomly to one of five groups: ambulatory control, hindlimb unloaded, hindlimb unloaded plus exercise (3 daily bouts of 10 climbs up a ladder with 50% body wt attached to the tail), hindlimb unloaded plus GH (2 daily injections of 1 mg/kg body wt, i.p.), and hindlimb unloaded plus exercise plus GH. MTJs of the plantaris muscle were analyzed by electron microscopy and the contact between muscle and tendon was evaluated using an IL/B ratio, where B is the base and IL is the interface length of MTJ’s digit-like processes. After 10 days of unloading, the mean IL/B ratio was significantly lower in unloaded (3.92), unloaded plus exercise (4.18), and unloaded plus GH (5.25) groups than in the ambulatory control (6.39) group. On the opposite, the mean IL/B ratio in the group treated with both exercise and GH (7.3) was similar to control. These findings indicate that the interaction between exercise and GH treatments attenuates the changes in MTJ structure that result from chronic unloading and thus can be used as a countermeasure to these adaptations.Key words: Myotendinous junction, ultrastructure, exercise, growth hormone, atrophy, disuse, unloading  相似文献   

11.
Thymosin beta-4 (Tβ4) is a ubiquitous protein with many properties relating to cell proliferation and differentiation that promotes wound healing and modulates inflammatory mediators. We studied the effects of chronic administration of Tβ4 on the skeletal and cardiac muscle of dystrophin deficient mdx mice, the mouse model of Duchenne muscular dystrophy. Female wild type (C57BL10/ScSnJ) and mdx mice, 8–10 weeks old, were treated with 150 µg of Tβ4 twice a week for 6 months. To promote muscle pathology, mice were exercised for 30 minutes twice a week. Skeletal and cardiac muscle function were assessed via grip strength and high frequency echocardiography. Localization of Tβ4 and amount of fibrosis were quantified using immunohistochemistry and Gomori''s tri-chrome staining, respectively. Mdx mice treated with Tβ4 showed a significant increase in skeletal muscle regenerating fibers compared to untreated mdx mice. Tβ4 stained exclusively in the regenerating fibers of mdx mice. Although untreated mdx mice had significantly decreased skeletal muscle strength compared to untreated wild type, there were no significant improvements in mdx mice after treatment. Systolic cardiac function, measured as percent shortening fraction, was decreased in untreated mdx mice compared to untreated wild type and there was no significant difference after treatment in mdx mice. Skeletal and cardiac muscle fibrosis were also significantly increased in untreated mdx mice compared to wild type, but there was no significant improvement in treated mdx mice. In exercised dystrophin deficient mice, chronic administration of Tβ4 increased the number of regenerating fibers in skeletal muscle and could have a potential role in treatment of skeletal muscle disease in Duchenne muscular dystrophy.  相似文献   

12.
Objectives:To determine associations of inter- and intra-muscular adipose tissue (IMAT) with cardiometabolic health and physical function in older adults.Methods:48 community-dwelling older adults aged ≥65 years (mean 71.6±4.8 years; 52% women) underwent whole-body dual-energy X-ray absorptiometry, to assess appendicular lean mass (ALM), and peripheral quantitative computed tomography (pQCT; 66% tibia), to assess calf IMAT cross-sectional area ([CSA]; cm2) and muscle density (mg/cm3; higher values indicate lower fat infiltration). Fasting glucose, lipids, triglycerides and C-reactive protein (CRP) were analysed. Physical function was assessed by postural sway (computerised posturography; N=41), and gait analysis (GAITRite Electronic Walkway; N=40).Results:Higher IMAT CSA and muscle density were associated with significantly higher (B=0.85 95%CI [0.34, 1.36]) and lower (-2.14 [-4.20, -0.08]) CRP and higher (0.93 [0.56, 1.30]) and lower postural sway (-3.12 [-4.74, -1.50]), respectively, after adjustment for age, sex and ALM/BMI. Higher IMAT CSA was associated with slower gait speed and cadence, and greater step time and step width (all P<0.03), while higher muscle density was associated with smaller step width (P<0.01) only.Conclusions:Older adults with higher calf IMAT have poorer balance, mobility and inflammatory status. Interventions aimed at improving physical function in older adults should incorporate strategies to reduce IMAT.  相似文献   

13.
Provision of supplemental oxygen to maintain soft tissue viability acutely following trauma in which vascularization has been compromised would be beneficial for limb and tissue salvage. For this application, an oxygen generating biomaterial that may be injected directly into the soft tissue could provide an unprecedented treatment in the acute trauma setting. The purpose of the current investigation was to determine if sodium percarbonate (SPO), an oxygen generating biomaterial, is capable of maintaining resting skeletal muscle homeostasis under otherwise hypoxic conditions. In the current studies, a biologically and physiologically compatible range of SPO (1–2 mg/mL) was shown to: 1) improve the maintenance of contractility and attenuate the accumulation of HIF1α, depletion of intramuscular glycogen, and oxidative stress (lipid peroxidation) that occurred following ∼30 minutes of hypoxia in primarily resting (duty cycle = 0.2 s train/120 s contraction interval <0.002) rat extensor digitorum longus (EDL) muscles in vitro (95% N2–5% CO2, 37°C); 2) attenuate elevations of rat EDL muscle resting tension that occurred during contractile fatigue testing (3 bouts of 25 100 Hz tetanic contractions; duty cycle = 0.2 s/2 s = 0.1) under oxygenated conditions in vitro (95% O2–5% CO2, 37°C); and 3) improve the maintenance of contractility (in vivo) and prevent glycogen depletion in rat tibialis anterior (TA) muscle in a hindlimb ischemia model (i.e., ligation of the iliac artery). Additionally, injection of a commercially available lipid oxygen-carrying compound or the components (sodium bicarbonate and hydrogen peroxide) of 1 mg/mL SPO did not improve EDL muscle contractility under hypoxic conditions in vitro. Collectively, these findings demonstrate that a biological and physiological concentration of SPO (1–2 mg/mL) injected directly into rat skeletal muscle (EDL or TA muscles) can partially preserve resting skeletal muscle homeostasis under hypoxic conditions.  相似文献   

14.
Skeletal muscle disuse with space-flight and ground-based models (e.g., hindlimb unloading) results in dramatic skeletal muscle atrophy and weakness. Pathological conditions that cause muscle wasting (i.e., heart failure, muscular dystrophy, sepsis, COPD, cancer) are characterized by elevated "oxidative stress," where antioxidant defenses are overwhelmed by oxidant production. However, the existence, cellular mechanisms, and ramifications of oxidative stress in skeletal muscle subjected to hindlimb unloading are poorly understood. Thus we examined the effects of hindlimb unloading on hindlimb muscle antioxidant enzymes (e.g., superoxide dismutase, catalase, glutathione peroxidase), nonenzymatic antioxidant scavenging capacity (ASC), total hydroperoxides, and dichlorohydrofluorescein diacetate (DCFH-DA) oxidation, a direct indicator of oxidative stress. Twelve 6 month old Sprague Dawley rats were divided into two groups: 28 d of hindlimb unloading (n = 6) and controls (n = 6). Hindlimb unloading resulted in a small decrease in Mn-superoxide dismutase activity (10.1%) in the soleus muscle, while Cu,Zn-superoxide dismutase increased 71.2%. In contrast, catalase and glutathione peroxidase, antioxidant enzymes that remove hydroperoxides, were significantly reduced in the soleus with hindlimb unloading by 54.5 and 16.1%, respectively. Hindlimb unloading also significantly reduced ASC. Hindlimb unloading increased soleus lipid hydroperoxide levels by 21.6% and hindlimb muscle DCFH-DA oxidation by 162.1%. These results indicate that hindlimb unloading results in a disruption of antioxidant status, elevation of hydroperoxides, and an increase in oxidative stress.  相似文献   

15.
Accumulation of fat at ectopic sites has been gaining attention as pivotal contributor of insulin resistance, metabolic syndrome and related cardiovascular complications. Intermuscular adipose tissue (IMAT), located between skeletal muscle bundles and beneath muscle fascia, has been linked to physical inactivity, ageing and body mass index, but little is known about its relationship with the other AT compartments, in particular with increasing age. To address this issue, erector spinae IMAT, epicardial (EAT), intraabdominal (IAAT) and abdominal subcutaneous adipose tissue (SAT) were simultaneously measured by Magnetic Resonance Imaging (MRI) and related to waist circumference measurements and age in 32 sedentary subjects without cardiovascular disease (18 men; 14 women; mean age 48.5±14 years). Fasting glucose, triglycerides and HDL-cholesterol were also assessed. We observed that, after dividing individuals according to age (≤ or >50 years), IMAT and EAT depots were significantly more expanded in older subjects (63.2±8.3 years) than in the younger ones (38.4±5.2 years) (p<0.001). Overall, both IMAT and EAT showed stronger positive associations with increasing age (β = 0.63 and 0.67, respectively, p<0.001 for both) than with waist circumference (β = 0.55 and 0.49, respectively, p<0.01 for both) after adjusting for gender. In addition, the gender-adjusted associations of IMAT and EAT with waist circumference and IAAT were significant in individuals ≤50 years only (p<0.05 for all) and not in the older ones. In contrast, no age-related differences were seen in the relationships of IAAT and SAT with waist circumference. Finally, serum triglycerides levels turned out not to be independently related with ectopic IMAT and EAT. In conclusion, the expansion of IMAT and EAT in sedentary subjects is more strongly related to age than waist circumference, and a positive association of these ectopic depots with waist circumference and IAAT amount can be postulated in younger individuals only.  相似文献   

16.
Deposition of fat between skeletal muscle bundles and beneath the muscle fascia, recently called intermuscular adipose tissue (IMAT), is gaining attention as potential contributor to insulin resistance, metabolic syndrome, muscle function impairment, and disability. The aim of this study was to compare IMAT as measured at the erector spinae level by magnetic resonance imaging (MRI), a well‐recognized gold standard method to evaluate fat content inside muscles, and histology estimates. In 18 healthy elderly men and women with a wide range of BMI (25.05–35.58 kg/m2), undergoing elective vertebral surgery, IMAT within the erector spinae muscle was evaluated by MRI, by body composition using dual‐energy X‐ray absorptiometry and histological evaluation of intraoperative biopsy sample. The concordance between IMAT/total area (TA) ratio evaluated by MRI and histological examination was analyzed employing Lin's concordance correlation coefficient and the procedure proposed by Bland and Altman. Two thresholds to distinguish between muscle and IMAT calculated, respectively, by 20 and 10% reduction of the gray‐level intensity evaluated by MRI from surrounding subcutaneous adipose tissue (SAT) were used. With a 20% reduction, calculated IMAT/TA as evaluated by MRI on average exceeds histological evaluation by 21.79%, whereas by reducing the threshold by 10% agreement between MRI and histology improved with a 12.42% difference. Our data show a good degree of concordance between IMAT assessment by MRI and histology and seems to show that agreement between the two methods could be improved by using a more restrictive threshold between muscle and fat.  相似文献   

17.
Female rats(7-8 mo old, n = 40) wererandomly placed into the intact control (Int) and ovariectomizedcontrol (Ovx) groups. Two weeks after ovariectomy, animals were furtherdivided into intact 2-wk hindlimb unloaded (Int-HU) and ovariectomizedhindlimb unloaded (Ovx-HU). We hypothesized that there would be greater hindlimb unloading-related atrophy in Ovx than in Int rats. In situcontractile tests were performed on soleus (Sol), plantaris (Plan),peroneus longus (Per), and extensor digitorum longus (EDL) muscles.Body weight and Sol mass were ~22% larger in Ovx than in Int groupand ~18% smaller in both HU groups than in Int rats (Ovx × HUinteraction, P < 0.05), and therewas a similar trend in Plan muscle (P < 0.07). There were main effects (P < 0.05) for both ovariectomy (growth) and hindlimb unloading(atrophy) on gastrocnemius mass. Mass of the Per and EDL muscles wasunaffected by either ovariectomy or hindlimb unloading. Time to peaktwitch tension for EDL and one-half relaxation times for Sol, Plan,Per, and EDL muscles were faster (P < 0.05) in Ovx than in Int animals. The results suggest that1) ovariectomy led to similarincreases of ~20% in body weight and plantar flexor mass;2) hindlimb unloading may haveprevented ovariectomy-related muscle growth;3) greater atrophy may have occurredin Sol and Plan of Ovx animals compared with controls; and4) removal of ovarian hormonalinfluence decreased skeletal muscle contraction times.

  相似文献   

18.
Microtubules tune cytoskeletal stiffness, which affects cytoskeletal mechanics and mechanotransduction of striated muscle. While recent evidence suggests that microtubules enriched in detyrosinated α-tubulin regulate these processes in healthy muscle and increase them in disease, the possible contribution from several other α-tubulin modifications has not been investigated. Here, we used genetic and pharmacologic strategies in isolated cardiomyocytes and skeletal myofibers to increase the level of acetylated α-tubulin without altering the level of detyrosinated α-tubulin. We show that microtubules enriched in acetylated α-tubulin increase cytoskeletal stiffness and viscoelastic resistance. These changes slow rates of contraction and relaxation during unloaded contraction and increased activation of NADPH oxidase 2 (Nox2) by mechanotransduction. Together, these findings add to growing evidence that microtubules contribute to the mechanobiology of striated muscle in health and disease.  相似文献   

19.
To study the effects of transforming growth factor beta 1 (TGF-β1) on fibrosis and failure of regeneration of skeletal muscles, we generated a tet-repressible muscle-specific TGF-β1 transgenic mouse in which expression of TGF-β1 is controlled by oral doxycycline. The mice developed muscle weakness and atrophy after TGF-β1 over-expression. We defined the group of mice that showed phenotype within 2 weeks as early onset (EO) and the rest as late onset (LO), which allowed us to further examine phenotypic differences between the groups. While only mice in the EO group showed significant muscle weakness, pathological changes including endomysial fibrosis and smaller myofibers were observed in both groups at two weeks after the TGF-β1 was over-expressed. In addition, the size of the myofibers and collagen accumulation were significantly different between the two groups. The amount of latent and active TGF-β1 in the muscle and circulation were significantly higher in the EO group compared to the LO or control groups. The up-regulation of the latent TGF-β1 indicated that endogenous TGF-β1 was induced by the expression of the TGF-β1 transgene. Our studies showed that the primary effects of TGF-β1 over-expression in skeletal muscles are muscle wasting and endomysial fibrosis. In addition, the severity of the pathology is associated with the total amount of TGF-β1 and the expression of endogenous TGF-β1. The findings suggest that an auto-feedback loop of TGF-β1 may contribute to the severity of phenotypes.  相似文献   

20.
miR-1, miR-133a, and miR-206 are muscle-specific microRNAs expressed in skeletal muscles and have been shown to contribute to muscle development. To gain insight into the pathophysiological roles of these three microRNAs in dystrophin-deficient muscular dystrophy, their expression in the tibialis anterior (TA) muscles of mdx mice and CXMD(J) dogs were evaluated by semiquantitative RT-PCR and in situ hybridization. Their temporal and spatial expression patterns were also analyzed in C2C12 cells during muscle differentiation and in cardiotoxin (CTX)-injured TA muscles to examine how muscle degeneration and regeneration affect their expression. In dystrophic TA muscles of mdx mice, miR-206 expression was significantly elevated as compared to that in control TA muscles of age-matched B10 mice, whereas there were no differences in miR-1 or miR-133a expression between B10 and mdx TA muscles. On in situ hybridization analysis, intense signals for miR-206 probes were localized in newly formed myotubes with centralized nuclei, or regenerating muscle fibers, but not in intact pre-degenerated fibers or numerous small mononucleated cells, possibly proliferating myoblasts and inflammatory infiltrates. Similar increased expression of miR-206 was also found in C2C12 differentiation and CTX-induced regeneration, in which differentiated myotubes or regenerating fibers showed abundant expression of miR-206. However, CXMD(J) TA muscles contained smaller amounts of miR-206, miR-1, and miR-133a than controls. They exhibited more severe and more progressive degenerative alterations than mdx TA muscles. Taken together, these observations indicated that newly formed myotubes showed markedly increased expression of miR-206, which might reflect active regeneration and efficient maturation of skeletal muscle fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号