首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Streptococcus pneumoniae meningitis causes brain damage through inflammation-related pathways whose identity and mechanisms of action are yet unclear. We previously identified caspase-1, which activates precursor IL-1 type cytokines, as a central mediator of inflammation in pneumococcal meningitis. In this study, we demonstrate that lack of the inflammasome components ASC or NLRP3 that are centrally involved in caspase-1 activation decreases scores of clinical and histological disease severity as well as brain inflammation in murine pneumococcal meningitis. Using specific inhibitors (anakinra and rIL-18-binding protein), we further show that ASC- and NLRP3-dependent pathologic alterations are solely related to secretion of both IL-1β and IL-18. Moreover, using differentiated human THP-1 cells, we demonstrate that the pneumococcal pore-forming toxin pneumolysin is a key inducer of IL-1β expression and inflammasome activation upon pneumococcal challenge. The latter depends on the release of ATP, lysosomal destabilization (but not disruption), and cathepsin B activation. The in vivo importance of this pathway is supported by our observation that the lack of pneumolysin and cathepsin B inhibition is associated with a better clinical course and less brain inflammation in murine pneumococcal meningitis. Collectively, our study indicates a central role of the NLRP3 inflammasome in the pathology of pneumococcal meningitis. Thus, interference with inflammasome activation might be a promising target for adjunctive therapy of this disease.  相似文献   

2.
Streptococcus pneumoniae is a leading cause of pneumonia, meningitis, and sepsis. Pneumococci can be divided into >90 serotypes that show differences in the pathogenicity and invasiveness. We tested the hypotheses that the innate immune inflammasome pathway is involved in fighting pneumococcal pneumonia and that some invasive pneumococcal types are not recognized by this pathway. We show that human and murine mononuclear cells responded to S. pneumoniae expressing hemolytic pneumolysin by producing IL-1β. This IL-1β production depended on the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome. Some serotype 1, serotype 8, and serotype 7F bacteria, which have previously been associated with increased invasiveness and with production of toxins with reduced hemolytic activity, or bacterial mutants lacking pneumolysin did not stimulate notable IL-1β production. We further found that NLRP3 was beneficial for mice during pneumonia caused by pneumococci expressing hemolytic pneumolysin and was involved in cytokine production and maintenance of the pulmonary microvascular barrier. Overall, the inflammasome pathway is protective in pneumonia caused by pneumococci expressing hemolytic toxin but is not activated by clinically important pneumococcal sequence types causing invasive disease. The study indicates that a virulence factor polymorphism may substantially affect the recognition of bacteria by the innate immune system.  相似文献   

3.
4.
Anions were found to have a number of different effects on the reconstituted ADP / ATP carrier from mitochondria. (1) Binding of adenine nucleotides to the active site of the translocator is competitively inhibited by various anions. These anions can be arranged in a sequence of increasing competitive effect due to their order in a lyotropic series, and also due to increasing charge. (2) Apart from this competition effect, the presence of a sufficiently high concentration of anions turned out to be absolutely essential for functional ADP / ATP exchange in the reconstituted system. The activating anions too can be arranged in sequence, similar to that of the competition effect. The adenine nucleotide transport shows sigmoidal dependence on the stimulating anions with a Hill coefficient of n = 2. Addition of anions does not change the basic amount of functionally active translocator molecules. (3) The different effects of anions, i.e., inhibition and activation, were shown to take place at different sites and to be due to different mechanisms. Anions compete with substrates both at the outer (cytosolic) and at the inner (matrix) active site, whereas anion activation is observed solely by interaction with the cytosolic side of the translocator protein. (4) Activation of the reconstituted ADP / ATP exchange by anions could be discriminated from an activating influence of anionic phospholipids in the surroundings of the carrier protein.  相似文献   

5.
Anions were found to have a number of different effects on the reconstituted ADP/ATP carrier from mitochondria. (1) Binding of adenine nucleotides to the active site of the translocator is competitively inhibited by various anions. These anions can be arranged in a sequence of increasing competitive effect due to their order in a lyotropic series, and also due to increasing charge. (2) Apart from this competition effect, the presence of a sufficiently high concentration of anions turned out to be absolutely essential for functional ADP/ATP exchange in the reconstituted system. The activating anions too can be arranged in sequence, similar to that of the competition effect. The adenine nucleotide transport shows sigmoidal dependence on the stimulating anions with a Hill coefficient of n = 2. Addition of anions does not change the basic amount of functionally active translocator molecules. (3) The different effects of anions, i.e., inhibition and activation, were shown to take place at different sites and to be due to different mechanisms. Anions compete with substrates both at the outer (cytosolic) and at the inner (matrix) active site, whereas anion activation is observed solely by interaction with the cytosolic side of the translocator protein. (4) Activation of the reconstituted ADP/ATP exchange by anions could be discriminated from an activating influence of anionic phospholipids in the surroundings of the carrier protein.  相似文献   

6.
The NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome is a cytoplasmic supramolecular complex that is activated in response to cellular perturbations triggered by infection and sterile injury. Assembly of the NLRP3 inflammasome leads to activation of caspase-1, which induces the maturation and release of interleukin-1β (IL-1β) and IL-18, as well as cleavage of gasdermin D (GSDMD), which promotes a lytic form of cell death. Production of IL-1β via NLRP3 can contribute to the pathogenesis of inflammatory disease, whereas aberrant IL-1β secretion through inherited NLRP3 mutations causes autoinflammatory disorders. In this review, we discuss recent developments in the structure of the NLRP3 inflammasome, and the cellular processes and signaling events controlling its assembly and activation.  相似文献   

7.
《Molecular cell》2023,83(2):281-297.e10
  1. Download : Download high-res image (333KB)
  2. Download : Download full-size image
  相似文献   

8.
The NLRP3 inflammasome complex is responsible for maturation of the pro-inflammatory cytokine, IL-1β. Mutations in NLRP3 are responsible for the cryopyrinopathies, a spectrum of conditions including neonatal-onset multisystem inflammatory disease (NOMID). While excessive production of IL-1β and systemic inflammation are common to all cryopyrinopathy disorders, skeletal abnormalities, prominently in the knees, and low bone mass are unique features of patients with NOMID. To gain insights into the mechanisms underlying skeletal abnormalities in NOMID, we generated knock-in mice globally expressing the D301N NLRP3 mutation (ortholog of D303N in human NLRP3). NOMID mice exhibit neutrophilia in blood and many tissues, including knee joints, and high levels of serum inflammatory mediators. They also exhibit growth retardation and severe postnatal osteopenia stemming at least in part from abnormally accelerated bone resorption, attended by increased osteoclastogenesis. Histologic analysis of knee joints revealed abnormal growth plates, with loss of chondrocytes and growth arrest in the central region of the epiphyses. Most strikingly, a tissue "spike" was observed in the mid-region of the growth plate in the long bones of all NOMID mice that may be the precursor to more severe deformations analogous to those observed in NOMID patients. These findings provide direct evidence linking a NOMID-associated NLRP3-activating mutation to abnormalities of postnatal skeletal growth and bone remodeling.  相似文献   

9.
10.
Uric acid crystal is known to activate the NLRP3 inflammasome and to cause tissue damages, which can result in many diseases, such as gout, chronic renal injury and myocardial damage. Meanwhile, soluble uric acid (sUA), before forming crystals, is also related to these diseases. This study was carried out to investigate whether sUA could also activate NLRP3 inflammasome in cardiomyocytes and to analyse the mechanisms. The cardiomyocyte activity was monitored, along with the levels of mature IL‐1β and caspase‐1 from H9c2 cells following sUA stimulus. We found that sUA was able to activate NLRP3 inflammasome, which was responsible for H9c2 cell apoptosis induced by sUA. By elevating TLR6 levels and then activating NF‐κB/p65 signal pathway, sUA promoted NLRP3, pro‐caspase 1 and pro‐IL‐1β production and provided the first signal of NLRP3 inflammasome activation. Meanwhile, ROS production regulated by UCP2 levels also contributed to NLRP3 inflammasome assembly and subsequent caspase 1 activation and mature IL‐1β secretion. In addition, the tlr6 knockdown rats suffering from hyperuricemia showed the lower level of IL‐1β and an ameliorative cardiac function. These findings suggest that sUA activates NLRP3 inflammasome in cardiomyocytes and they may provide one therapeutic strategy for myocardial damage induced by sUA.  相似文献   

11.
The emergence of chronic inflammation during obesity in the absence of overt infection or well-defined autoimmune processes is a puzzling phenomenon. The Nod-like receptor (NLR) family of innate immune cell sensors, such as the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (Nlrp3, but also known as Nalp3 or cryopyrin) inflammasome are implicated in recognizing certain nonmicrobial originated 'danger signals' leading to caspase-1 activation and subsequent interleukin-1β (IL-1β) and IL-18 secretion. We show that calorie restriction and exercise-mediated weight loss in obese individuals with type 2 diabetes is associated with a reduction in adipose tissue expression of Nlrp3 as well as with decreased inflammation and improved insulin sensitivity. We further found that the Nlrp3 inflammasome senses lipotoxicity-associated increases in intracellular ceramide to induce caspase-1 cleavage in macrophages and adipose tissue. Ablation of Nlrp3 in mice prevents obesity-induced inflammasome activation in fat depots and liver as well as enhances insulin signaling. Furthermore, elimination of Nlrp3 in obese mice reduces IL-18 and adipose tissue interferon-γ (IFN-γ) expression, increases naive T cell numbers and reduces effector T cell numbers in adipose tissue. Collectively, these data establish that the Nlrp3 inflammasome senses obesity-associated danger signals and contributes to obesity-induced inflammation and insulin resistance.  相似文献   

12.
Naoxintong (NXT) is a Chinese Materia Medica standardized product extracted from 16 various kinds of Chinese traditional herbal medicines including Salvia miltiorrhiza, Angelica sinensis, Astragali Radix. Naoxintong is clinically effective in treating ischaemia heart disease. Nucleotide‐binding oligomerization domain‐Like Receptor with a Pyrin domain 3 (NLRP3) inflammasome has been critically involved in myocardial ischaemia/reperfusion (I/R) injury. Here, we have been suggested that NXT might attenuate myocardial I/R injury via suppression of NLRP3 inflammasome activation. Male C57BL6 mice were subjected to myocardial I/R injury via 45 min. coronary ligation and release for the indicated times. Naoxintong (0.7 g/kg/day) and PBS were orally administrated for 2 weeks before surgery. Cardiac function assessed by echocardiography was significantly improved in the NXT group compared to PBS group at day 2 after myocardial I/R. NLRP3 inflammasome activation is crucially involved in the initial inflammatory response after myocardial I/R injury, leading to cleaved caspase‐1, mature interleukin (IL)‐1β production, accompanying by macrophage and neutrophil infiltration. The cardioprotective effect of NXT was associated with a diminished NLRP3 inflammasome activation, decreased pro‐inflammatory macrophage (M1 macrophages) and neutrophil infiltration after myocardial I/R injury. In addition, serum levels of IL‐1β, indicators of NLRP3 inflammasome activation, were also significantly suppressed in the NXT treated group after I/R injury. Naoxintong exerts cardioprotive effects at least partly by suppression of NLRP3 inflammasome activation in this I/R injury model.  相似文献   

13.
14.
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), exhibits a wide spectrum of clinical presentations, ranging from asymptomatic cases to severe pneumonia or even death. In severe COVID-19 cases, an increased level of proinflammatory cytokines has been observed in the bloodstream, forming the so-called “cytokine storm”. Generally, nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome activation intensely induces cytokine production as an inflammatory response to viral infection. Therefore, the NLRP3 inflammasome can be a potential target for the treatment of COVID-19. Hence, this review first introduces the canonical NLRP3 inflammasome activation pathway. Second, we review the cellular/molecular mechanisms of NLRP3 inflammasome activation by SARS-CoV-2 infection (e.g., viroporins, ion flux and the complement cascade). Furthermore, we describe the involvement of the NLRP3 inflammasome in the pathogenesis of COVID-19 (e.g., cytokine storm, respiratory manifestations, cardiovascular comorbidity and neurological symptoms). Finally, we also propose several promising inhibitors targeting the NLRP3 inflammasome, cytokine products and neutrophils to provide novel therapeutic strategies for COVID-19.  相似文献   

15.
Acute liver failure (ALF) is a rare disease characterized by the sudden onset of serious hepatic injury, as manifested by a profound liver dysfunction and hepatic encephalopathy in patients without prior liver disease. In this paper, we aim to investigate whether verapamil, an antagonist of TXNIP, inhibits early ALF through suppressing the NLRP3 inflammasome pathway. Firstly, an ALF mouse model was induced by lipopolysaccharide (LPS)/D-galactosamine (GalN) treatment. The optimal concentration of verapamil in treating early ALF mice was determined followed by investigation on its mechanism in LPS/GalN-induced liver injury. Western blot analysis and co-immunoprecipitation were performed to determine the activation of the TXNIP/NLRP3 inflammasome pathway. Subsequently, overexpression of NLRP3 in mouse liver was induced by transfection with AAV-NRLP3 in vivo and in vitro to identity whether verapamil inhibited early ALF through suppressing the activation of NLRP3 inflammasome. We found that ALF was induced by LPS/GalN in mice but was alleviated by verapamil through a mechanism that correlated with suppression of the NLRP3 inflammasome pathway. Oxidative stress and inflammatory response were induced by intraperitoneal injection of LPS/GalN, but alleviated with injection of verapamil. Overexpression of NLRP3 via AAV in mouse liver in vivo and in vitro reduced the therapeutic effect of verapamil on LPS/GalN-induced ALF. Taken together, the TXNIP antagonist verapamil could inhibit activation of the NLRP3 inflammasome, inflammatory responses and oxidative stress to alleviate LPS/GalN-induced ALF.  相似文献   

16.
Glucocorticoids have long been recognized as powerful anti-inflammatory compounds that are one of the most widely prescribed classes of drugs in the world. However, their role in the regulation of innate immunity is not well understood. We sought to examine the effects of glucocorticoids on the NOD-like receptors (NLRs), a central component of the inflammasome and innate immunity. Surprisingly, we show that glucocorticoids induce both NLRP3 messenger RNA and protein, which is a critical component of the inflammasome. The glucocorticoid-dependent induction of NLRP3 sensitizes the cells to extracellular ATP and significantly enhances the ATP-mediated release of proinflammatory molecules, including mature IL-1β, TNF-α, and IL-6. This effect was specific for glucocorticoids and dependent on the glucocorticoid receptor. These studies demonstrate a novel role for glucocorticoids in sensitizing the initial inflammatory response by the innate immune system.  相似文献   

17.

Introduction

NLRP3 plays a role in sensing various pathogen components or stresses in the innate immune system. Once activated, NLRP3 associates with apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and procaspase-1 to form a large protein complex termed inflammasome. Although some investigators have proposed a model of NLRP3-inflammasome containing an adaptor protein caspase recruitment domain-containing protein 8 (CARD8), the role of this molecule remains obscure. This study aimed to clarify the interaction between CARD8 and wild-type NLRP3 as well as mutant forms of NLRP3 linked with cryopyrin-associated periodic syndromes (CAPS).

Methods

In here HEK293 expression system, cells were transfected with the cDNAs for inflammasome components. Also used were peripheral blood mononuclear cells (PBMCs) and human monocyte-derived macrophages (HMDMs) from healthy volunteers. The interaction of CARD8 and NLRP3 was studied by immunoprecipitation. The effect of CARD8 expression on IL-1β secretion was assessed by ELISA. CARD8 knockdown experiments were carried out by transfection of the specific siRNA into HMDMs.

Results

In HEK293 cells, CARD8 interacted with wild-type NLRP3, but not with CAPS-associated mutant NLRP3. CARD8 significantly reduced IL-1β secretion from cells transfected with wild-type NLRP3, but not if they were transfected with mutant NLRP3. In addition, association of endogenously expressed CARD8 with NLRP3 was confirmed in resting PBMCs, and CARD8 knockdown resulted in higher amount of IL-1β secretion from HMDMs.

Conclusions

Until specific stimuli activate NLRP3, CARD8 holds NLRP3, and is supposed to prevent activation by subtle stimuli. However, CAPS-associated mutant NLRP3 is unable to bind with CARD8, which might be relevant to the pathogenesis of CAPS.  相似文献   

18.
Impairment in macroautophagy/autophagy flux and inflammasome activation are common characteristics of nonalcoholic steatohepatitis (NASH). Considering the lack of approved agents for treating NASH, drugs that can enhance autophagy and modulate inflammasome pathways may be beneficial. Here, we investigated the novel mechanism of ezetimibe, a widely prescribed drug for hypercholesterolemia, as a therapeutic option for ameliorating NASH. Human liver samples with steatosis and NASH were analyzed. For in vitro studies of autophagy and inflammasomes, primary mouse hepatocytes, human hepatoma cells, mouse embryonic fibroblasts with Ampk or Tsc2 knockout, and human or primary mouse macrophages were treated with ezetimibe and palmitate. Steatohepatitis and fibrosis were induced by feeding Atg7 wild-type, haploinsufficient, and knockout mice a methionine- and choline-deficient diet with ezetimibe (10 mg/kg) for 4 wk. Human livers with steatosis or NASH presented impaired autophagy with decreased nuclear TFEB and increased SQSTM1, MAP1LC3-II, and NLRP3 expression. Ezetimibe increased autophagy flux and concomitantly ameliorated lipid accumulation and apoptosis in palmitate-exposed hepatocytes. Ezetimibe induced AMPK phosphorylation and subsequent TFEB nuclear translocation, related to MAPK/ERK. In macrophages, ezetimibe blocked the NLRP3 inflammasome-IL1B pathway in an autophagy-dependent manner and modulated hepatocyte-macrophage interaction via extracellular vesicles. Ezetimibe attenuated lipid accumulation, inflammation, and fibrosis in liver-specific Atg7 wild-type and haploinsufficient mice, but not in knockout mice. Ezetimibe ameliorates steatohepatitis by autophagy induction through AMPK activation and TFEB nuclear translocation, related to an independent MTOR ameliorative effect and the MAPK/ERK pathway. Ezetimibe dampens NLRP3 inflammasome activation in macrophages by modulating autophagy and a hepatocyte-driven exosome pathway.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号