首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soluble epoxide hydrolases catalyze the hydrolysis of epoxides in acyclic systems. In man this enzyme is the product of a single copy gene (EPXH-2) present on chromosome 8. The human sEH is of interest due to emerging roles of its endogenous substrates, epoxygenated fatty acids, in inflammation and hypertension. One of the consequences of inhibiting sEH in rodent inflammation models is a profound decrease in the production of pro-inflammatory and proalgesic lipid metabolites including prostaglandins. This prompted us to hypothesize that sEH inhibitors may have antinociceptive properties. Here we tested if sEH inhibitors can reduce inflammatory pain. Hyperalgesia was induced by intraplantar LPS injection and sEH inhibitors were delivered topically. We found that two structurally dissimilar but equally potent sEH inhibitors can be delivered through the transdermal route and that sEH inhibitors effectively attenuate thermal hyperalgesia and mechanical allodynia in rats treated with LPS. In addition we show that epoxydized arachidonic acid metabolites, EETs, are also effective in attenuating thermal hyperalgesia in this model. In parallel with the observed biological activity metabolic analysis of oxylipids showed that inhibition of sEH resulted with a decrease in PGD2 levels and sEH generated degradation products of linoleic and arachidonic acid metabolites with a concomitant increase in epoxides of linoleic acid. These data show that inhibition of sEH may become a viable therapeutic strategy to attain analgesia.  相似文献   

2.
Following the onset of an ischemic brain injury, the excitatory neurotransmitter glutamate is released. The excitotoxic effects of glutamate are a major contributor to the pathogenesis of a stroke. The aim of this study was to examine if overexpression of a glutamate transporter (GLT-1) reduces ischemic brain injury in a rat model of stroke. We generated an adeno-associated viral (AAV) vector expressing the rat GLT-1 cDNA (AAV-GLT1). Functional expression of AAV-GLT1 was confirmed by increased glutamate clearance rate in non-stroke rat brain as measured by in vivo amperometry. AAV-GLT1 was injected into future cortical region of infarction 3 weeks prior to 60 min middle cerebral artery occlusion (MCAo). Tissue damage was assessed at one and two days after MCAo using TUNEL and TTC staining, respectively. Behavioral testing was performed at 2, 8 and 14 days post-stroke. Animals receiving AAV-GLT1, compared to AAV-GFP, showed significant decreases in the duration and magnitude of extracellular glutamate, measured by microdialysis, during the 60 minute MCAo. A significant reduction in brain infarction and DNA fragmentation was observed in the region of AAV-GLT1 injection. Animals that received AAV-GLT1 showed significant improvement in behavioral recovery following stroke compared to the AAV-GFP group. We demonstrate that focal overexpression of the glutamate transporter, GLT-1, significantly reduces ischemia-induced glutamate overflow, decreases cell death and improves behavioral recovery. These data further support the role of glutamate in the pathogenesis of ischemic damage in brain and demonstrate that targeted gene delivery to decrease the ischemia-induced glutamate overflow reduces the cellular and behavioral deficits caused by stroke.  相似文献   

3.
This study aimed to investigate the effects of SPAR signaling pathway on the restoration of motor function in ischemic stroke (IS). Sprague‐Dawley male rats were separated into the control and sham groups, as well as the group for middle cerebral artery occlusion (MCAO) model establishment. Successfully established rat ischemic models were randomly divided into model, SNKMCAO‐del and pcDNA3.1‐SNK groups. The evaluation of motor function among the rats in each group was assessed using a balance beam, a screen test and the Garcia scoring method. CatWalk gait analysis was employed to evaluate the effect of the SNK signaling pathway on rat motor function. Triphenyltetrazolium chloride (TTC) and TUNEL staining were techniques were utilized for cerebral infarction (CI) area as well for hippocampal neuron apoptosis. The quantitative real‐time polymerase chain reaction (qRT‐PCR) and western blotting methods were performed to detect mRNA and protein expressions of SNK and SPAR. When compared with the model group, the SNKMCAO‐del group displayed decreased motor function score and CI area, while contrasting results were observed in the pcDNA3.1‐SNK group. According to the results obtained from the CatWalk gait analysis, the SNKMCAO‐del group showed a clear improvement compared to the model group whereas the pcDNA3.1‐SNK group exhibited poorer results than the model group in the objective parameters of the study, such as movement, speed, running duration, print area, maximal contact area, maximal, mean intensity, and stride length. These findings suggested that SNK gene silencing promotes motor function by inhibiting the SNK‐SPAR signaling pathway in rats with ischemic stroke.  相似文献   

4.
The neuropeptide Substance P (SP), that has a high affinity for the neurokinin 1 (NK1) receptor, is involved in modulation of pain transmission. Although SP is thought to have excitatory actions and promote nociception in the spinal cord, the peptide induces analgesia at the supraspinal level. The aim of this study was to evaluate the role of supraspinal SP and the NK1 receptor in inflammatory pain induced by injection of carrageenan in the hind paw of the rat. There are two nociceptive behavioral responses associated with this pain state: mechanical allodynia and heat hyperalgesia. Because the NK1 receptor colocalizes with the MOP receptor in supraspinal sites involved in pain modulation, we also decided to study the possible involvement of the opioid system on SP-induced analgesia. We found that treatment with SP, at doses of 3.5, 5 and 7 μg/5 μl/rat i.c.v., clearly showed inhibition of allodynia and hyperalgesia. Pretreatment with the selective NK1 antagonist L-733,060 (10mg/kg i.p.) blocked the SP-induced analgesia, suggesting the involvement of the NK1 receptor. This SP-induced analgesia was significantly reduced by administration of the opioid antagonist naloxone (3mg/kg s.c.). This reduction occurred when SP was administered either before or after the carrageenan injection. These results suggest a significant antinociceptive role for SP and the NK1 receptor in inflammatory pain at the supraspinal level, possibly through the release of endogenous opioids.  相似文献   

5.
6.
In vitro nitric oxide (NO) regulates calpain and caspase-3 activation, and in vivo neuronal nitric oxide synthase (nNOS), calpain and caspase-3 participate in the ischemic brain injury. Our objective was to investigate whether nNOS was involved in the ischemic brain injury through activating calpain and caspase-3 during experimental stroke. Rats received 1-h ischemia by intraluminant filament, and then reperfused for 23 h (R 23 h). nNOS inhibitor 7-nitroindozale (7-NI, 50 mg/kg) was administrated intraperitoneally 5 min before ischemia. Our data showed that treatment with 7-NI markedly reduced neurological deficits, the brain swelling, and the infarct volume at R 23 h. Enzyme studies revealed significant suppression of the activities of m-calpain and caspase-3 in penumbra and core, and the activities of μ-calpain in penumbra, but not in core, in 7-NI-treated rats versus vehicle-treated rats. Western blot analysis demonstrated that 7-NI markedly increased the levels of MAP-2 and spectrin in penumbra and core compared with vehicle-treated rats. Histopathological studies displayed that 7-NI significantly reduced the necrotic cell death in penumbra and core, and apoptotic cell death in penumbra, but not in core. These data demonstrate the involvement of NO produced by nNOS in the ischemic neuronal injury through affecting the activation of calpain and caspase-3 in penumbra and core after experimental stroke, which provides a new perspective on possible mechanisms of action of nNOS inhibition in cerebral ischemia.  相似文献   

7.
Interstitial fibrosis after acute myocardial infarction (MI) leads to cardiac structural remodeling and dysfunction. The peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonist chrysin has been shown to protect injured myocardium through suppression of oxidative stress and inflammation. This study was designed to investigate the effect and mechanism of chrysin on myocardial fibrosis. A rat MI model was created by ligating the left coronary artery. The rats with MI were treated with chrysin (40 mg/kg/day) or 0.5% carboxymethylcellulose sodium by intragastric administration for 4 weeks after operation. The effect of chrysin on cardiac fibroblasts (CFs) were also assessed in vitro. Echocardiography showed that cardiac function was significantly improved after chrysin treatment. Chrysin reduced the levels of MDA and SOD and GSH-Px in myocardial tissue. Chrysin attenuated the interstitial and perivascular fibrosis and the expression of collagenlin the peri-infarcted zone and remarkably decreased the levels of matrix metalloproteinase-2 (MMP-2) and MMP-9. Chrysin up-regulated PPAR-γ and inhibited the nuclear factor-kappa B (NF-κB) pathway by suppressing inhibitor kappa B kinase β phosphorylation. Immunohistochemistry analysis and PCR detected downregulated expression of AP-1 after chrysin treatment. Chrysin also markedly reduced the increased α-SMA, typeland type III collagen expression of CFs mediated by AngII in vitro. In conclusion, chrysin has an antifibrosis cardioprotective effect on the infarct peripheral zone after MI. The underlined mechanism may be the up-regulation of PPAR-γ and inhibition of the NF-κB and AP1 pathway.  相似文献   

8.
9.
Reducing sympathetic neurohormone expression is a key therapeutic option in attenuating cardiac remodelling. Present study tested the feasibility of attenuating cardiac remodelling through reducing sympathetic neurohormone level by partial cardiac sympathetic denervation in a rat model of chronic volume overload. Male Sprague‐Dawley rats were randomized into sham group (S, n = 7), aortocaval fistula group (AV, n = 7), and aortocaval fistula with bilateral sympathetic stellate ganglionectomy group (AD, n = 8). After 12 weeks, myocardial protein expression of sympathetic neurohormones, including tyrosine hydroxylase, neuropeptide Y, growth associated protein 43, and protein gene product 9.5, were significantly up‐regulated in AV group compared to S group, and down‐regulated in AD group. Cardiac remodelling was aggravated in AV group compared to S group and attenuated in AD group. The myocardial deposition of extracellular matrix, including collagen I and III, was enhanced in AV group, which was reduced in AD group. Myocardial angiotensin II and aldosterone expressions were significantly up‐regulated in AV group and down‐regulated in AD group. Our results show that bilateral sympathetic stellate ganglionectomy could attenuate cardiac remodelling and fibrosis by down‐regulating sympathetic neurohormones expression in this rat model of chronic volume overload.  相似文献   

10.

Ischemic stroke is a major cause of morbidity and mortality worldwide and only few affected patients are able to receive treatment, especially in developing countries. Detailed pathophysiology of brain ischemia has been extensively studied in order to discover new treatments with a broad therapeutic window and that are accessible to patients worldwide. The nucleoside guanosine (Guo) has been shown to have neuroprotective effects in animal models of brain diseases, including ischemic stroke. In a rat model of focal permanent ischemia, systemic administration of Guo was effective only when administered immediately after stroke induction. In contrast, intranasal administration of Guo (In-Guo) was effective even when the first administration was 3 h after stroke induction. In order to validate the neuroprotective effect in this larger time window and to investigate In-Guo neuroprotection under global brain dysfunction induced by ischemia, we used the model of thermocoagulation of pial vessels in Wistar rats. In our study, we have found that In-Guo administered 3 h after stroke was capable of preventing ischemia-induced dysfunction, such as bilateral suppression and synchronicity of brain oscillations and ipsilateral cell death signaling, and increased permeability of the blood-brain barrier. In addition, In-Guo had a long-lasting effect on preventing ischemia-induced motor impairment. Our data reinforce In-Guo administration as a potential new treatment for brain ischemia with a more suitable therapeutic window.

  相似文献   

11.
12.

Background  

Although free radicals have been reported to play a role in the expansion of ischemic brain lesions, the effect of free radical scavengers is still under debate. In this study, the temporal profile of ischemic stroke lesion sizes was assessed for more than one year to evaluate the effect of edaravone which might reduce ischemic damage.  相似文献   

13.
Nuclear factor-kappaB (NF-kappaB) is the main target of anti-inflammatory therapies in human chronic inflammatory bowel diseases (IBD), Crohn disease, and ulcerative colitis. This study investigates the molecular anti-inflammatory mechanisms of SB203580, an inhibitor of the mitogen-activated protein kinase p38. The murine trinitrobenzene sulfonic acid (TNBS)-induced colitis was used as an established model of human Crohn disease. Here we show that SB203580 improved the clinical condition, reduced intestinal inflammation, and suppressed mRNA levels of pro-inflammatory cytokines elevated upon induction of colitis. Besides p38 kinase activity, the "classical" IkappaB-dependent NF-kappaB pathway was strongly up-regulated during colitis induction, whereas the "alternative" was not. SB203580 treatment resulted in a drastic down-regulation of p38 and NF-kappaB activity. The molecular analysis of NF-kappaB activation revealed that Rip-like interacting caspase-like apoptosis-regulatory protein kinase (RICK), a key component of a pathway leading to NF-kappaB induction, is also strongly inhibited by SB203580. In contrast, SB203580 had no effect on the colitis-induced activation of other potential NF-kappaB-activating kinases such as protein kinase C (PKC), mixed lineage kinase 3, and the oncogene product Cot/TPL2. Thus, the inhibitory effect of SB203580 on NF-kappaB activation is to a large extent mediated by RICK inhibition. RICK is the effector kinase of the intracellular receptor of bacterial peptidoglycan NOD. Because bacterial products are suggested to be the key pathogenic agents triggering IBD, inhibition of the NOD/RICK pathway may serve as a novel target of future therapies in human IBD.  相似文献   

14.
Yang W  Li H  Luo H  Luo W 《Life sciences》2011,88(7-8):302-306
AimsThis study tested the hypothesis that the inhibition of semicarbazide-sensitive amine oxidase (SSAO) after ischemia could attenuate myocardial ischemia–reperfusion (I/R) injury.Main methodsAnesthetized male Sprague–Dawley rats underwent myocardial I/R injury. Saline, semicarbazide (SCZ, 30 mg/kg), hydralazine (HYD, 10 mg/kg), or LJP 1207 (30 mg/kg) was administered intraperitoneally 3 min before reperfusion. After 30 min of ischemia and 180 min of reperfusion, the myocardial infarct size was determined using nitroblue tetrazolium staining. Myocardial myeloperoxidase activity was determined through biochemical assay. HE staining was used for histopathological evaluation. Myocardial SSAO activity was assayed with high performance liquid chromatography analysis. Additionally, the endothelial expression of P-selectin was evaluated using immunohistochemistry after 30 min of ischemia and 20 min of reperfusion.Key findingsMyocardial SSAO activity was increased in myocardial I/R injury. Administration of SCZ, HYD, or LJP 1207 reduced the myocardial infarct size and decreased leukocyte infiltration and endothelial P-selectin expression in myocardial I/R injury in vivo.SignificanceThese data suggest that myocardial I/R injury up-regulates myocardial SSAO activity, and the inhibition of SSAO prior to reperfusion is able to attenuate acute myocardial I/R injury.  相似文献   

15.
Rapamycin has been demonstrated to exhibit neuroprotective functions via the activation of autophagy in a cerebral ischemia model. However, the involvement of mitophagy in this process and its contribution to the protection of mitochondrial function remains unknown. The present study explored the characteristics of mitophagy after cerebral ischemia and the effect of rapamycin on mitochondrial function. Male Sprague–Dawley rats underwent transient middle cerebral artery occlusion (tMCAO). Neurological deficits scores; infarct volumes; mitophagy morphology; and the levels of malondialdehyde (MDA), adenosine triphosphate (ATP) and mitochondrial membrane potentials (Δψm) were examined. The expression of LC3, Beclin-1 and p62 in the mitochondrial fraction combined with transmission electronic microscopy were used to explore mitophagic activity after ischemia. We also blocked autophagosome formation using 3-methyladenine (3-MA) to check the linkage between the mitochondrial protective effect of rapamycin and enhanced mitophagy. We observed that rapamycin significantly enhanced mitophagy, as evidenced by the increase in LC3-II and Beclin-1 expression in the mitochondria and p62 translocation to the mitochondria. Rapamycin reduced infarct volume, improved neurological outcomes and inhibited mitochondrial dysfunction compared with the control animals (< 0.05). However, these protective effects were reversed by 3-methyladenine treatment after rapamycin. The present study indicates that rapamycin treatment attenuates mitochondrial dysfunction following cerebral ischemia, which is linked to enhanced mitophagy.  相似文献   

16.
Acute ischemic stroke is a major risk for morbidity and mortality in our aging population. Currently only one drug, the thrombolytic tissue plasminogen activator, is approved by the US Food and Drug Administration to treat stroke. Therefore, there is a need to develop new drugs that promote neuronal survival following stroke. We have synthesized a novel neuroprotective molecule called CNB-001 (a pyrazole derivative of curcumin) that has neurotrophic activity, enhances memory, and blocks cell death in multiple toxicity assays related to ischemic stroke. In this study, we tested the efficacy of CNB-001 in a rigorous rabbit ischemic stroke model and determined the molecular basis of its in vivo activity. CNB-001 has substantial beneficial properties in an in vitro ischemia assay and improves the behavioral outcome of rabbit ischemic stroke even when administered 1?h after the insult, a therapeutic window in this model comparable to tissue plasminogen activator. In addition, we elucidated the protein kinase pathways involved in neuroprotection. CNB-001 maintains the calcium-calmodulin-dependent kinase signaling pathways associated with neurotrophic growth factors that are critical for the maintenance of neuronal function. On the basis of its in vivo efficacy and novel mode of action, we conclude that CNB-001 has a great potential for the treatment of ischemic stroke as well as other CNS pathologies.  相似文献   

17.

Background

Ion channels play a crucial role in the development of ischemic brain injury. Recent studies have reported that the blockade of various types of ion channels improves outcomes in experimental stroke models. Amiodarone, one of the most effective drugs for life-threatening arrhythmia, works as a multiple channel blocker and its characteristics cover all four Vaughan-Williams classes. Although it is known that amiodarone indirectly contributes to preventing ischemic stroke by maintaining sinus rhythm in patients with atrial fibrillation, the direct neuroprotective effect of amiodarone has not been clarified. The purpose of this study was to investigate the direct effect of amiodarone on ischemic stroke in mice.

Methods

Focal cerebral ischemia was induced via distal permanent middle cerebral artery occlusion (MCAO) in adult male mice. The amiodarone pre-treatment group received 50 mg/kg of amiodarone 1 h before MCAO; the amiodarone post-treatment groups received 50 mg/kg of amiodarone immediately after MCAO; the control group received vehicle only. In addition, the sodium channel opener veratrine and selective beta-adrenergic agonist isoprotelenol were used to elucidate the targeted pathway. Heart rate and blood pressure were monitored perioperatively. Infarct volume analysis was conducted 48 h after MCAO. The body asymmetry test and the corner test were used for neurological evaluation.

Results

Amiodarone pre-treatment and post-treatment reduced the heart rate but did not affect the blood pressure. No mice showed arrhythmia. Compared with the control group, the amiodarone pre-treatment group had smaller infarct volumes (8.9?±?2.1% hemisphere [mean?±?SD] vs. 11.2?±?1.4%; P?<?0.05) and improved functional outcomes: lower asymmetric body swing rates (52?±?17% vs. 65?±?18%; P?<?0.05) and fewer left turns (7.1?±?1.2 vs. 8.3?±?1.2; P?<?0.05). In contrast, amiodarone post-treatment did not improve the outcomes after MCAO. The neuroprotective effect of amiodarone pre-treatment was abolished by co-administration of veratrine but not by isoproterenol.

Conclusions

Amiodarone pre-treatment attenuated ischemic brain injury and improved functional outcomes without affecting heart rhythm and blood pressure. The present results showed that amiodarone pre-treatment has neuroprotective effects, at least in part, via blocking the sodium channels.
  相似文献   

18.
Pigment epithelium-derived factor (PEDF) is a 50-kDa glycoprotein that protects various types of cultured neurons against neurotoxic stimuli, but its precise role in the CNS is not fully understood. In this study, we used rats whose brains were transfected to over-express human PEDF in order to elucidate the neuroprotective effect of PEDF following transient middle cerebral artery occlusion (MCAO). A replication-defective adenoviral vector containing the human PEDF gene (Ad.PEDF) or E. coli β-galactosidase (Ad.LacZ) was directly injected into the right striatum at 7 days prior to 70 min of MCAO in rats. Infarct volume and degree of edema of the Ad.PEDF-treated group were significantly reduced compared to the Ad.LacZ-treated group 24 h after MCAO. Degeneration of neurons, astrocytes, and oligodendrocytes caused by MCAO were attenuated by over-expression of PEDF. The up-regulation of pro-inflammatory genes (TNFα, IL-1β, IL-6, COX-2, and iNOS) and water channel aquaporin 4 after MCAO was significantly reduced in Ad.PEDF-injected striatum. In conclusion, the results from this study provide the first in vivo evidence that PEDF is effective in protecting CNS neurons from ischemic insult, suggesting that PEDF may have a role as an endogenous neuroprotectant in the CNS.  相似文献   

19.
In the present study, we have investigated the effects of glycogen synthase kinase-3 (GSK-3) inhibition on infarct volume and neurobehavioral functions in a focal cerebral ischemia model. To achieve our goals, GSK-3 inhibitor II or VIII was injected at several time points and in varing dosages. GSK-3 inhibitor VIII was more effective than inhibitor II, and infarct volume and water content in the VIII group were significantly decreased 24 h after the onset of ischemic stroke, as compared with the control group. These protective effects were associated with reductions of TUNEL-positive cells, neutrophil infiltration, glucose levels after ischemia, and GSK-3 enzyme activity. In addition, expressions of death and inflammation-related signals decreased and those of survival-related signals increased. Lastly, neurobehavioral functions were restored to a greater extent in the VIII group than in the control group. Together, these results suggest that GSK-3 inhibition reduces infarct volume and restores neurobehavioral functions.  相似文献   

20.
Mixed efficacy of neuroprotective drugs in clinical trials has led to the emergence of the approach of combination therapy in stroke. The present study was carried out to investigate the effect of the combination of melatonin (potent antioxidant) and meloxicam (preferential inhibitor of cyclooxygenase-2 enzyme) against a middle cerebral artery occlusion model of stroke in rats. Male Wistar rats in the weight range of 250-300 g were used. Rats were anesthetized using chloral hydrate (400 mg/kg i.p) and subjected to 2 h of transient middle cerebral artery occlusion. Melatonin was administered at a dose of 20 mg/kg i.p. four times: at the time of middle cerebral artery occlusion, 1.5 h after middle cerebral artery occlusion, at the time of reperfusion, and 1 h after reperfusion. Meloxicam (2.5 mg/kg) was administered 4 h after middle cerebral artery occlusion. Motor performance tests (grip test, foot fault test, rotarod performance test, spontaneous locomotor activity), markers of oxidative stress, and triphenyltetrazolium chloride staining were carried out 24 h after middle cerebral artery occlusion. A vehicle-treated group was run in parallel. It was observed that melatonin treatment improved the motor performance and significantly attenuated the levels of malondialdehyde (MDA) as compared with the middle cerebral artery occluded group. Meloxicam treatment at the dose used neither showed significant improvement on the motor performance nor decreased the levels of MDA significantly as compared with the middle cerebral artery occluded group. However, when the combination of the two drugs was used, better protection was observed as was evident by the significant decrease in the percent foot fault errors, the increase in the time spent on the rotarod, and the increase in the six-point neurological score and grip test score. There was also a significant decrease in the levels of MDA in the combination group. The results of the present study demonstrate that enhanced protection is observed with the use of a combination of melatonin plus meloxicam in the middle cerebral artery occlusion model of acute ischemic stroke in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号