首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A null mutation in the gene encoding the putative E3 ubiquitin-protein ligase Mahogunin causes spongiform neurodegeneration, a recessively transmitted prion-like disease in mice. However, no substrates of Mahogunin have been identified, and the cellular role of Mahogunin is unknown. Here, we report the identification of TSG101, a key component of the endosomal sorting complex required for transport (ESCRT)-I, as a specific Mahogunin substrate. We find that Mahogunin interacts with the ubiquitin E2 variant (UEV) domain of TSG101 via its PSAP motif and that it catalyzes monoubiquitylation of TSG101 both in vivo and in vitro. Depletion of Mahogunin by small interfering RNAs in mammalian cells disrupts endosome-to-lysosome trafficking of epidermal growth factor receptor, resulting in prolonged activation of a downstream signaling cascade. Our findings support a role for Mahogunin in a proteasome-independent ubiquitylation pathway and suggest a link between dysregulation of endosomal trafficking and spongiform neurodegeneration.  相似文献   

2.
3.
TSG101 (tumor susceptibility gene 101) is a multi-domain protein known to act in the cell nucleus, cytoplasm, and periplasmic membrane. Remarkably, TSG101, whose location within cells varies with the stage of the cell cycle, affects biological events as diverse as cell growth and proliferation, gene expression, cytokinesis, and endosomal trafficking. The functions of TSG101 additionally are recruited for viral and microvesicle budding and for intracellular survival of invading bacteria. Here we report that the TSG101 protein also interacts with and down-regulates the promoter of the p21CIP1/WAF1tumor suppressor gene, and identify a p21 locus and TSG101 domains that mediate this interaction. TSG101 deficiency in Saos-2 human osteosarcoma cells was accompanied by an increased abundance of p21 mRNA and protein and the retardation of cell proliferation. A cis-acting element in the p21 promoter that interacts with TSG101 and is required for promoter repression was located using chromatin immunoprecipitation (ChIP) analysis and p21-driven luciferase reporter gene expression, respectively. Additional analysis of TSG101 deletion mutants lacking specific domains established the role of the central TSG101 domains in binding to the p21 promoter and demonstrated the additional essentiality of the TSG101 C-terminal steadiness box (SB) in the repression of p21 promoter activity. Neither binding of TSG101 to the p21 promoter nor repression of this promoter required the TSG101 N-terminal UEV domain, which mediates the ubiquitin-recognition functions of TSG101 and its actions as a member of ESCRT endocytic trafficking complexes, indicating that regulation of the p21 promoter by TSG101 is independent of its role in such trafficking.  相似文献   

4.
Recent studies recognize that Hypocretin system (also known as Orexin) plays a critical role in sleep/wake disorders and feeding behaviors. However, little is known about the regulation of the Hypocretin system. It is also known that tumor necrosis factor alpha (TNF-α) is involved in the regulation of sleep/wake cycle. Here, we test our hypothesis that the Hypocretin system is regulated by TNF-α. Prepro-Hypocretin and Hypocretin receptor 2 (HcrtR2) can be detected at a very low level in rat B35 neuroblastoma cells. In response to TNF-α, Prepro-Hypocretin mRNA and protein levels are down-regulated, and also HcrtR2 protein level is down-regulated in B35 cells. To investigate the mechanism, exogenous rat Prepro-Hypocretin and rat HcrtR2 were overexpressed in B35 cells. In response to TNF-α, protein and mRNA of Prepro-Hypocretin are significantly decreased (by 93% and 94%, respectively), and the half-life of Prepro-Hypocretin mRNA is decreased in a time- and dose-dependent manner. The level of HcrtR2 mRNA level is not affected by TNF-α treatment; however, HcrtR2 protein level is significantly decreased (by 86%) through ubiquitination in B35 cells treated with TNF-α. Downregulation of cellular inhibitor of apoptosis protein-1 and -2 (cIAP-1 and -2) abrogates the HcrtR2 ubiquitination induced by TNF-α. The control green fluorescent protein (GFP) expression is not affected by TNF-α treatment. These studies demonstrate that TNF-α can impair the function of the Hypocretin system by reducing the levels of both Prepro-Hypocretin and HcrtR2.  相似文献   

5.
6.
TSG101基因是新发现的抑癌基因候选者,定位于人类 11号染色体 p1511-p1512,其编码产物TSG101蛋白N端区域与泛素结合酶(UBC)同源。近年来研究发现,TSG101基因具有多种重要的功能,与多种病毒出芽密切相关,所以TSG101可作为一个新的抗病毒靶点。本文主要从TSG101在多种病毒(HIV、IAV、MARV、ASV等)出芽过程中扮演的角色,TSG101与多种蛋白(泛素、Nedd4、ARMMs、Tom1、Gag、VP40、NP等)的相互作用进而辅助病毒出芽的机制,以及TSG101抑制剂的研究等方面进行阐述。  相似文献   

7.
鼻咽癌中TSG101基因的突变研究   总被引:1,自引:0,他引:1  
应用PCR-SSCP方法对鼻咽癌中TSG101基因的编码区进行突变检测,以探讨该基因在鼻咽癌变过程中的作用,16例鼻咽癌标本中未发现TSG101基因编码区存在突变,以上结果可以初步排除TSG101基因在鼻咽癌中突变的可能。  相似文献   

8.
Tumor susceptibility gene 101 (TSG101), an ESCRT-I protein, is implicated in multiple cellular processes and its functional depletion can lead to blocked lysosomal degradation, cell cycle arrest, demyelination and neurodegeneration. Here, we show that loss of TSG101 results in endoplasmic reticulum (ER) stress and this causes ER membrane remodelling (EMR). This correlates with an expansion of ER, increased vacuolation, altered relative distribution of the rough and smooth ER and disruption of three-way junctions. Blocked lysosomal degradation due to TSG101 depletion leads to ER stress and Ca2+ leakage from ER stores, causing destabilization of actin cytoskeleton. Inhibiting Ca2+ release from the ER by blocking ryanodine receptors (RYRs) with Dantrolene partially rescues the ER stress phenotypes. Hence, in this study we have identified the involvement of TSG101 in modulating ER stress mediated remodelling by engaging the actin cytoskeleton. This is significant because functional depletion of TSG101 effectuates ER-stress, perturbs the structure, mobility and function of the ER, all aspects closely associated with neurodegenerative diseases.Summary statementWe show that tumor susceptibility gene (TSG) 101 regulates endoplasmic reticulum (ER) stress and its membrane remodelling. Loss of TSG101 perturbs structure, mobility and function of the ER as a consequence of actin destabilization.  相似文献   

9.
10.
11.
Like other enveloped viruses, vesicular stomatitis virus infects cells through endosomes. There, the viral envelope undergoes fusion with endosomal membranes, thereby releasing the nucleocapsid into the cytoplasm and allowing infection to proceed. Previously, we reported that the viral envelope fuses preferentially with the membrane of vesicles present within multivesicular endosomes. Then, these intra-endosomal vesicles (containing nucleocapsids) are transported to late endosomes, where back-fusion with the endosome limiting membrane delivers the nucleocapsid into the cytoplasm. In this study, we show that the tumor susceptibility gene 101 (Tsg101) subunit of the endosomal sorting complexes required for transport (ESCRT)-I complex, which mediates receptor sorting into multivesicular endosomes, is dispensable for viral envelope fusion with endosomal membranes and viral RNA transport to late endosomes but is necessary for infection. Our data indicate that Tsg101, in contrast to the ESCRT-0 component Hrs, plays a direct role in nucleocapsid release from within multivesicular endosomes to the cytoplasm, presumably by controlling the back-fusion process. We conclude that Tsg101, through selective interactions with its partners including Hrs and Alix, may link receptor sorting and lysosome targeting to the back-fusion process involved in viral capsid release.  相似文献   

12.
13.
Mice lacking the E3 ubiquitin ligase mahogunin ring finger‐1 (MGRN1) have a pleiotropic phenotype that includes spongiform neurodegeneration, embryonic patterning defects, and dark fur due to a defect in pigment‐type switching. The only MGRN1 ubiquitination target identified to date is tumor susceptibility gene 101 (TSG101), a component of the endosomal trafficking machinery. Here, we show that MGRN1 also interacts with but does not ubiquitinate NEDD4, a HECT‐domain ubiquitin ligase involved in endosomal trafficking. Using transgenesis in mice, we demonstrate that pigment‐type switching likely requires MGRN1′s ubiquitin ligase activity but not its ability to bind TSG101 or NEDD4. This indicates that MGRN1‐dependent ubiquitination of an as‐yet unidentified target protein is required for agouti‐mediated melanocortin signaling.  相似文献   

14.
构建肿瘤易感基因101(TSG101)基因的小干扰RNA载体并将其转导入HL-60细胞,获得稳定转染的阳性克隆后,应用RT-PCR和Western印迹进行鉴定;MTT法和流式细胞仪检测细胞转染前后生长速度和细胞周期的变化;DNA梯带(ladder)法和流式细胞仪检测细胞对顺铂诱导的凋亡的变化;Western印迹检测耐药相关蛋白P-gp和MRP的表达变化。结果表明,成功构建了TSG101的小干扰RNA载体;经蛋白质水平检测证实成功建立了稳定的TSG101低表达的白血病细胞模型;转染TSG101小干扰RNA后的细胞生长速度显著减慢,出现G1期阻滞;对顺铂的敏感性明显增强,形成DNA条带,且低表达P-gp。因此,下调TSG101基因能抑制HL-60细胞生长,增加细胞对化疗药物的敏感性,并提示该基因具有进行白血病基因治疗的可行性。  相似文献   

15.
16.
The TRE17 (USP6/TRE-2) oncogene induces tumorigenesis in both humans and mice. However, little is known regarding its regulation or mechanism of transformation. TRE17 encodes a TBC (Tre-2/Bub2/Cdc16)/Rab GTPase-activating protein homology domain at its N terminus and a ubiquitin-specific protease at its C terminus. In the current study, we identified the ubiquitous calcium (Ca2+)-binding protein calmodulin (CaM) as a novel binding partner for TRE17. CaM bound directly to TRE17 in a Ca2+-dependent manner both in vitro and in vivo. The CaM-binding site was mapped to two hydrophobic motifs near the C terminus of the TBC domain. Point mutations within these motifs significantly reduced the interaction of TRE17 with CaM. We further found that TRE17 is monoubiquitinated and promotes its own deubiquitination in vivo. CaM binding-deficient mutants of TRE17 exhibited significantly reduced monoubiquitination, suggesting that binding of Ca2+/CaM to TRE17 promotes this modification. Consistent with this notion, treatment of cells with the CaM inhibitor W7 reduced levels of TRE17 monoubiquitination. Interestingly, the calcium ionophore A23187 induced accumulation of a polyubiquitinated TRE17 species. The effect of A23187 was attenuated in CaM binding-deficient mutants of TRE17. Taken together, these studies indicate a role for Ca2+/CaM in regulating ubiquitination through direct interaction with TRE17.  相似文献   

17.
18.
探讨HIV-1感染宿主细胞后对其宿主蛋白肿瘤易感基因101蛋白(Tumor Susceptibility Gene 101,TSG101)及ALG-2相互作用蛋白X(ALG-2-interacting protein X,Alix)表达的影响。以HIV-1感染性克隆病毒pNL4-3感染TZM-bl PM1、Jurkat细胞株和人外周血单个核细胞(PBMCs),感染24h后收获细胞提取总RNA,逆转录PCR检测在RNA水平各因子的表达差异;感染48h后收获细胞提取总蛋白,Western-blot检测各因子在蛋白水平的表达差异。结果显示:HIV-1感染对原代PBMC与细胞系表达Alix与TSG101影响显著不同,细胞系主要表现为下调,而原代PBMC主要表现为TSG101上调;细胞系中的下调又细分为Jurkat细胞的Alix与TSG101的双下调、TZM-bl细胞的Alix单下调以及PM1细胞无影响三种情况。HIV-1感染对细胞宿主分子TSG101及Alix在RNA和蛋白水平的表达均有影响,这种影响因细胞的不同而有差异。HIV-1感染调节Alix与TSG101的机制生物学意义尚有待于进一步阐明。  相似文献   

19.
After uptake by murine macrophages, Salmonella typhimurium is able to survive and replicate within specialized phagosomes called Salmonella -containing vacuoles (SCVs), which are segregated from the late endocytic pathway. The molecular basis of this process and the virulence factors required are not fully understood. In this study, we used confocal fluorescence microscopy to evaluate interactions between the endocytic pathway of the murine macrophage cell line RAW 264.7 and different S. typhimurium strains. The analysis was carried out using the fluid-phase marker Texas red–ovalbumin and antibodies against the lysosomal enzyme cathepsin D, the late endosomal lipid lysobisphosphatidic acid and the adaptor proteins AP-1 and AP-3. Less than 10% of wild-type SCVs were associated with these markers at 24 h after uptake by macrophages. A similar low level of association was observed for vacuoles containing mutant strains affected in the function of the Salmonella pathogenicity island (SPI)-2 type III secretion system or the virulence plasmid spv operon. However, at this time point, the proportion of vacuoles containing phoP mutant bacteria that were associated with each of the markers ranged from 25% to 50%. These results show that the regulon controlled by the PhoP/Q two-component system makes a major contribution to trafficking of the SCV in macrophages. Segregation of SCVs from the endocytic pathway was also found to be dependent on bacterial proteins synthesized between 15 min and 4 h after uptake into macrophages. However, after this time, protein synthesis was not required to maintain the segregation of SCVs from late endosomes and lysosomes.  相似文献   

20.
Class E vacuolar protein sorting (vps) proteins are required for appropriate sorting of receptors within the yeast endocytic pathway, and most probably function in the biogenesis of multivesicular bodies. We have identified the mammalian orthologue of Vps28p as a 221- amino acid cytosolic protein that interacts with TSG101/mammalian VPS23 to form part of a multiprotein complex. Co-immunoprecipitation and cross-linking experiments demonstrated that hVPS28 and TSG101 interact directly and that binding requires structural information within the conserved C-terminal portion of TSG101. TSG101 and hVPS28 are predominantly cytosolic. However, when endosomal vacuolization was induced by the expression of a dominant-negative mutant of another class E vps protein, human VPS4, a portion of both TSG101 and hVPS28 translocated to the surface of these vacuoles. We conclude that TSG101 and its interacting components are directly involved in endosomal sorting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号