首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNAi technology was applied to down regulate LuPLR1 gene expression in flax (Linum usitatissimum L.) seeds. This gene encodes a pinoresinol lariciresinol reductase responsible for the synthesis of (+)-secoisolariciresinol diglucoside (SDG), the major lignan accumulated in the seed coat. If flax lignans biological properties and health benefits are well documented their roles in planta remain unclear. This loss of function strategy was developed to better understand the implication of the PLR1 enzyme in the lignan biosynthetic pathway and to provide new insights on the functions of these compounds. RNAi plants generated exhibited LuPLR1 gene silencing as demonstrated by quantitative RT-PCR experiments and the failed to accumulate SDG. The accumulation of pinoresinol the substrate of the PLR1 enzyme under its diglucosylated form (PDG) was increased in transgenic seeds but did not compensate the overall loss of SDG. The monolignol flux was also deviated through the synthesis of 8-5′ linked neolignans dehydrodiconiferyl alcohol glucoside (DCG) and dihydro-dehydrodiconiferyl alcohol glucoside (DDCG) which were observed for the first time in flax seeds.  相似文献   

2.
Due to their peculiar stereochemistry and numerous biological activities, lignans are of widespread interest. As only a few biosynthetic steps have been clarified to date, we aimed to further resolve the molecular basis of lignan biosynthesis. To this end, we first established that the biologically active lignan (−)-hinokinin could be isolated from in vitro cultures of Linum corymbulosum. Two hypothetical pathways were outlined for the biosynthesis of (−)-hinokinin. In both pathways, (+)-pinoresinol serves as the primary substrate. In the first pathway, pinoresinol is reduced via lariciresinol to secoisolariciresinol by a pinoresinol–lariciresinol reductase, and methylenedioxy bridges are formed later. In the second pathway, pinoresinol itself is the substrate for formation of the methylenedioxy bridges, resulting in consecutive production of piperitol and sesamin. To determine which of the proposed hypothetical pathways acts in vivo , we first isolated several cDNAs encoding one pinoresinol-lariciresinol reductase ( PLR-Lc1 ), two phenylcoumaran benzylic ether reductases ( PCBER-Lc1 and PCBER-Lc2 ), and two PCBER-like proteins from a cDNA library of L. corymbulosum. PLR-Lc1 was found to be enantiospecific for the conversion of (+)-pinoresinol to (−)-secoisolariciresinol, which can be further converted to give (−)-hinokinin. Hairy root lines with significantly reduced expression levels of the plr-Lc1 gene were established using RNAi technology. Hinokinin accumulation was reduced to non-detectable levels in these lines. Our results strongly indicate that PLR-Lc1 participates in (−)-hinokinin biosynthesis in L. corymbulosum by the first of the two hypothetical pathways via (−)-secoisolariciresinol.  相似文献   

3.
Pinoresinol reductase and pinoresinol/lariciresinol reductase play important roles in an early step of lignan biosynthesis in plants. The activities of both enzymes have also been detected in bacteria. In this study, pinZ, which was first isolated as a gene for bacterial pinoresinol reductase, was constitutively expressed in Arabidopsis thaliana under the control of the cauliflower mosaic virus 35S promoter. Higher reductive activity toward pinoresinol was detected in the resultant transgenic plants but not in wild-type plant. Principal component analysis of data from untargeted metabolome analyses of stem, root, and leaf extracts of the wild-type and two independent transgenic lines indicate that pinZ expression caused dynamic metabolic changes in stems, but not in roots and leaves. The metabolome data also suggest that expression of pinZ influenced the metabolisms of lignan and glucosinolates but not so much of neolignans such as guaiacylglycerol-8-O-4′-feruloyl ethers. In-depth quantitative analysis by liquid chromatography–tandem mass spectrometry (LC-MS/MS) indicated that amounts of pinoresinol and its glucoside form were markedly reduced in the transgenic plant, whereas the amounts of glucoside form of secoisolariciresinol in transgenic roots, leaves, and stems increased. The detected levels of lariciresinol in the transgenic plant following β-glucosidase treatment also tended to be higher than those in the wild-type plant. Our findings indicate that overexpression of pinZ induces change in lignan compositions and has a major effect not only on lignan biosynthesis but also on biosynthesis of other primary and secondary metabolites.  相似文献   

4.
Plant lignans are natural products resulting from the phenylpropanoid metabolic pathway. Some of these compounds have phytoestrogen properties and may protect humans against hormone-dependent cancers such as breast cancer. Secoisolariciresinol, usually in glycosidic form, is the major lignan in flaxseed (Linum usitatissimum L.), and the main precursor of the mammalian lignans (enterodiol, enterolactone) known for their beneficial effects on human health. The quantification of secoisolariciresinol requires a preliminary acid hydrolysis, necessary for the release of lignans from their complex form and aglycone from the glycosylated derivatives. This step partially converts secoisolariciresinol into its anhydrous form: anhydrosecoisolariciresinol. For this reason, we have developed an HPLC quantification method of secoisolariciresinol from flaxseed through its derived form obtained by a total acid hydrolysis. These conditions allow a simplification of the HPLC procedure and allow complete transformation of secoisolariciresinol into its anhydrous form. Using this method, the lignan level in L. usitatissimum seeds was determined to be about 6 mg g–1 DW. Furthermore, levels of anhydrosecoisolariciresinol were also determined in the different organs of the whole plant, in particular the leaves, stems, roots and fruits. Seeds and fruits accumulated the highest levels of lignans.  相似文献   

5.
Sesamin is one of the most abundant lignans in sesame seed. Episesamin, a geometrical isomer of sesamin, is not a naturally occurring compound and is formed during the refining process of non-roasted sesame seed oil. We compared the physiological activities of these compounds in affecting hepatic fatty acid metabolism in rat liver. Rats were fed either a control diet free of lignan or diets containing 0.2% of sesamin or episesamin for 15 days. These lignans increased the mitochondrial and peroxisomal palmitoyl-CoA oxidation rates. However, the magnitude of the increases was greater with episesamin than with sesamin. Sesamin caused 1.7- and 1.6-fold increases in mitochondrial and peroxisomal activity, respectively, while episesamin increased these values 2.3- and 5.1-fold. These lignans also increased the activity and gene expression of various fatty acid oxidation enzymes. Again, the increase was much more exaggerated with episesamin (1.5- to 14-fold) than with sesamin (1.3- to 2.8-fold). Diets containing sesamin and episesamin lowered the activity and gene expression of hepatic lipogenic enzymes to one-half of those obtained in the animals fed a lignan-free diet. However, no significant differences in these parameters were seen between rats fed sesamin and episesamin. Responses to sesamin and episesamin of hepatic lipogenesis are, therefore, considerably different from those observed in fatty acid oxidation. These results show that the physiological activity of the commercial sesamin preparation containing equivalent amounts of both sesamin and episesamin in increasing hepatic fatty acid oxidation observed previously was mainly ascribable to that of episesamin but not to sesamin.  相似文献   

6.
A lignan mixture from sesame salad oil containing episesamin and sesamin as major components was fed to rats. Lignans at the dietary level of approximately 0.2% tended to decrease plasma and liver cholesterol levels with an accompanying increase in the fecal excretion of neutral steroids, particularly when the dietary fat source was evening primrose oil containing γ-linolenic acid. There was a decreasing trend in the specific activity of Δ5-desaturase in liver microsomes whereas that of Δ6-desaturase tended to increase, in particular in rats fed with safflower oil. The proportion of dihomo-γ-linolenate increased in response to the reduction of Δ5-desaturation activity, and that of docosapentaenoate (n-6) decreased in liver phosphatidylcholine in both groups of rats, suggesting that lignans interfered with various steps of linoleate metabolism. However, the production by the aorta of prostacyclin and by platelets of thromboxane A2 was not influenced by lignans. Thus, episesamin and/or sesamin functioned as a regulator of cholesterol and linoleate metabolism in rats.  相似文献   

7.
A new lignan, horsfieldin [2-(3-hydroxy-4-methoxyphenyl)-6-(3,4-methylenedioxyphenyl)-3,7-dioxabicyclo(3,3,0)octane], d-asarinin, (?)-dihydrocubebin, dodecanoylphloroglucinol, myristic acid, trimyristin and sitosterol have been isolated and characterized from the hot methanol extract of Horsfieldia iryaghedhi seeds. The absolute configuration of the lignans and the chemotaxonomic significance of their occurrence is discussed.  相似文献   

8.
Flavonoids possess diverse health‐promoting benefits but are nearly absent from rice, because most of the genes encoding enzymes for flavonoid biosynthesis are not expressed in rice seeds. In the present study, a transgenic rice plant producing several classes of flavonoids in seeds was developed by introducing multiple genes encoding enzymes involved in flavonoid synthesis, from phenylalanine to the target flavonoids, into rice. Rice accumulating naringenin was developed by introducing phenylalanine ammonia lyase (PAL) and chalcone synthase (CHS) genes. Rice producing other classes of flavonoids, kaempferol, genistein, and apigenin, was developed by introducing, together with PAL and CHS, genes encoding flavonol synthase/flavanone‐3‐hydroxylase, isoflavone synthase, and flavone synthases, respectively. The endosperm‐specific GluB‐1 promoter or embryo‐ and aleurone‐specific 18‐kDa oleosin promoters were used to express these biosynthetic genes in seed. The target flavonoids of naringenin, kaempferol, genistein, and apigenin were highly accumulated in each transgenic rice, respectively. Furthermore, tricin was accumulated by introducing hydroxylase and methyltransferase, demonstrating that modification to flavonoid backbones can be also well manipulated in rice seeds. The flavonoids accumulated as both aglycones and several types of glycosides, and flavonoids in the endosperm were deposited into PB‐II‐type protein bodies. Therefore, these rice seeds provide an ideal platform for the production of particular flavonoids due to efficient glycosylation, the presence of appropriate organelles for flavonoid accumulation, and the small effect of endogenous enzymes on the production of flavonoids by exogenous enzymes.  相似文献   

9.
Lignans in plant cell and organ cultures: An overview   总被引:1,自引:0,他引:1  
Lignans are found in a wide variety of plant species. The lignan podophyllotoxin is of special interest, since its derivatives like e.g. etopophos® are used in anticancer therapy. As chemical synthesis of podophyllotoxin is not yet economic, it still has to be isolated from wild growing Podophyllum species, some of which are considered to be endangered species. Therefore plant in vitro cultures may serve as alternative sources for podophyllotoxin and for other types of lignans as well. This review describes the establishment of plant cell and tissue cultures for lignan production and the experiments to improve product yields by changing the cultivation parameters, addition of elicitors and feeding of precursors. It also summarizes the use of plant cell and organ cultures to study the biosynthesis of lignans on enzymological level. Abbreviations: DOP – deoxypodophyllotoxin; LARI – lariciresinol; MATAI – matairesinol; 6MPTOX – 6-methoxypodophyllotoxin; PINO – pinoresinol; PTOX – podophyllotoxin; SECO – secoisolariciresinol  相似文献   

10.
Glutelin is a major seed storage protein, accounting for 60?C80?% of the total endosperm protein content in rice. To test whether we could augment the expression of an introduced recombinant protein in rice by suppressing the glutelin gene, we generated transgenic glutelin RNAi (glu RNAi) rice seeds. RNA gel blot analyses confirmed that the endogenous glutelin gene was severely suppressed in these transgenic rice lines. RT-PCR analysis further revealed that all the members of glutelin multigene family were downregulated. Transgenic glu RNAi rice seeds expressing a recombinant red fluorescent protein (RFP) showed stronger fluorescence than seeds transformed with the RFP gene only. Western blot analysis further revealed that the relative accumulation of RFP in glu RNAi seeds was twofold higher than that in the RFP-only transgenic seeds. These results suggest that RNAi targeting of an endogenous storage protein could be of great utility in obtaining higher transgene expression in genetically engineered rice and other plant lines.  相似文献   

11.
Sesamin,sesamolin and the origin of sesame   总被引:1,自引:0,他引:1  
Cultivars of sesame were screened to determine how widely lignans occur. All lines tested contained sesamin and sesamolin. Sesamin and sesamolin in other species of Sesamum varied. Some other genera in the Pedaliaceae also possessed lignans. Phytochemical evidence as well as other data support the suggestion that the progenitor of sesame occurs in India.  相似文献   

12.
Sesamin is a major lignan constituent of sesame (Sesamum indicum) seed and considered responsible for a number of beneficial human health effects. We previously reported that sesamin is present in sesame leaves, and proposed use of sesame leaves as a sesamin-containing material. This study focused on the possibility that both leaf yield and sesamin content would be increased with increasing photoperiod. Additionally, it was hypothesized that sesamin content would be affected by photoperiod in relation to CYP81Q1 gene expression. We thus investigated the effect of photoperiod on growth and leaf sesamin content in relation to CYP81Q1 gene expression to confirm our hypothesis. Under short-day (SD) condition, increase of leaf area was suppressed due to the phase transition from vegetative to reproductive growth, which resulted in reduction of leaf yield. Under long-day (LD) conditions, vegetative growth was continued, and both leaf area and yield increased as photoperiod increased up to 24 h (continuous light). Sesamin accumulated particularly in the leaves of plants grown under a 24-h photoperiod for 4 weeks. High expression level of the CYP81Q1 gene in those plants indicates that photoperiod-dependent differences in leaf sesamin content correlate with differences in CYP81Q1 gene expression levels. We conclude that cultivation under continuous light enables high-yield production of sesame leaves containing distinctively high levels of sesamin.  相似文献   

13.
Mature seeds of 20 Linum species were analyzed for their content of lignans. The seeds of common flax (Linum usitatissimum L.) are known to contain as characteristic lignan sesoisolariciresinol diglucoside (SDG), whose presence in seeds of some other Linum species has also been reported. In order to investigate the material for the presence of such very polar lignans as well as for less polar non-glycosidic lignans as frequently found in aerial parts of Linum species, polar and non-polar extracts of each sample were analyzed by HPLC/ESI-MSMS.SDG was detected in 15 of 16 investigated seed samples of taxa representing sections Linum and Dasylinum. None of eight samples of taxa from sections Syllinum and Linopsis contained detectable amounts of SDG. Quite interestingly, most of the SDG-positive samples contained the 8R,8′R-isomer exclusively while only three (including L. usitatissimum) contained the 8S,8′S-stereoisomer as the predominant form. As a most noteworthy finding, the dichloromethane extracts obtained from seeds of several Linum species were found to contain significant concentrations of non-polar cyclolignans of the arylnaphthalene/-dihydronaphthalene lactone type or, alternatively of the aryltetralin lactone type. Thus, seeds of Linum perenne L. as well as those of several other representatives of sections Linum and Dasylinum were found to contain significant concentrations of the arylnaphthalene justicidin B along with further compounds of this type and some aryldihydronaphthalene-type lignans. On the other hand, seeds of Linum flavum and further representatives of section Syllinum were found to contain aryltetralin-type lignans, mainly in the form of esters with aliphatic carboxylic acids, such as 6-methoxypodophyllotoxin-7-O-n-hexanoate, whose occurrence in L. flavum seeds has very recently been reported by us for the first time.Various chemosystematic and biogenetic aspects are discussed in the light of these results.  相似文献   

14.
The lignan profile of the aerial part of Piper cubeba L. (Piperaceae) was determined using GC, GC–MS and HPLC. The number of lignans found in the leaves was 15, followed by berries and the stalks with respectively 13 and five lignans. This is the first investigation of lignans from the leaves and the stalks of P. cubeba. Cubebin, hinokinin, yatein, isoyatein are common lignans in the genus Piper and appeared as major components in all parts of P. cubeba investigated.  相似文献   

15.
Four lignans were isolated from the flower buds of Magnolia fargesii Cheng, two of which were known lignans, pinoresinol dimethyl ether and lirioresinol-B dimethyl ether; the other two were new lignans, magnolin and fargesin, and their structures have been determined by spectroscopic studies.  相似文献   

16.

Dibenzocyclooctadiene lignans are a specific group of secondary metabolites that occur solely in Schisandra chinensis. The aim of the presented work was to boost the accumulation of lignans in the agitated microshoot cultures of S. chinensis, using different elicitation schemes. The experiments included testing of various concentrations and supplementation times of cadmium chloride (CdCl2), chitosan (Ch), yeast extract (YeE), methyl jasmonate (MeJa), and permeabilizing agent—dimethylsulfoxide (DMSO). After 30 days, the microshoots were harvested and evaluated for growth parameters and lignan content by LC-DAD method. The analyses showed enhanced production of lignans in the elicited S. chinensis microshoots, whereas the respective media samples contained only trace amounts of the examined compounds (< 5 mg/l). Elicitation with CdCl2 caused up to 2-fold increase in the total lignan content (max. ca. 730 mg/100 g DW after the addition of 1000 μM CdCl2 on the tenth day). Experiments with chitosan resulted in up to 1.35-fold increase in lignan concentration (max. ca. 500 mg/100 g DW) after the supplementation with 50 mg/l on the first day and 200 mg/l on the tenth day. High improvement of lignan production was also recorded after YeE elicitation. After the elicitation with 5000 mg/l of YeE on the first day of the growth period, and with 1000 and 3000 mg/l on the 20th day, the lignan production increased to the same degree—about 1.8-fold. The supplementation with 1000 mg/l YeE on the 20th day of the growth cycle was chosen as the optimal elicitation scheme, for the microshoot cultures maintained in Plantform temporary immersion system—the total content of the estimated lignans was equal to 831.6 mg/100 g DW.

  相似文献   

17.
Aims: To determine the in vitro conversion of plant lignans from two flax products (hull and seed) into the mammalian lignans, enterolactone and enterodiol, by bovine ruminal and faecal microbiota. Methods and Results: Flax seeds and hulls were incubated in vitro over a 96-h time course with ruminal or faecal inoculum. Plant lignans in flax seeds and hulls averaged 9·2 and 32·0 nmol mg−1, respectively. The highest net production of enterodiol at 72 and 96 h of incubation was obtained with flax hulls incubated with faecal microbiota. There was no difference in net production of enterodiol between flax products within the first 24 h of incubation. In general, net production of enterolactone over the 96-h time course was significantly higher for flax products incubated with ruminal than with faecal microbiota. Net production of enterolactone at 72 and 96 h of incubation was greater for flax hulls than flax seeds. Conclusions: Results of the present experiment suggest that, of the metabolites studied, the main mammalian lignan metabolite produced from flax hulls and seeds by ruminal microbiota is enterolactone while faecal microbiota leads mainly to the net production of enterodiol. Significance and Impact of the Study: This research will improve the understanding of the metabolic pathway of mammalian lignans in dairy cows, in order to enable targeted manipulation of their quantities in milk.  相似文献   

18.
We studied the chemical composition of the phenolic complex and the structure of oligomeric lignans in Siberian spruce (Picea obovata Ledeb.). We used the wood of Siberian spruce collected near the city of Irkutsk. The extractives were isolated from ground wood (particle size: 10–15 mm; humidity: 5.9%) by three-stage acetone extraction. The extract was separated by consecutive treatment with the solvents with increasing polarity: hexane, ethyl acetate and n-butanol. The main amount of phenolic compounds (lignans) was concentrated in the ethyl acetate fraction and it was 0.7% in absolutely dry wood (adw).The ethyl acetate fraction of spruce wood extract was separated by silica gel column; a chloroform-acetone mixture was used as the eluent (the concentration of acetone in the mixture was increased from 0 to 100%). Monomeric lignans (~60–65% of the ethyl acetate fraction of spruce wood extract), oligomeric lignans (~20–25%), and polymer lignans (~12–15%) were isolated.We also obtained 13C nuclear magnetic resonance (NMR) spectra for the main monomeric, oligomeric and polymeric lignan compounds of phenolic complexes. It was found that oligomeric and polymeric fractions contain monomeric lignan units with the butyrolactone cycle, primarily, the fragments with hydroxymatairesinol structure. Oligomeric lignans contain the fragments with a pinoresinol and lariciresinol structure. All the monomeric structural units are characterized by the guaiacyl substitution type of the aromatic cycles.A preliminary study has been performed on the antiviral and antioxidant activity of the ethyl acetate fraction of acetone extract of Siberian spruce wood. It was found that the lignan complex is active against Coxsackie B4 virus in cell culture and in the pancreatitis model in white mice, reducing the activity of enteroviruses in the cell culture approximately 100 times. The antioxidant activity rate of polyphenol complex of Siberian spruce wood is comparable to that of a known antioxidant dihydroquercetin.  相似文献   

19.
Phytate is the major storage form of organic phosphorus in soils and plant seeds, and phosphorus (P) in this form is unavailable to plants or monogastric animals. In the present study, the phytase genes phyA and appA were introduced into Brassica napus cv Westar with a signal peptide sequence and CaMV 35S promoter, respectively. Three independent transgenic lines, P3 and P11 from phyA and a18 from appA, were selected. The three transgenic lines exhibited significantly higher exuded phytase activity when compared to wild-type (WT) controls. A quartz sand culture experiment demonstrated that transgenic Brassica napus had significantly improved P uptake and plant biomass. A soil culture experiment revealed that seed yields of transgenic lines P11 and a18 increased by 20.9% and 59.9%, respectively, when compared to WT. When phytate was used as the sole P source, P accumulation in seeds increased by 20.6% and 46.9% with respect to WT in P11 and a18, respectively. The P3 line accumulated markedly more P in seeds than WT, while no significant difference was observed in seed yields when phytate was used as the sole P source. Phytase activities in transgenic canola seeds ranged from 1,138 to 1,605 U kg–1 seeds, while no phytase activity was detected in WT seeds. Moreover, phytic acid content in P11 and a18 seeds was significantly lower than in WT. These results introduce an opportunity for improvement of soil and seed phytate-P bioavailability through genetic manipulation of oilseed rape, thereby increasing plant production and P nutrition for monogastric animals.  相似文献   

20.
The production of transgenic plants has contributed greatly to plant research. Previously, an improved method for screening transgenic Arabidopsis thaliana seeds using the FAST (Fluorescence-Accumulating-Seed Technology) method and FAST marker was reported. Arabidopsis seeds containing the FAST marker may be visually screened using a fluorescence stereomicroscope or blue LED handy-type instrument. Although the FAST method was originally designed for Arabidopsis screens, this study endeavors to adapt this method for the screening of other plants. Here, an optimized technology, designated the OsFAST method, is presented as a useful tool for screening transgenic rice seeds. The OsFAST method is based on the expression of the OsFAST-G marker under the control of a seed-embryo-specific promoter, similar to the Arabidopsis FAST-G marker. The OsFAST method provides a simple and non-destructive method for identifying transgenic rice seeds. It is proposed that the FAST method is adaptable to various plant species and will enable a deeper analysis of the floral-dip method.Key words: Oryza sativa, oleosin, seed, green fluorescent protein, transformation, screenable markerThe production of transgenic plants has significantly enhanced many areas of plant science research. Antibiotic/herbicide-resistance genes are traditionally used as screenable markers for the selection of transgenic plants. However, this approach does have disadvantages. First, antibiotics or herbicides occasionally inhibit the growth of transgenic plants, regardless of the incorporation of antibiotic- or herbicide-resistance genes1 into the transgenic plants. Second, the identification of resistant transgenic plants requires that the seed population be sown onto plates containing antibiotics or herbicides. Third, the selection process is slow and labor intensive, often involving the screening of vast numbers of potentially transgenic seeds on selective plates.To overcome these disadvantages, an improved approach for selecting transgenic Arabidopsis thaliana, designated the FAST (Fluorescence-Accumulating-Seed Technology) method, was developed. This method employs the use of a fluorescent protein that is expressed in seeds and used as a visual screenable marker for the identification of transgenic seeds. The seed-specific protein oleosin, a family of oil-body-membrane proteins,2 has an important role as a size regulator of oil bodies.3 AtOLE1, the most abundant oleosin, functions in the freezing tolerance of Arabidopsis seeds.4 A plasmid containing an AtOLE1-GFP fusion gene controlled by the AtOLE1 promoter was constructed and designated the FAST-G (Fluorescence-Accumulating-Seed Technology with OLE1-GFP) marker. Interestingly, Arabidopsis seeds containing the FAST-G marker emitted clear fluorescence under a fluorescence stereomicroscope or blue LED handy-type instrument. The transgenic seeds were visually identified by the seed fluorescence without the use of antibiotics or herbicides, thus indicating that the FAST method offers a nondestructive approach. The FAST marker permits the identification of homozygous seeds among the T2 population with a false discovery rate of less than 1% as a co-dominant screenable marker. In contrast to conventional methods using antibiotics or herbicides, the FAST method reduces the amount of time required to acquire homozygous transgenic plants from 7.5 months to 4 months. The fluorescence of the FAST-G marker was limited to a specific organ (i.e., in seeds) and a specific time (i.e., during dormancy), desirable characteristics of selectable and/or screenable markers. Furthermore, the FAST marker does not require sterile seeding and the handling of large numbers of plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号