首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Food allergy (FA) is an adverse health effect produced by the exposure to a given food. Currently, there is no optimal animal model of FA for the screening of immunotherapies or for testing the allergenicity of new foods.

Objective

The aim of the present study was to develop an effective and rapid model of FA in Brown Norway rats. In order to establish biomarkers of FA in rat, we compared the immune response and the anaphylactic shock obtained in this model with those achieved with only intraperitoneal immunization.

Methods

Rats received an intraperitoneal injection of ovalbumin (OVA) with alum and toxin from Bordetella pertussis, and 14 days later, OVA by oral route daily for three weeks (FA group). A group of rats receiving only the i.p. injection (IP group) were also tested. Serum anti-OVA IgE, IgG1, IgG2a, IgG2b and IgA antibodies were quantified throughout the study. After an oral challenge, body temperature, intestinal permeability, motor activity, and mast cell protease II (RMCP-II) levels were determined. At the end of the study, anti-OVA intestinal IgA, spleen cytokine production, lymphocyte composition of Peyer’s patches and mesenteric lymph nodes, and gene expression in the small intestine were quantified.

Results

Serum OVA-specific IgG1, IgG2a and IgG2b concentrations rose with the i.p. immunization but were highly augmented after the oral OVA administration. Anti-OVA IgE increased twofold during the first week of oral OVA gavage. The anaphylaxis in both IP and FA groups decreased body temperature and motor activity, whereas intestinal permeability increased. Interestingly, the FA group showed a much higher RMCP II serum protein and intestinal mRNA expression.

Conclusions

These results show both an effective and relatively rapid model of FA assessed by means of specific antibody titres and the high production of RMCP-II and its intestinal gene expression.  相似文献   

2.

Background

Abnormalities in motor activity represent a central feature in major depressive disorder. However, measurement issues are poorly understood, limiting the use of objective measurement of motor activity for diagnostics and treatment monitoring.

Methods

To improve measurement issues, especially sensor placement, analytic strategies and diurnal effects, we assessed motor activity in depressed patients at the beginning (MD; n=27) and after anti-depressive treatment (MD-post; n=18) as well as in healthy controls (HC; n=16) using wrist- and chest-worn accelerometers. We performed multiple analyses regarding sensor placements, extracted features, diurnal variation, motion patterns and posture to clarify which parameters are most powerful in distinguishing patients from controls and monitoring treatment effects.

Results

Whereas most feature-placement combinations revealed significant differences between groups, acceleration (wrist) distinguished MD from HC (d=1.39) best. Frequency (vertical axis chest) additionally differentiated groups in a logistic regression model (R2=0.54). Accordingly, both amplitude (d=1.16) and frequency (d=1.04) showed alterations, indicating reduced and decelerated motor activity. Differences between MD and HC in gestures (d=0.97) and walking (d=1.53) were found by data analysis from the wrist sensor. Comparison of motor activity at the beginning and after MD-treatment largely confirms our findings.

Limitations

Sample size was small, but sufficient for the given effect sizes. Comparison of depressed in-patients with non-hospitalized controls might have limited motor activity differences between groups.

Conclusions

Measurement of wrist-acceleration can be recommended as a basic technique to capture motor activity in depressed patients as it records whole body movement and gestures. Detailed analyses showed differences in amplitude and frequency denoting that depressed patients walked less and slower.  相似文献   

3.

Objective

To investigate which of three virtual training methods produces the largest learning effects on discrete and continuous myocontrol. The secondary objective was to examine the relation between myocontrol and manual motor control tests.

Design

A cohort analytic study.

Setting

University laboratory.

Participants

3 groups of 12 able-bodied participants (N = 36).

Interventions

Participants trained the control over their myosignals on 3 consecutive days. Training was done with either myosignal feedback on a computer screen, a virtual myoelectric prosthetic hand or a computer game. Participants performed 2 myocontrol tests and 2 manual motor control tests before the first and after the last training session. They were asked to open and close a virtual prosthetic hand on 3 different velocities as a discrete myocontrol test and followed a line with their myosignals for 30 seconds as a continuous myocontrol test. The motor control tests were a pegboard and grip-force test.

Main Outcome Measures

Discrete myocontrol test: mean velocities. Continuous myocontrol test: error and error SD. Pegboard test: time to complete. Grip-force test: produced forces.

Results

No differences in learning effects on myocontrol were found for the different virtual training methods. Discrete myocontrol ability did not significantly improve as a result of training. Continuous myocontrol ability improved significantly as a result of training, both on average control and variability. All correlations between the motor control and myocontrol test outcome measures were below .50.

Conclusions

Three different virtual training methods showed comparable results when learning myocontrol. Continuous myocontrol was improved by training while discrete myocontrol was not. Myocontrol ability could not be predicted by the manual motor control tests.  相似文献   

4.

Background

Recanalization of an occluded intracranial artery is influenced by temperature-dependent enzymes, including alteplase. We assessed the relation between body temperature on admission and recanalization.

Methods

We included 278 patients with acute ischaemic stroke within nine hours after symptom onset, who had an intracranial arterial occlusion on admission CT angiography, in 13 participating centres. We calculated the relation per every 0.1°Celsius increase in admission body temperature and recanalization at three days.

Results

Recanalization occurred in 80% of occluded arteries. There was no relation between body temperature and recanalization at three days after adjustments for age, NIHSS score on admission and treatment with alteplase (adjusted odds ratio per 0.1°Celsius, 0.99; 95% confidence interval, 0.94–1.05; p = 0.70). Results for patients treated or not treated with alteplase were essentially the same.

Conclusions

Our findings suggest that in patients with acute ischaemic stroke there is no relation between body temperature on admission and recanalization of an occluded intracranial artery three days later, irrespective of treatment with alteplase.  相似文献   

5.

Background

Sampling methods have proven to be a very efficient and intuitive method to understand properties of complicated spaces that cannot easily be computed using deterministic methods. Therefore, sampling methods became a popular tool in the applied sciences.

Results

Here, we show that sampling methods are not an appropriate tool to analyze qualitative properties of complicated spaces unless RP = NP. We illustrate these results on the example of the thermodynamically feasible flux space of genome-scale metabolic networks and show that with artificial centering hit and run (ACHR) not all reactions that can have variable flux rates are sampled with variables flux rates. In particular a uniform sample of the flux space would not sample the flux variabilities completely.

Conclusion

We conclude that unless theoretical convergence results exist, qualitative results obtained from sampling methods should be considered with caution and if possible double checked using a deterministic method.  相似文献   

6.

Background

Although Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized primarily by motor symptoms, PD patients, at all stages of the disease, can experience cognitive dysfunction. However, the relationships between cognitive and motor symptoms and specific demographic characteristics are not well defined, particularly for patients who have progressed to requiring dopaminergic medication.

Objective

To examine relationships between motor and cognitive symptoms and various demographic factors in mild to moderate, PD patients requiring anti-PD medication.

Methods

Cognitive function was assessed in 94 subjects with a variety of neuropsychological tests during baseline evaluations as part of an experimental treatment study. Data were analyzed in relation to Unified Parkinson’s Disease Rating Scale motor scores and demographic variables.

Results

Of the UPDRS subscores analyzed, posture/balance/gait was associated with the highest number of adverse cognitive outcomes followed by speech/facial expression, bradykinesia, and rigidity. No associations were detected between any of the cognitive performance measures and tremor. Motor functioning assessed in the “off” condition correlated primarily with disease duration; neuropsychological performance in general was primarily related to age.

Conclusion

In PD patients who have advanced to requiring anti-PD therapies, there are salient associations between axial signs and cognitive performance and in particular, with different aspects of visuospatial function suggesting involvement of similar circuits in these functions. Associations between executive functions and bradykinesia also suggest involvement similar circuits in these functions.  相似文献   

7.

Background

The relationship between physical activity (PA) and bone health is well known, although the role of percent body fat (%BF) and fitness as confounders or mediators in this relationship remains uncertain.

Objective

To examine whether the association between PA and bone mineral content (BMC) is mediated by %BF and cardiorespiratory fitness (CRF).

Methods

In this cross sectional study, BMC, total %BF (by DXA), vigorous PA (VPA), CRF, age and height were measured in 132 schoolchildren (62 boys, aged 8–11 years). ANCOVA was used to test differences in BMC by %BF, CRF and VPA, controlling for different sets of confounders. Simple mediation analyses and serial multiple mediation analyses were fitted to examine whether the relationship between PA and BMC is mediated by %BF and fitness.

Results

Children with high %BF had higher total body BMC than their peers after controlling for all sets of confounders. Children with good CRF or VPA had significantly less total body BMC after controlling for age and sex but in children with good CRF this inverse relation disappeared after adjusting by %BF. %BF and CRF both act as a full mediator in the association between VPA and BMC, after inclusion of the potential confounders in the models.

Conclusion

Fitness and %BF seem to have a mediator role on the relationship between physical activity and bone mass.  相似文献   

8.

Introduction

Studies of cerebral hemodynamics during motor learning have mostly focused on neurorehabilitation interventions and their effectiveness. However, only a few imaging studies of motor learning and the underlying complex cognitive processes have been performed.

Methods

We measured cerebral hemodynamics using near-infrared spectroscopy (NIRS) in relation to acquisition patterns of motor skills in healthy subjects using character entry into a touch-screen terminal. Twenty healthy, right-handed subjects who had no previous experience with character entry using a touch-screen terminal participated in this study. They were asked to enter the characters of a randomly formed Japanese syllabary into the touch-screen terminal. All subjects performed the task with their right thumb for 15 s alternating with 25 s of rest for 30 repetitions. Performance was calculated by subtracting the number of incorrect answers from the number of correct answers, and gains in motor skills were evaluated according to the changes in performance across cycles. Behavioral and oxygenated hemoglobin concentration changes across task cycles were analyzed using Spearman’s rank correlations.

Results

Performance correlated positively with task cycle, thus confirming motor learning. Hemodynamic activation over the left sensorimotor cortex (SMC) showed a positive correlation with task cycle, whereas activations over the right prefrontal cortex (PFC) and supplementary motor area (SMA) showed negative correlations.

Conclusions

We suggest that increases in finger momentum with motor learning are reflected in the activity of the left SMC. We further speculate that the right PFC and SMA were activated during the early phases of motor learning, and that this activity was attenuated with learning progress.  相似文献   

9.

Background

Previous neuroimaging studies have provided evidence of structural and functional reorganization of brain in patients with chronic spinal cord injury (SCI). However, it remains unknown whether the spontaneous brain activity changes in acute SCI. In this study, we investigated intrinsic brain activity in acute SCI patients using a regional homogeneity (ReHo) analysis based on resting-state functional magnetic resonance imaging.

Methods

A total of 15 patients with acute SCI and 16 healthy controls participated in the study. The ReHo value was used to evaluate spontaneous brain activity, and voxel-wise comparisons of ReHo were performed to identify brain regions with altered spontaneous brain activity between groups. We also assessed the associations between ReHo and the clinical scores in brain regions showing changed spontaneous brain activity.

Results

Compared with the controls, the acute SCI patients showed decreased ReHo in the bilateral primary motor cortex/primary somatosensory cortex, bilateral supplementary motor area/dorsal lateral prefrontal cortex, right inferior frontal gyrus, bilateral dorsal anterior cingulate cortex and bilateral caudate; and increased ReHo in bilateral precuneus, the left inferior parietal lobe, the left brainstem/hippocampus, the left cingulate motor area, bilateral insula, bilateral thalamus and bilateral cerebellum. The average ReHo values of the left thalamus and right insula were negatively correlated with the international standards for the neurological classification of spinal cord injury motor scores.

Conclusion

Our findings indicate that acute distant neuronal damage has an immediate impact on spontaneous brain activity. In acute SCI patients, the ReHo was prominently altered in brain regions involved in motor execution and cognitive control, default mode network, and which are associated with sensorimotor compensatory reorganization. Abnormal ReHo values in the left thalamus and right insula could serve as potential biomarkers for assessment of neuronal damage and the prediction of clinical outcomes in acute SCI.  相似文献   

10.

Background

Alternating hemiplegia of childhood is a very rare and serious neurodevelopmental syndrome; its genetic basis has recently been established. Its characteristic features include typically-unprovoked episodes of hemiplegia and other transient or more persistent neurological abnormalities.

Methods

We used transcranial magnetic stimulation to assess the effect of the condition on motor cortex neurophysiology both during and between attacks of hemiplegia. Nine people with alternating hemiplegia of childhood were recruited; eight were successfully tested using transcranial magnetic stimulation to study motor cortex excitability, using single and paired pulse paradigms. For comparison, data from ten people with epilepsy but not alternating hemiplegia, and ten healthy controls, were used.

Results

One person with alternating hemiplegia tested during the onset of a hemiplegic attack showed progressively diminishing motor cortex excitability until no response could be evoked; a second person tested during a prolonged bilateral hemiplegic attack showed unusually low excitability. Three people tested between attacks showed asymptomatic variation in cortical excitability, not seen in controls. Paired pulse paradigms, which probe intracortical inhibitory and excitatory circuits, gave results similar to controls.

Conclusions

We report symptomatic and asymptomatic fluctuations in motor cortex excitability in people with alternating hemiplegia of childhood, not seen in controls. We propose that such fluctuations underlie hemiplegic attacks, and speculate that the asymptomatic fluctuation we detected may be useful as a biomarker for disease activity.  相似文献   

11.

Background

Recently, non-motor symptoms of Parkinson’s disease (PD) have been considered crucial factors in determining a patient’s quality of life and have been proposed as the predominant features of the premotor phase. Researchers have investigated the relationship between non-motor symptoms and the motor laterality; however, this relationship remains disputed. This study investigated the neural connectivity correlates of non-motor and motor symptoms of PD with respect to motor laterality.

Methods

Eight-seven patients with PD were recruited and classified into left-more-affected PD (n = 44) and right-more affected PD (n = 37) based on their MDS-UPDRS (Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale) motor examination scores. The patients underwent MRI scanning, which included resting fMRI. Brain regions were labeled as ipsilateral and contralateral to the more-affected body side. Correlation analysis between the functional connectivity across brain regions and the scores of various symptoms was performed to identify the neural connectivity correlates of each symptom.

Results

The resting functional connectivity centered on the ipsilateral inferior orbito-frontal area was negatively correlated with the severity of non-motor symptoms, and the connectivity of the contralateral inferior parietal area was positively correlated with the severity of motor symptoms (p < 0.001, |r| > 0.3).

Conclusions

These results suggest that the inferior orbito-frontal area may play a crucial role in non-motor dysfunctions, and that the connectivity information may be utilized as a neuroimaging biomarker for the early diagnosis of PD.  相似文献   

12.

Background

The available clinical outcome measures of disability in multiple sclerosis are not adequately responsive or sensitive.

Objective

To investigate the feasibility of inertial sensor-based gait analysis in multiple sclerosis.

Methods

A cross-sectional study of 80 multiple sclerosis patients and 50 healthy controls was performed. Lower-limb kinematics was evaluated by using a commercially available magnetic inertial measurement unit system. Mean and standard deviation of range of motion (mROM, sROM) for each joint of lower limbs were calculated in one minute walking test. A motor performance index (E) defined as the sum of sROMs was proposed.

Results

We established two novel observer-independent measures of disability. Hip mROM was extremely sensitive in measuring lower limb motor impairment, being correlated with muscle strength and also altered in patients without clinically detectable disability. On the other hand, E index discriminated patients according to disability, being altered only in patients with moderate and severe disability, regardless of walking speed. It was strongly correlated with fatigue and patient-perceived health status.

Conclusions

Inertial sensor-based gait analysis is feasible and can detect clinical and subclinical disability in multiple sclerosis.  相似文献   

13.

Objective

The nature of changes in brain activation related to good recovery of arm function after stroke is still unclear. While the notion that this is a reflection of neuronal plasticity has gained much support, confounding by compensatory strategies cannot be ruled out. We address this issue by comparing brain activity in recovered patients 6 months after stroke with healthy controls.

Methods

We included 20 patients with upper limb paresis due to ischemic stroke and 15 controls. We measured brain activation during a finger flexion-extension task with functional MRI, and the relationship between brain activation and hand function. Patients exhibited various levels of recovery, but all were able to perform the task.

Results

Comparison between patients and controls with voxel-wise whole-brain analysis failed to reveal significant differences in brain activation. Equally, a region of interest analysis constrained to the motor network to optimize statistical power, failed to yield any differences. Finally, no significant relationship between brain activation and hand function was found in patients. Patients and controls performed scanner task equally well.

Conclusion

Brain activation and behavioral performance during finger flexion-extensions in (moderately) well recovered patients seems normal. The absence of significant differences in brain activity even in patients with a residual impairment may suggest that infarcts do not necessarily induce reorganization of motor function. While brain activity could be abnormal with higher task demands, this may also introduce performance confounds. It is thus still uncertain to what extent capacity for true neuronal repair after stroke exists.  相似文献   

14.

Background

Huntington''s disease (HD) causes progressive motor dysfunction through characteristic atrophy. Changes to neural structure begin in premanifest stages yet individuals are able to maintain a high degree of function, suggesting involvement of supportive processing during motor performance. Electroencephalography (EEG) enables the investigation of subtle impairments at the neuronal level, and possible compensatory strategies, by examining differential activation patterns. We aimed to use EEG to investigate neural motor processing (via the Readiness Potential; RP), premotor processing and sensorimotor integration (Contingent Negative Variation; CNV) during simple motor performance in HD.

Methods

We assessed neural activity associated with motor preparation and processing in 20 premanifest (pre-HD), 14 symptomatic HD (symp-HD), and 17 healthy controls. Participants performed sequential tapping within two experimental paradigms (simple tapping; Go/No-Go). RP and CNV potentials were calculated separately for each group.

Results

Motor components and behavioural measures did not distinguish pre-HD from controls. Compared to controls and pre-HD, symp-HD demonstrated significantly reduced relative amplitude and latency of the RP, whereas controls and pre-HD did not differ. However, early CNV was found to significantly differ between control and pre-HD groups, due to enhanced early CNV in pre-HD.

Conclusions

For the first time, we provide evidence of atypical activation during preparatory processing in pre-HD. The increased activation during this early stage of the disease may reflect ancillary processing in the form of recruitment of additional neural resources for adequate motor preparation, despite atrophic disruption to structure and circuitry. We propose an early adaptive compensation mechanism in pre-HD during motor preparation.  相似文献   

15.

Background

This study explored the relationship between symptoms of rapid eye movement sleep behaviour disorder, thermoregulation and sleep in Parkinson’s Disease.

Methods

The study group comprised 12 patients with Parkinson’s Disease and 11 healthy age-matched controls. We investigated markers of thermoregulation (core-body temperature profile), circadian rhythm (locomotor actigraphy) and sleep (polysomnography).

Results

The mesor (the mean value around which the core temperature rhythm oscillates) of the core-body temperature in patients with Parkinson’s Disease was significantly lower than that of controls. In addition, the nocturnal fall in CBT (the difference between the mesor and the nadir temperature) was also significantly reduced in PD patients relative to controls. Furthermore, in patients the reduction in the amplitude of their core-body temperature profile was strongly correlated with the severity of self-reported rapid eye movement sleep behaviour disorder symptom, reduction in the percentage of REM sleep and prolonged sleep latency. By contrast, these disturbances of thermoregulation and sleep architecture were not found in controls and were not related to other markers of circadian rhythm or times of sleep onset and offset.

Conclusions

These findings suggest that the brainstem pathology associated with disruption of thermoregulation in Parkinson’s disease may also contribute to rapid eye movement sleep behavioural disorder. It is possible that detailed analysis of the core-body temperature profile in at risk populations such as those patients with idiopathic rapid eye movement sleep behaviour disorder might help identify those who are at high risk of transitioning to Parkinson’s Disease.  相似文献   

16.

Objectives

To investigate the relationship between physical activity and two measures of fall incidence in an elderly population using person-years as well as hours walked as denominators and to compare these two approaches.

Design

Prospective cohort study with one-year follow-up of falls using fall calendars. Physical activity was defined as walking duration and recorded at baseline over one week using a thigh-worn uni-axial accelerometer (activPAL; PAL Technologies, Glasgow, Scotland). Average daily physical activity was extracted from these data and categorized in low (0–59 min), medium (60–119 min) and high (120 min and more) activity.

Setting

The ActiFE Ulm study located in Ulm and adjacent regions in Southern Germany.

Participants

1,214 community-dwelling older people (≥65 years, 56.4% men).

Measurements

Negative-binomial regression models were used to calculate fall rates and incidence rate ratios for each activity category each with using (1) person-years and (2) hours walked as denominators stratified by gender, age group, fall history, and walking speed. All analyses were adjusted either for gender, age, or both.

Results

No statistically significant association was seen between falls per person-year and average daily physical activity. However, when looking at falls per 100 hours walked, those who were low active sustained more falls per hours walked. The highest incidence rates of falls were seen in low-active persons with slow walking speed (0.57 (95% confidence interval (95% CI): 0.33 to 0.98) falls per 100 hours walked) or history of falls (0.60 (95% CI: 0.36 to 0.99) falls per 100 hours walked).

Conclusion

Falls per hours walked is a relevant and sensitive outcome measure. It complements the concept of incidence per person years, and gives an additional perspective on falls in community-dwelling older people.  相似文献   

17.

Objectives

To evaluate the neural correlates of implicit processing of negative emotions in motor conversion disorder (CD) patients.

Methods

An event related fMRI task was completed by 12 motor CD patients and 14 matched healthy controls using standardised stimuli of faces with fearful and sad emotional expressions in comparison to faces with neutral expressions. Temporal changes in the sensitivity to stimuli were also modelled and tested in the two groups.

Results

We found increased amygdala activation to negative emotions in CD compared to healthy controls in region of interest analyses, which persisted over time consistent with previous findings using emotional paradigms. Furthermore during whole brain analyses we found significantly increased activation in CD patients in areas involved in the ‘freeze response’ to fear (periaqueductal grey matter), and areas involved in self-awareness and motor control (cingulate gyrus and supplementary motor area).

Conclusions

In contrast to healthy controls, CD patients exhibited increased response amplitude to fearful stimuli over time, suggesting abnormal emotional regulation (failure of habituation / sensitization). Patients with CD also activated midbrain and frontal structures that could reflect an abnormal behavioral-motor response to negative including threatening stimuli. This suggests a mechanism linking emotions to motor dysfunction in CD.  相似文献   

18.

Context

The relations between dietary and/or circulating levels of fatty acids and the development of type 2 diabetes is unclear. Protective associations with the marine omega-3 fatty acids and linoleic acid, and with a marker of fatty acid desaturase activity delta-5 desaturase (D5D ratio) have been reported, as have adverse relations with saturated fatty acids and D6D ratio.

Objective

To determine the associations between red blood cell (RBC) fatty acid distributions and incident type 2 diabetes.

Design

Prospective observational cohort study nested in the Women’s Health Initiative Memory Study.

Setting

General population.

Subjects

Postmenopausal women.

Main Outcome Measures

Self-reported incident type 2 diabetes.

Results

There were 703 new cases of type 2 diabetes over 11 years of follow up among 6379 postmenopausal women. In the fully adjusted models, baseline RBC D5D ratio was inversely associated with incident type 2 diabetes [Hazard Ratio (HR) 0.88, 95% confidence interval (CI) 0.81–0.95) per 1 SD increase. Similarly, baseline RBC D6D ratio and palmitic acid were directly associated with incident type 2 diabetes (HR 1.14, 95% CI 1.04–1.25; and HR 1.24, 95% CI 1.14–1.35, respectively). None of these relations were materially altered by excluding incident cases in the first two years of follow-up. There were no significant relations with eicosapentaenoic, docosahexaenoic or linoleic acids.

Conclusions

Whether altered fatty acid desaturase activities or palmitic acid levels are causally related to the development of type 2 diabetes cannot be determined from this study, but our findings suggest that proportions of certain fatty acids in RBC membranes are associated with risk for type 2 diabetes.  相似文献   

19.
20.

Background

Aerobic exercise is associated with enhanced plasticity in the motor cortex of healthy individuals, but the effect of aerobic exercise on neuroplasticity following a stroke is unknown.

Objective

The aim of this study was to compare corticomotoneuronal excitability and neuroplasticity in the upper limb cortical representation following a single session of low intensity lower limb cycling, or a rest control condition.

Methods

We recruited chronic stroke survivors to take part in three experimental conditions in a randomised, cross-over design. Corticomotoneuronal excitability was examined using transcranial magnetic stimulation to elicit motor evoked potentials in the affected first dorsal interosseus muscle. Following baseline measures, participants either cycled on a stationary bike at a low exercise intensity for 30 minutes, or remained resting in a seated position for 30 minutes. Neuroplasticity within the motor cortex was then examined using an intermittent theta burst stimulation (iTBS) paradigm. During the third experimental condition, participants cycled for the 30 minutes but did not receive any iTBS.

Results

Twelve participants completed the study. We found no significant effect of aerobic exercise on corticomotoneuronal excitability when compared to the no exercise condition (P > 0.05 for all group and time comparisons). The use of iTBS did not induce a neuroplastic-like response in the motor cortex with or without the addition of aerobic exercise.

Conclusions

Our results suggest that following a stroke, the brain may be less responsive to non-invasive brain stimulation paradigms that aim to induce short-term reorganisation, and aerobic exercise was unable to induce or improve this response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号