首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Necroptosis is mediated by a signaling complex called necrosome, containing receptor-interacting protein (RIP)1, RIP3, and mixed-lineage kinase domain-like (MLKL). It is known that RIP1 and RIP3 form heterodimeric filamentous scaffold in necrosomes through their RIP homotypic interaction motif (RHIM) domain-mediated oligomerization, but the signaling events based on this scaffold has not been fully addressed. By using inducible dimer systems we found that RIP1–RIP1 interaction is dispensable for necroptosis; RIP1–RIP3 interaction is required for necroptosis signaling, but there is no necroptosis if no additional RIP3 protein is recruited to the RIP1–RIP3 heterodimer, and the interaction with RIP1 promotes the RIP3 to recruit other RIP3; RIP3–RIP3 interaction is required for necroptosis and RIP3–RIP3 dimerization is sufficient to induce necroptosis; and RIP3 dimer-induced necroptosis requires MLKL. We further show that RIP3 oligomer is not more potent than RIP3 dimer in triggering necroptosis, suggesting that RIP3 homo-interaction in the complex, rather than whether RIP3 has formed homo polymer, is important for necroptosis. RIP3 dimerization leads to RIP3 intramolecule autophosphorylation, which is required for the recruitment of MLKL. Interestingly, phosphorylation of one of RIP3 in the dimer is sufficient to induce necroptosis. As RIP1–RIP3 heterodimer itself cannot induce necroptosis, the RIP1–RIP3 heterodimeric amyloid fibril is unlikely to directly propagate necroptosis. We propose that the signaling events after the RIP1–RIP3 amyloid complex assembly are the recruitment of free RIP3 by the RIP3 in the amyloid scaffold followed by autophosphorylation of RIP3 and subsequent recruitment of MLKL by RIP3 to execute necroptosis.Necroptosis is a type of programmed necrosis characterized by necrotic morphological changes, including cellular organelle swelling, cell membrane rupture,1, 2, 3 and dependence of receptor-interacting protein (RIP)14 and RIP3.5, 6, 7 Physiological function of necroptosis has been illustrated in host defense,8, 9, 10, 11 inflammation,12, 13, 14, 15, 16 tissue injury,10, 17, 18 and development.19, 20, 21Necroptosis can be induced by a number of different extracellular stimuli such as tumor necrosis factor (TNF). TNF stimulation leads to formation of TNF receptor 1 (TNFR1) signaling complex (named complex I), and complex II containing RIP1, TRADD, FAS-associated protein with a death domain (FADD), and caspase-8, of which the activation initiates apoptosis. If cells have high level of RIP3, RIP1 recruits RIP3 to form necrosome containing FADD,22, 23, 24 caspase-8, RIP1, and RIP3, and the cells undergo necroptosis.25, 26 Caspase-8 and FADD negatively regulates necroptosis,27, 28, 29, 30 because RIP1, RIP3, and CYLD are potential substrates of caspase-8.31, 32, 33, 34 Necrosome also suppresses apoptosis but the underlying mechanism has not been described yet. Mixed-lineage kinase domain-like (MLKL) is downstream of RIP3,35, 36 and phosphorylation of MLKL is required for necroptosis.37, 38, 39, 40, 41, 42Apoptosis inducing complex (complex II) and necrosome are both supramolecular complexes.43, 44, 45 A recent study showed that RIP1 and RIP3 form amyloidal fibrils through their RIP homotypic interaction motif46 (RHIM)-mediated polymerization, and suggested that amyloidal structure is essential for necroptosis signaling.47 The RIP1–RIP3 heterodimeric amyloid complex is believed to function as a scaffold that brings signaling proteins into proximity to permit their activation. However, RIP1 and RIP3 also can each form fibrils on their own RHIM domains in vitro. It is unclear how the homo- and hetero-interactions are coordinated and organized on the amyloid scaffold to execute their functions in necroptosis. Here, we used inducible dimerization systems to study the roles of RIP1–RIP1, RIP1–RIP3, and RIP3–RIP3 interactions in necroptosis signaling. Our data suggested that it is the RIP1–RIP3 interaction in the RIP1–RIP3 heterodimeric amyloid complex that empowers to recruit other free RIP3; homodimerization of RIP3 triggers its autophosphorylation and only the phosphorylated RIP3 can recruit MLKL to execute necroptosis.  相似文献   

2.
Cholestasis encompasses liver injury and inflammation. Necroptosis, a necrotic cell death pathway regulated by receptor-interacting protein (RIP) 3, may mediate cell death and inflammation in the liver. We aimed to investigate the role of necroptosis in mediating deleterious processes associated with cholestatic liver disease. Hallmarks of necroptosis were evaluated in liver biopsies of primary biliary cholangitis (PBC) patients and in wild-type and RIP3-deficient (RIP3−/−) mice subjected to common bile duct ligation (BDL). The functional link between RIP3, heme oxygenase-1 (HO-1) and antioxidant response was investigated in vivo after BDL and in vitro. We demonstrate increased RIP3 expression and mixed lineage kinase domain-like protein (MLKL) phosphorylation in liver samples of human PBC patients, coincident with thioflavin T labeling, suggesting activation of necroptosis. BDL resulted in evident hallmarks of necroptosis, concomitant with progressive bile duct hyperplasia, multifocal necrosis, fibrosis and inflammation. MLKL phosphorylation was increased and insoluble aggregates of RIP3, MLKL and RIP1 formed in BLD liver tissue samples. Furthermore, RIP3 deficiency blocked BDL-induced necroinflammation at 3 and 14 days post-BDL. Serum hepatic enzymes, fibrogenic liver gene expression and oxidative stress decreased in RIP3−/− mice at 3 days after BDL. However, at 14 days, cholestasis aggravated and fibrosis was not halted. RIP3 deficiency further associated with increased hepatic expression of HO-1 and accumulation of iron in BDL mice. The functional link between HO-1 activity and bile acid toxicity was established in RIP3-deficient primary hepatocytes. Necroptosis is triggered in PBC patients and mediates hepatic necroinflammation in BDL-induced acute cholestasis. Targeting necroptosis may represent a therapeutic strategy for acute cholestasis, although complementary approaches may be required to control progression of chronic cholestatic liver disease.Cholestasis is a pathological condition characterized by disruption of bile flow, resulting in intrahepatic and systemic retention of bile acids, with a concomitant toxic response in liver parenchymal cells, inflammation, progression to fibrosis and, ultimately, cirrhosis and premature death. Cholestatic liver injury may arise from a large number of inflicting insults, including genetic disorders, drug toxicity, hepatobiliary malignancies or obstruction of the biliary tract.1 Liver transplantation remains one of the few available options for these patients.2 This calls for novel therapeutic approaches, based in a better understanding of molecular, cellular and biochemical mechanisms underlying pathogenesis of cholestasis.Inappropriate activation of cell death is intimately associated with the pathogenesis of cholestatic liver diseases.3 In addition to apoptosis, different regulated necrotic cell death routines are emerging, defined as genetically controlled cell death processes with morphological hallmarks of oncotic necrosis.4 Necroptosis, the most well-studied pathway of regulated necrosis, depends on receptor-interacting protein (RIP) 3 kinase activity. In particular conditions, RIP1 and RIP3 engage in physical interactions upon activation of death receptors,5 creating a filamentous amyloid protein complex called necrosome.6 Upon phosphorylation by active RIP3, mixed lineage kinase domain (MLKL) oligomerizes and translocates to cellular membranes, hence compromising their ability to preserve ionic homeostasis.7, 8Activation of necroptosis appears to constitute a pathophysiological event in chronic inflammatory liver diseases, namely alcoholic and non-alcoholic steatohepatitis (NASH).9, 10, 11 Although controversial,12 necroptosis has also been suggested to mediate experimental acetaminophen-induced hepatotoxicity in early phases,13, 14 and phosphorylated MLKL (p-MLKL) is detected in liver biopsies of patients with drug-induced liver injury (DILI),7 frequently associated with cholestasis.15 In agreement with a role of necroptosis in cholestatic liver injury, combined ablation of hepatocyte-specific caspase-8 and nuclear factor-κB essential modulator results in spontaneous massive liver necrosis and cholestasis in mice, with a concomitant formation of necrosome complexes in the foci of necrotic areas.16 Further, in an animal model of chronic hepatitis and severe cholestasis, absence of RIP3 attenuates cholestasis and jaundice, suggesting the involvement of RIP3 signaling in cholestasis.17In this study, we provide evidence of hallmarks of necroptosis activation in human primary biliary cholangitis (PBC) liver tissue. Further, we show that, in mice subjected to common bile duct ligation (BDL), genetic ablation of RIP3 protects hepatocytes from oxidative stress, inflammation and necrosis, but fails to prevent BDL-induced secondary fibrosis.  相似文献   

3.
Receptor-interacting protein (RIP)3 is a critical regulator of necroptosis and has been demonstrated to be associated with various diseases, suggesting that its inhibitors are promising in the clinic. However, there have been few RIP3 inhibitors reported as yet. B-RafV600E inhibitors are an important anticancer drug class for metastatic melanoma therapy. In this study, we found that 6 B-Raf inhibitors could inhibit RIP3 enzymatic activity in vitro. Among them, dabrafenib showed the most potent inhibition on RIP3, which was achieved by its ATP-competitive binding to the enzyme. Dabrafenib displayed highly selective inhibition on RIP3 over RIP1, RIP2 and RIP5. Moreover, only dabrafenib rescued cells from RIP3-mediated necroptosis induced by the necroptosis-induced combinations, that is, tumor necrosis factor (TNF)α, TNF-related apoptosis-inducing ligand or Fas ligand plus Smac mimetic and the caspase inhibitor z-VAD. Dabrafenib decreased the RIP3-mediated Ser358 phosphorylation of mixed lineage kinase domain-like protein (MLKL) and disrupted the interaction between RIP3 and MLKL. Notably, RIP3 inhibition of dabrafenib appeared to be independent of its B-Raf inhibition. Dabrafenib was further revealed to prevent acetaminophen-induced necrosis in normal human hepatocytes, which is considered to be mediated by RIP3. In acetaminophen-overdosed mouse models, dabrafenib was found to apparently ease the acetaminophen-caused liver damage. The results indicate that the anticancer B-RafV600E inhibitor dabrafenib is a RIP3 inhibitor, which could serve as a sharp tool for probing the RIP3 biology and as a potential preventive or therapeutic agent for RIP3-involved necroptosis-related diseases such as acetaminophen-induced liver damage.Necroptosis, also known as programmed necrosis, is a kind of programmed cell death that occurs at conditions that result in blocking the execution of apoptosis.1, 2 The protein kinase receptor-interacting protein (RIP)3 is a serine/threonine protein kinase that has recently been demonstrated to be the critical regulator that switches cells from apoptosis to necroptosis.3, 4, 5, 6 The death receptor ligands, such as tumor necrosis factor (TNF)α, Fas ligand and TNF-related apoptosis-inducing ligand (TRAIL), are classical inducers of apoptosis or necroptosis. By binding to their respective receptors, they lead to activation of functional caspase-8, which results in apoptosis by activating the effector caspases such as caspase-3 but inactivating the necroptic kinases such as RIP3. When caspase-8 is absent or inhibited by caspase inhibitors such as z-VAD, those death receptor ligands cause necroptosis, which can be augmented by Smac mimetic that promotes degradation of inhibitor of apoptosis proteins.3, 4, 5, 6RIP3 is widely involved in physiological processes and pathological states.6 RIP3 deficiency not only rescues the lethality of caspase-8−/− and FADD−/− mice7 and restores normal proliferation of their T cells,6 but also protects hepatocytes from ethanol-induced injury and steatosis,8 rescues caspase-8 or FADD deficiency-induced massive inflammation in epithelium,9 prevents cerulean-induced acute necrotizing pancreatitis,3, 4 inhibits photoreceptor and cone cell death10, 11 and alleviates macrophage necrosis in advanced atherosclerosis lesions.12 Acetaminophen is an extensively used analgesic and antipyretic. When taken in overdose, its most frequent toxicity is hepatotoxicity including fatal centrilobular hepatic necrosis.13, 14 Acetaminophen overdose is the most common cause of acute liver failure in the United States and the United Kingdom.15 It also causes 11.86% of acute liver failure in China.16 Enhanced levels of high-mobility group box-1 and necrosis keratin-18 marked occurrence of hepatic necrosis.14 Necrosis has been considered as the predominant mode of cell death in this case, for which RIP3 has been shown to be responsible.17 In addition, RIP3 might also be associated with carcinogenesis and tumor drug resistance to chemotherapeutics.18, 19 These lines of evidence suggest potential extensive uses of small-molecule RIP3 inhibitors in medical prevention or therapy.However, few RIP3 inhibitors have been reported20 and no small-molecule RIP3 inhibitors have been investigated for the potential medical uses. One possible cause is that there lacks a proper RIP3 kinase assay for screening for its inhibitors at molecular levels, which should be highly sensitive, free of radioisotopes, and high throughput. We thus established a non-radioactive luminescent RIP3 kinase assay in this study. By using this assay, we found that 6 B-Raf inhibitors inhibited the RIP3 enzymatic activity in vitro. But only dabrafenib could rescue cells from RIP3-mediated necroptosis induced by TNFα, TRAIL or Fas ligand plus Smac mimetic and the caspase inhibitor z-VAD. Dabrafenib directly and ATP-competitively bound to RIP3 protein and caused highly selective inhibition on RIP3 over RIP1, RIP2 and RIP5. Dabrafenib was demonstrated to ease acetaminophen-induced necrosis in normal human hepatocytes and to prevent acetaminophen-induced liver injury in mice. Our study raises a possibility that the medical indications of the B-RafV600E inhibitor dabrafenib might be extended from cancers to RIP3-involved diseases.  相似文献   

4.
5.
6.
Necroptosis is a form of regulated necrotic cell death mediated by receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3. Necroptotic cell death contributes to the pathophysiology of several disorders involving tissue damage, including myocardial infarction, stroke and ischemia-reperfusion injury. However, no inhibitors of necroptosis are currently in clinical use. Here we performed a phenotypic screen for small-molecule inhibitors of tumor necrosis factor-alpha (TNF)-induced necroptosis in Fas-associated protein with death domain (FADD)-deficient Jurkat cells using a representative panel of Food and Drug Administration (FDA)-approved drugs. We identified two anti-cancer agents, ponatinib and pazopanib, as submicromolar inhibitors of necroptosis. Both compounds inhibited necroptotic cell death induced by various cell death receptor ligands in human cells, while not protecting from apoptosis. Ponatinib and pazopanib abrogated phosphorylation of mixed lineage kinase domain-like protein (MLKL) upon TNF-α-induced necroptosis, indicating that both agents target a component upstream of MLKL. An unbiased chemical proteomic approach determined the cellular target spectrum of ponatinib, revealing key members of the necroptosis signaling pathway. We validated RIPK1, RIPK3 and transforming growth factor-β-activated kinase 1 (TAK1) as novel, direct targets of ponatinib by using competitive binding, cellular thermal shift and recombinant kinase assays. Ponatinib inhibited both RIPK1 and RIPK3, while pazopanib preferentially targeted RIPK1. The identification of the FDA-approved drugs ponatinib and pazopanib as cellular inhibitors of necroptosis highlights them as potentially interesting for the treatment of pathologies caused or aggravated by necroptotic cell death.Programmed cell death has a crucial role in a variety of biological processes ranging from normal tissue development to diverse pathological conditions.1, 2 Necroptosis is a form of regulated cell death that has been shown to occur during pathogen infection or sterile injury-induced inflammation in conditions where apoptosis signaling is compromised.3, 4, 5, 6 Given that many viruses have developed strategies to circumvent apoptotic cell death, necroptosis constitutes an important, pro-inflammatory back-up mechanism that limits viral spread in vivo.7, 8, 9 In contrast, in the context of sterile inflammation, necroptotic cell death contributes to disease pathology, outlining potential benefits of therapeutic intervention.10 Necroptosis can be initiated by death receptors of the tumor necrosis factor (TNF) superfamily,11 Toll-like receptor 3 (TLR3),12 TLR4,13 DNA-dependent activator of IFN-regulatory factors14 or interferon receptors.15 Downstream signaling is subsequently conveyed via RIPK116 or TIR-domain-containing adapter-inducing interferon-β,8, 17 and converges on RIPK3-mediated13, 18, 19, 20 activation of MLKL.21 Phosphorylated MLKL triggers membrane rupture,22, 23, 24, 25, 26 releasing pro-inflammatory cellular contents to the extracellular space.27 Studies using the RIPK1 inhibitor necrostatin-1 (Nec-1) 28 or RIPK3-deficient mice have established a role for necroptosis in the pathophysiology of pancreatitis,19 artherosclerosis,29 retinal cell death,30 ischemic organ damage and ischemia-reperfusion injury in both the kidney31 and the heart.32 Moreover, allografts from RIPK3-deficient mice are better protected from rejection, suggesting necroptosis inhibition as a therapeutic option to improve transplant outcome.33 Besides Nec-1, several tool compounds inhibiting different pathway members have been described,12, 16, 21, 34, 35 however, no inhibitors of necroptosis are available for clinical use so far.2, 10 In this study we screened a library of FDA approved drugs for the precise purpose of identifying already existing and generally safe chemical agents that could be used as necroptosis inhibitors. We identified the two structurally distinct kinase inhibitors pazopanib and ponatinib as potent blockers of necroptosis targeting the key enzymes RIPK1/3.  相似文献   

7.
8.
Mixed lineage kinase domain-like pseudokinase (MLKL) mediates necroptosis by translocating to the plasma membrane and inducing its rupture. The activation of MLKL occurs in a multimolecular complex (the ‘necrosome''), which is comprised of MLKL, receptor-interacting serine/threonine kinase (RIPK)-3 (RIPK3) and, in some cases, RIPK1. Within this complex, RIPK3 phosphorylates the activation loop of MLKL, promoting conformational changes and allowing the formation of MLKL oligomers, which migrate to the plasma membrane. Previous studies suggested that RIPK3 could phosphorylate the murine MLKL activation loop at Ser345, Ser347 and Thr349. Moreover, substitution of the Ser345 for an aspartic acid creates a constitutively active MLKL, independent of RIPK3 function. Here we examine the role of each of these residues and found that the phosphorylation of Ser345 is critical for RIPK3-mediated necroptosis, Ser347 has a minor accessory role and Thr349 seems to be irrelevant. We generated a specific monoclonal antibody to detect phospho-Ser345 in murine cells. Using this antibody, a series of MLKL mutants and a novel RIPK3 inhibitor, we demonstrate that the phosphorylation of Ser345 is not required for the interaction between RIPK3 and MLKL in the necrosome, but is essential for MLKL translocation, accumulation in the plasma membrane, and consequent necroptosis.Regulated necrotic cell death, or ‘necroptosis,'' is mediated by the interaction of activated receptor-interacting kinase-3 (RIPK3) and mixed lineage kinase like (MLKL).1, 2, 3 The function of RIPK3 to promote necroptosis can be induced by the activity of receptor-interacting protein kinase-1 (RIPK1),4 and is antagonized by the proteolytic activity of a complex formed by RIPK1, FADD, caspase-8 and c-FLIPL.5, 6, 7, 8, 9, 10 Inactive RIPK1 functions to inhibit RIPK3 activation, even under conditions in which RIPK3 is activated independently of RIPK1.11, 12, 13 These complex interactions help to account for the lethal effects of ablating FADD, caspase-8 or RIPK1.14MLKL is a substrate for RIPK3 kinase activity1, 2, 3 and appears to execute the process of necroptosis by targeting the plasma membrane.15, 16, 17 The phosphorylation of MLKL by RIPK3 has been proposed to promote necroptosis by inducing essential changes in the ‘latch'' of this pseudokinase, allowing the formation of oligomers, migration to plasma membrane15, 16, 17, 18 and binding to phosphatidylinositol lipids to directly disrupt membrane integrity.16, 19 Structurally, murine MLKL is composed of a pseudokinase domain (C-terminal region) and a four-helical bundle domain (4HBD) located in the N-terminal region.3, 20 The 4HBD domain is sufficient to oligomerize, bind to phosphatidylinositol lipids and trigger cell death.16, 19 However, the activation of full-length MLKL requires phosphorylation of residues in the activation loop in the pseudokinase domain. The residues Ser345, Ser347 and Thr349 within the murine MLKL activation loop are RIPK3 phosphorylation sites,3 corresponding to Thr357 and Ser358 in human MLKL.16 Upon RIPK3 phosphorylation, human MLKL shifts from its monomeric state to an active oligomeric state.16The residue Gln343 in the murine α-helix (residues Leu339 to Ser347) forms a hydrogen bond with Lys219 and the Ser345 and disruption of this coordinated state by phosphorylation of Ser345 has been proposed to destabilize the monomeric structure, promoting a conformational change in MLKL to an active state.3, 21 This hypothesis was supported by the specific mutations K219M, Q343A or S345D; all of which led to a form of MLKL form that promoted necroptosis independently of RIPK3.3, 16In this study, we examine serine and threonine residues within the activation loop of MLKL for their roles in necroptosis. We have developed an antibody anti-phospho-Ser345 and explore its use as a marker for necroptosis in murine cell systems. Using this antibody, together with described and novel inhibitors of RIPK3, we more fully explore the role of modifications in the active loop of MLKL during the process of necroptosis.  相似文献   

9.
The death receptor, Fas, triggers apoptotic death and is essential for maintaining homeostasis in the peripheral lymphoid organs. RIP1 was originally cloned when searching for Fas-binding proteins and was later shown to associate also with the signaling complex of TNFR1. Although Fas exclusively induces apoptosis, TNFR1 primarily activates the pro-survival/pro-inflammatory NF-κB pathway. Mutations in Fas lead to lymphoproliferative (lpr) diseases, and deletion of TNFR1 results in defective innate immune responses. However, the function of RIP1 in the adult lymphoid system has not been well understood, primarily owing to perinatal lethality in mice lacking the entire RIP1 protein in germ cells. This current study investigated the requirement for RIP1 in the T lineage using viable RIP1 mutant mice containing a conditional and kinase-dead RIP1 allele. Disabling the kinase activity of RIP1 had no obvious impact on the T-cell compartment. However, T-cell-specific deletion of RIP1 led to a severe T-lymphopenic condition, owing to a dramatically reduced mature T-cell pool in the periphery. Interestingly, the immature T-cell compartment in the thymus appeared intact. Further analysis showed that mature RIP1−/− T cells were severely defective in antigen receptor-induced proliferative responses. Moreover, the RIP1−/− T cells displayed greatly increased death and contained elevated caspase activities, an indication of apoptosis. In total, these results revealed a novel, kinase-independent function of RIP1, which is essential for not only promoting TCR-induced proliferative responses but also in blocking apoptosis in mature T cells.The pro-survival signaling pathways provide protection against cell death responses at various stages during T lymphopoiesis as well as maintenance of the mature population.1, 2 Apoptosis is a major programmed cell death pathway, which can be induced through either intrinsic or extrinsic signals.3 Under normal circumstances, the pro-survival and apoptosis signaling pathways are tightly regulated, which ensures generation of diverse T-cell repertoires, while avoiding autoimmunity. For instance, the Bcl-2 and Bcl-XL genes, which inhibit the intrinsic apoptotic pathway, are essential for both T-cell development and peripheral maintenance.4, 5 However, lack of cell death, as in the case of inactivation of Bim, a pro-apoptotic protein of the Bcl-2 family, results in lymphoproliferative and autoimmune diseases.6 The extrinsic pathway of apoptosis is triggered through cell receptors, including Fas/Apo-1 and tumor necrosis factor receptor 1 (TNFR1). Whereas Fas is a professional death receptor, TNFR1 primarily signals the pro-survival pathway by activating NF-κB, which also promotes inflammation.7, 8Receptor-interacting protein (RIP or RIP1) was originally cloned as a potential Fas-interacting protein.9 However, later studies found that lack of RIP1 has no effect on Fas-induced apoptosis.10, 11 Subsequently, RIP1 was also found to associate with the signaling complex of TNFR1.12 It was shown that RIP1 deficiency disrupts NF-κB activation induced by TNFR1 in primary mouse embryonic fibroblast cells or human Jurkat T lymphoma cells.10, 11 Several functional domains of RIP1 have been defined. In particular, RIP1 contains a serine/threonine kinase domain (KD) at the amino-terminus and a death domain (DD) at the carboxy-terminus. The intermediate domain, but not the protein serine/threonine KD of RIP1, is required for the activation of NF-κB.13 The DD of RIP1 interacts with the DD of TNFR1-associated death domain (TRADD) protein, a signaling adaptor, leading to both apoptosis and NF-κB activation.12 Therefore, RIP1 may serve as a scaffold protein in addition to being a protein serine/threonine kinase.The function of the KD of RIP1 remained unknown until the landmark work by Holler et al.,14 implicating a novel function for RIP1 in a caspase-independent cell death process with certain characteristics of necrosis, namely necroptosis. Importantly, mutations targeting the kinase activity of RIP1 abolish necroptotic cell death induced by TNFR1. The in vivo role of RIP1-mediated necroptosis was first revealed by analysis of the embryonic defect displayed by mice lacking the Fas-associated death domain (FADD) protein.15 The FADD adaptor protein relays exclusively apoptotic signals in the pathways triggered by Fas, TNFR1, and TNF-related apoptosis-inducing ligand receptors (TRAIL-Rs or DR4/5).16, 17, 18 Whereas none of the DRs are essential for mouse development, FADD deficiency resulted in midgestation death of mouse embryos.19, 20 Interestingly, when RIP1 is absent, normal embryonic development is restored in FADD−/− mice,15 indicating that FADD−/− embryonic lethality is caused by RIP1-dependent necroptosis.Although normal during embryogenesis, RIP1−/− FADD−/− double knockout (DKO) mice display perinatal lethality,15 similar to the phenotype of RIP1−/− single knockout mice.10 In contrast, deletion of a RIP1-related protein kinase, RIP3, fully restores normal embryonic as well as postnatal development in FADD−/− mice.21 Recent studies demonstrated that RIP1−/− mice can only reach adulthood when both FADD and RIP3 are absent, indicating that RIP1 protects neonatal cells from FADD-mediated apoptosis and RIP3-dependent necroptosis.22, 23, 24, 25 Importantly, FADD−/− RIP3−/− DKO mice and RIP1−/− FADD−/− RIP3−/− triple knockout mice develop age-dependent lymphadenopathy and splenomegaly, reminiscent of the lymphoproliferative (lpr) disease displayed by Fas−/− mice. Therefore, both apoptosis and necroptosis are essential for homeostasis in the peripheral lymphoid organs.Previous studies have indicated that RIP1 is essential for T-cell development, because RIP1-deficient fetal liver cells fail to reconstitute the T-cell compartment in immunodeficient recipient mice.15, 26 A recent study showed that lack of RIP1 in hematopoietic stem cells and progenitors (HSCs/Ps) leads to a severe defect in hematopoiesis.27 However, the temporal requirement for RIP1, particularly at postlineage commitment stages, remains unclear. In the current study, T lineage-specific deletion of RIP1 revealed a novel stage-specific requirement for RIP1 to protect T cells from apoptosis as well as to allow normal proliferative responses.  相似文献   

10.
Necroptosis is a caspase-independent form of regulated cell death that has been implicated in the development of a range of inflammatory, autoimmune and neurodegenerative diseases. The pseudokinase, Mixed Lineage Kinase Domain-Like (MLKL), is the most terminal known obligatory effector in the necroptosis pathway, and is activated following phosphorylation by Receptor Interacting Protein Kinase-3 (RIPK3). Activated MLKL translocates to membranes, leading to membrane destabilisation and subsequent cell death. However, the molecular interactions governing the processes downstream of RIPK3 activation remain poorly defined. Using a phenotypic screen, we identified seven heat-shock protein 90 (HSP90) inhibitors that inhibited necroptosis in both wild-type fibroblasts and fibroblasts expressing an activated mutant of MLKL. We observed a modest reduction in MLKL protein levels in human and murine cells following HSP90 inhibition, which was only apparent after 15 h of treatment. The delayed reduction in MLKL protein abundance was unlikely to completely account for defective necroptosis, and, consistent with this, we also found inhibition of HSP90 blocked membrane translocation of activated MLKL. Together, these findings implicate HSP90 as a modulator of necroptosis at the level of MLKL, a function that complements HSP90''s previously demonstrated modulation of the upstream necroptosis effector kinases, RIPK1 and RIPK3.Necroptosis is an inflammatory, caspase-independent form of regulated cell death characterised by loss of cellular membrane integrity and release of cytoplasmic contents.1 It is believed to have evolved as a defence mechanism against viruses;2, 3 however, there is increasing evidence that deregulated necroptosis has a role in the pathogenesis of a range of inflammatory, autoimmune and neurodegenerative diseases.4, 5, 6, 7, 8 Reduced capacity to undergo necroptosis has been correlated to increased aggressiveness of cancers;9, 10 and therapeutic initiation of necroptosis is currently being investigated as a cancer therapy.11, 12 Additionally, there is emerging evidence that the necroptotic signalling pathway has a general role in the modulation of inflammation.13, 14, 15, 16, 17 As such, unravelling the molecular events governing necroptosis, and potential avenues for therapeutic intervention, is of enormous interest.Necroptosis is initiated through activation of death receptors, such as Tumour Necrosis Factor Receptor 1 (TNFR1), or through microbial activation of pattern recognition receptors, such as Toll-like receptors or intracellular viral DNA sensors.3, 18, 19, 20 Receptor ligation initiates a signalling cascade, whereby Receptor Interacting Protein Kinase (RIPK)-3 oligomerises and is phosphorylated, a process known to be regulated by association with other effectors, such as the protein kinase RIPK1, TIR-domain-containing adapter-inducing IFN-β (TRIF), or DNA-dependent activator of IFN regulatory factors (DAI), via their RIP Homotypic Interaction Motifs (RHIMs).2, 21, 22 Once activated, RIPK3 phosphorylates the pseudokinase domain of Mixed Lineage Kinase domain-Like (MLKL), the most downstream known obligate effector of the necroptotic signalling pathway, to induce its activation.23, 24 MLKL phosphorylation is thought to trigger a molecular switch,25, 26, 27 leading to the unleashing of the N-terminal executioner four-helix bundle (4HB) domain,28 MLKL oligomerisation and translocation to cellular membranes where cell death occurs via an incompletely-understood mechanism.28, 29, 30Molecular chaperones have an integral role in modulating both the structure and function of proteins. One such chaperone is heat-shock protein 90 (HSP90), which interacts with a diverse group of protein ‘clients'', the largest group comprising the kinases and pseudokinases, with 50% of the human kinome estimated to interact with HSP90.31 These interactions are dependent on the recognition of the kinase or pseudokinase domain by the HSP90 co-chaperone Cdc37, which enables HSP90 to confer protein stabilisation, assist in late-stage folding and conformational modifications, and mediate intracellular transport.32, 33, 34, 35It has already been demonstrated that the necroptotic pathway is subject to modulation by HSP90. RIPK1 is well established as an HSP90 client protein, with a number of studies finding HSP90 inhibition affects both the stability and function of RIPK1 and promotes an apoptotic phenotype.36, 37, 38, 39, 40, 41 More recently, RIPK3 was also identified as an HSP90 client.2, 42, 43 Surprisingly, HSP90 inhibition did not markedly impact RIPK3 abundance or stability, but rather was essential for RIPK3''s necroptotic functions, such as phosphorylation of MLKL.42 However, whether MLKL itself is a client of HSP90 has not been investigated.In this study, using a phenotypic screen for small-molecule inhibitors of MLKL-driven cell death, we identified HSP90 as a modulator of necroptosis that functions on, or downstream of, the terminal effector, MLKL. HSP90 inhibition did not markedly reduce levels of MLKL in human U937 or mouse dermal fibroblasts, suggesting instead that HSP90 has an active role in governing MLKL-mediated cell death. This idea is supported by our finding that cell death driven by the S345D activated mutant of MLKL in Ripk3-deficient fibroblasts in the absence of necroptotic stimuli was suppressed by three distinct chemical classes of HSP90 inhibitor, but MLKL abundance was not impacted by HSP90 inhibition. Although our data indicate that MLKL binds HSP90 weakly or transiently, HSP90 activity was essential for the assembly of MLKL into high molecular weight complexes and the membrane translocation known to precede cell death. These findings suggest an expanded role for HSP90 in regulating necroptosis, and further our understanding of the mechanisms controlling MLKL-mediated cell death.  相似文献   

11.
Necroptosis is a recently described Caspase 8-independent method of cell death that denotes organized cellular necrosis. The roles of RIP1 and RIP3 in mediating hepatocyte death from acute liver injury are incompletely defined. Effects of necroptosis blockade were studied by separately targeting RIP1 and RIP3 in diverse murine models of acute liver injury. Blockade of necroptosis had disparate effects on disease outcome depending on the precise etiology of liver injury and component of the necrosome targeted. In ConA-induced autoimmune hepatitis, RIP3 deletion was protective, whereas RIP1 inhibition exacerbated disease, accelerated animal death, and was associated with increased hepatocyte apoptosis. Conversely, in acetaminophen-mediated liver injury, blockade of either RIP1 or RIP3 was protective and was associated with lower NLRP3 inflammasome activation. Our work highlights the fact that diverse modes of acute liver injury have differing requirements for RIP1 and RIP3; moreover, within a single injury model, RIP1 and RIP3 blockade can have diametrically opposite effects on tissue damage, suggesting that interference with distinct components of the necrosome must be considered separately.The etiologies of acute liver injury are diverse and its overall public health burden is considerable. Liver injury from acetaminophen (APAP) overdose is the most common cause of death from over-the-counter drugs and is the leading cause of acute liver failure in the developed world.1, 2, 3 Hepatic dysfunction from autoimmune hepatitis has a prevalence of 10–20/100 000.4, 5 Other etiologies of acute liver failure include idiosyncratic reaction to medications such as tetracycline, severe viral or alcoholic hepatitis, acute fatty liver of pregnancy, and idiopathic causes. Clinical complications resulting from liver failure include hepatic encephalopathy, impaired protein synthesis, and coagulopathies. Moreover, there are no effective means to reverse liver failure once advanced disease sets in – regardless of etiology – and transplantation frequently remains the only option for survival.6Concanavalin-A (ConA) is a lectin derived from the jack-bean plant with a unique ability to induce hepatitis in a well-described murine model of acute hepatic injury. ConA stimulates mouse CD4+ T-cell subsets to mediate insult to hepatocytes. The resulting cytokine release can further lead to recruitment and activation of innate inflammatory mediators, which perpetuate an insidious cycle of inflammation and hepatocellular injury.7, 8, 9APAP is a widely used analgesic and antipyretic. Although usually considered safe at therapeutic doses, at higher doses APAP causes acute liver failure characterized by centrilobular hepatic necrosis.1, 10 At therapeutic doses, >90% of APAP is metabolized by glucuronidation and sulphation and its metabolites are excreted via the renal system. Of the remaining APAP, roughly 2% is excreted intact in the urine, and approximately 8% is metabolized by the cytochrome P450 system to N-acetyl-p-benzo-quinone imine (NAPQI), which is highly reactive.11, 12 Hepatic glutathione (GSH) then induces the formation of a safely excretable APAP-protein adduct. However, at toxic doses of APAP, GSH becomes depleted and NAPQI is able to exert harmful effects by forming covalent bonds with mitochondrial proteins, inhibiting the Ca2+-Mg2+-ATPase and inducing mitochondrial dysfunction.1, 2 This disturbance leads to a decrease in ATP synthesis, disruption of cellular membrane, and eventually hepatocyte death.13Although GSH depletion and the resulting toxic metabolites are prerequisites for APAP hepatotoxicity, there is evidence that the severity of liver injury may depend on subsequent participation of innate immunity.10, 14, 15, 16 In particular, APAP-induced injury has been reported to be contingent on activation of the NLRP3 inflammasome via DAMPs released from injured hepatocytes. Inflammasome activation cleaves Caspase 1 inducing IL-1β release and galvanizing intrahepatic neutrophils and inflammatory monocytes, which exacerbate injury.17 However, alternate studies using transgenic mice suggest that NLRP3 inflammasome is largely dispensable for APAP toxicity.18 Thus the role of inflammasome activation in APAP toxicity is controversial and may be dependent on the precise experimental conditions or strain of mice employed.Apoptosis and necrosis are classically understood processes of cell death that denote either organized Caspase 8-dependent programmed cell death or non-programmed disorganized death, respectively. In contrast to necrosis, which leads to the release of DAMPs and sustains inflammation, apoptosis produces cell fragments called apoptotic bodies, which phagocytic cells are able to engulf before the contents of the cell can spill out onto the surrounding space and activate innate immunity. ‘Necroptosis'' is a recently described Caspase 8-independent method of cell death that denotes organized cellular necrosis. Necroptosis requires the co-activation of RIP1 and RIP3 kinases. Both in vitro and in vivo investigations have suggested that APAP can induce cellular demise via necrosis or Caspase 8-dependent apoptosis, which is determined, in part, by ATP availability from glycolysis.19 Zhang et al.20 recently confirmed that RIP1 is necessary in APAP-induced necroptosis. Similarly, Takemoto et al.21 showed that RIP1 inhibition protects against reactive oxygen species (ROS)-induced hepatotoxicity in APAP-induced acute liver injury. Further, a recent report suggested that selective inhibition of RIP3 using the anticancer drug Dabrafenib alleviates APAP injury.22In the ConA model of acute liver injury, experiments using apoptosis-resistant mice expressing mutant FADD revealed that ConA alone induced primarily necrotic cell death, whereas ConA combined with d-galactosamine induced apoptosis and necrotic cell death.23 Zhou et al.24 reported that Necrostatin-1 (Nec-1) prevents autoimmune hepatitis in mice via RIP1- and autophagy-related pathways. Another recent report investigated the role of RIP1, RIP3, and PARP-1 in murine autoimmune hepatitis. This study found that in cases where death of mouse hepatocytes is dependent on TRAIL and NKT cells, PARP-1 activity was positively correlated with liver injury and hepatitis was prevented both by RIP1 or PARP-1 inhibitors.25 Our goal in the current study was to investigate, in parallel, the effects of RIP1 and RIP3 blockade in diverse models of acute liver injury. Our work suggests that modulating necroptosis may have divergent effects, depending on the etiology of hepatic injury and the specific component of the necrosome being targeted.  相似文献   

12.
13.
Apoptosis is a key mechanism for metazoans to eliminate unwanted cells. Resistance to apoptosis is a hallmark of many cancer cells and a major roadblock to traditional chemotherapy. Recent evidence indicates that inhibition of caspase-dependent apoptosis sensitizes many cancer cells to a form of non-apoptotic cell death termed necroptosis. This has led to widespread interest in exploring necroptosis as an alternative strategy for anti-cancer therapy. Here we show that in human colon cancer tissues, the expression of the essential necroptosis adaptors receptor interacting protein kinase (RIPK)1 and RIPK3 is significantly decreased compared with adjacent normal colon tissues. The expression of RIPK1 and RIPK3 was suppressed by hypoxia, but not by epigenetic DNA modification. To explore the role of necroptosis in chemotherapy-induced cell death, we used inhibitors of RIPK1 or RIPK3 kinase activity, and modulated their expression in colon cancer cell lines using short hairpin RNAs. We found that RIPK1 and RIPK3 were largely dispensable for classical chemotherapy-induced cell death. Caspase inhibitor and/or second mitochondria-derived activator of caspase mimetic, which sensitize cells to RIPK1- and RIPK3-dependent necroptosis downstream of tumor necrosis factor receptor-like death receptors, also did not alter the response of cancer cells to chemotherapeutic agents. In contrast to the RIPKs, we found that cathepsins are partially responsible for doxorubicin or etoposide-induced cell death. Taken together, these results indicate that traditional chemotherapeutic agents are not efficient inducers of necroptosis and that more potent pathway-specific drugs are required to fully harness the power of necroptosis in anti-cancer therapy.Cell death by apoptosis is a natural barrier to cancer development, as it limits uncontrolled proliferation driven by oncogenes.1 Chemotherapeutic agents that target apoptosis have been successful in anti-cancer therapy. However, cancer cells, especially cancer stem cells, often evolve multiple mechanisms to circumvent growth suppression by apoptosis.2 This resistance to apoptosis is a major challenge for many chemotherapeutic agents. Targeting other non-apoptotic cell death pathways is an attractive therapeutic alternative.A growing number of recent studies show that there are distinct genetic programmed cell death modes other than apoptosis.3 Necroptosis is mediated by receptor interacting protein kinase 3 (RIPK3).4 In the presence of caspase inhibition and cellular inhibitor of apoptosis proteins (cIAPs) depletion, tumor necrosis factor (TNF) receptor 1 triggers a signaling reaction that culminates in binding of RIPK3 with its upstream activator RIPK1 through the RIP homotypic interaction motif (RHIM).4 RIPK1 and RIPK3 phosphorylation stabilizes this complex and promotes its conversion to an amyloid-like filamentous structure termed the necrosome.5 Once activated, RIPK3 recruits its substrate mixed lineage kinase domain-like (MLKL).6 Phosphorylated MLKL forms oligomers that translocate to intracellular membranes and the plasma membrane, which eventually leads to membrane rupture.7, 8, 9, 10In addition to phosphorylation, RIPK1 and RIPK3 are also tightly regulated by ubiquitination, a process mediated by the E3 ligases cIAP1, cIAP2, and the linear ubiquitin chain assembly complex.11 The ubiquitin chains on RIPK1 act as a scaffold to activate nuclear factor-κB (NF-κB) and mitogen-activated protein kinase pathways and inhibit formation of the necrosome. As such, depletion of cIAP1/2 by second mitochondria-derived activator of caspase (Smac) mimetics or removal of the ubiquitin chains by the de-ubiquitinating enzyme cylindromatosis (CYLD) promotes necroptosis.12, 13, 14, 15 In addition, RIPK1 and RIPK3 are cleaved and inactivated by caspase 8.16, 17, 18 Mice deficient for caspase 8 or FADD, an essential adaptor protein of caspase 8, suffer from embryonic lethality due to extensive RIPK1- or RIPK3-dependent necroptosis.19, 20, 21 Hence, caspase inhibition and IAP depletion are key priming signals for necroptosis.The physiological functions of RIPK1 and RIPK3 have been extensively investigated in infectious and sterile inflammatory diseases.4, 22 By contrast, their roles in cancer cells'' response to chemotherapeutics are poorly understood. Here we show that RIPK1 and RIPK3 expression is significantly decreased in human colon cancer tissues, suggesting that suppression of RIPK1 or RIPK3 expression is advantageous for cancer growth. However, the loss of RIPK1 and RIPK3 expression in colon cancer was not due to epigenetic DNA modification. Interestingly, RIPK1 and RIPK3 expression in colon cancer cells is reduced by hypoxia, a hallmark of solid tumor. We found that chemotherapeutic agents did not effectively elicit RIPK1/RIPK3-dependent necroptosis in colon cancer cells. Moreover, caspase inhibition and Smac mimetics, which are potent sensitizers for necroptosis, also did not enhance chemotherapeutic agent-induced cell death. These results show that traditional chemotherapeutic agents are not strong inducers of classical necroptosis in colon cancers and suggest that development of pathway-specific drugs is needed to harness the power of necroptosis in anti-cancer therapy.  相似文献   

14.
Both receptor-interacting protein kinase 1 (RIPK1) and RIPK3 can signal cell death following death receptor ligation. To study the requirements for RIPK-triggered cell death in the absence of death receptor signaling, we engineered inducible versions of RIPK1 and RIPK3 that can be activated by dimerization with the antibiotic coumermycin. In the absence of TNF or other death ligands, expression and dimerization of RIPK1 was sufficient to cause cell death by caspase- or RIPK3-dependent mechanisms. Dimerized RIPK3 induced cell death by an MLKL-dependent mechanism but, surprisingly, also induced death mediated by FADD, caspase 8 and RIPK1. Catalytically active RIPK3 kinase domains were essential for MLKL-dependent but not for caspase 8-dependent death. When RIPK1 or RIPK3 proteins were dimerized, the mode of cell death was determined by the availability of downstream molecules such as FADD, caspase 8 and MLKL. These observations imply that rather than a ‘switch'' operating between the two modes of cell death, the final mechanism depends on levels of the respective signaling and effector proteins.Mammalian cells can use a number of mechanisms to kill themselves. The best characterized depends on the Bcl-2 family members Bax and Bak that work via mitochondria to activate caspases.1 Some caspases, notably caspase 8, can be activated independently of Bcl-2 family members, for example, after stimulation of members of the TNF receptor superfamily.2 Recently, it has become apparent that some of these receptors, including TNFR1, can activate a third suicide mechanism that does not require caspases, and in which the morphology of the dying cell differs from classical apoptosis. This form of cell death, termed ‘necroptosis'', can often be blocked by necrostatin-1 (nec-1), an inhibitor of the kinase activity of receptor-interacting protein kinase 1 (RIPK1).3, 4 Accordingly, observations from several groups have shown that in some cell types, expression of RIPK1 can signal cell death by caspase-independent necroptosis.5It has previously been revealed that RIPK1 could function downstream of death receptors, but in those cases, cell death was usually blocked by coexpression of the viral inhibitor of caspases 1 and 8, CrmA,6 and typically exhibited a classical ‘apoptotic'' morphology. It was revealed that RIPK1 engages FADD via homotypic binding of their death domains (DDs), and FADD in turn activates caspase 8.6, 7RIPK3, like RIPK1, bears a kinase domain and RIP homology interaction motif (RHIM), but unlike RIPK1 does not have a DD.8, 9, 10, 11 RIPK3 is required for necroptosis.12, 13 Furthermore, RIPK1 appears to activate RIPK3 in this pathway, as cell death could be blocked by nec-1.14 RIPK3 activates, by phosphorylation, MLKL, a pseudokinase essential for this death pathway.15, 16, 17 Once activated, MLKL forms multimers that trigger breaches of the plasma membrane.18, 19, 20Although RIPK3 is necessary for necroptosis, it is unclear whether activation of RIPK3 is sufficient for cell death, because TNF activates signaling by many pathways in addition to those controlled by RIPK1.21 It is also unclear whether RIPK3 can contribute to apoptosis. Despite some reports to this effect,8, 9, 22 RIPK3 has been described as the necroptotic ‘switch'', implying its activity precipitates necroptosis to the exclusion of apoptosis.23, 24, 25Here, we have directly activated RIP kinases without the confounding effects of multiple signals emanating from the target cell''s cytokine receptors, allowing us to define more precisely the functions of RIPK1 and RIPK3. We activated RIP kinases by dimerization using inducible lentiviral vectors, each encoding a chimera of a RIP kinase with subunit B of E. coli DNA gyrase.26 We infected mouse embryonic fibroblasts (MEFs) that lack genes for, or expression of, various cell death proteins, induced expression of the RIPK chimera, caused its dimerization by addition of the divalent antibiotic coumermycin (C) and quantitated the resulting cell death.Our results reveal that each of RIPK1 and RIPK3 can contribute to both apoptosis and necroptosis depending on the biochemical context. Furthermore, necroptosis can occur in the absence of caspase 8 and FADD, which shows that the ripoptosome, with core components caspase 8, FADD and RIPK1,27, 28 is not required for necroptosis. Instead, we propose that dimers of RIPK1 and/or RIPK3 are the pivotal complexes from which both forms of cell death can progress.  相似文献   

15.
16.
Acquired or intrinsic resistance to apoptotic and necroptotic stimuli is considered a major hindrance of therapeutic success in malignant melanoma. Inhibitor of apoptosis proteins (IAPs) are important regulators of apoptotic and necroptotic cell death mediated by numerous cell death signalling platforms. In this report we investigated the impact of IAPs for cell death regulation in malignant melanoma. Suppression of IAPs strongly sensitized a panel of melanoma cells to death ligand-induced cell death, which, surprisingly, was largely mediated by apoptosis, as it was completely rescued by addition of caspase inhibitors. Interestingly, the absence of necroptosis signalling correlated with a lack of receptor-interacting protein kinase-3 (RIPK3) mRNA and protein expression in all cell lines, whereas primary melanocytes and cultured nevus cells strongly expressed RIPK3. Reconstitution of RIPK3, but not a RIPK3-kinase dead mutant in a set of melanoma cell lines overcame CD95L/IAP antagonist-induced necroptosis resistance independent of autocrine tumour necrosis factor secretion. Using specific inhibitors, functional studies revealed that RIPK3-mediated mixed-lineage kinase domain-like protein (MLKL) phosphorylation and necroptosis induction critically required receptor-interacting protein kinase-1 signalling. Furthermore, the inhibitor of mutant BRAF Dabrafenib, but not Vemurafenib, inhibited necroptosis in melanoma cells whenever RIPK3 is present. Our data suggest that loss of RIPK3 in melanoma and selective inhibition of the RIPK3/MLKL axis by BRAF inhibitor Dabrafenib, but not Vemurafenib, is critical to protect from necroptosis. Strategies that allow RIPK3 expression may allow unmasking the necroptotic signalling machinery in melanoma and points to reactivation of this pathway as a treatment option for metastatic melanoma.Over the past few years, necroptosis has been established as an alternative programmed form of cell death, contrasting caspase-dependent apoptosis. It is now evident that an ordered activation of the receptor-interacting protein kinases-1 and -3 (RIPK1 and RIPK3), and their downstream substrates is mandatory for the execution of necroptosis.1, 2, 3 Under caspase-limited conditions, the necroptotic cell signalling machinery is regulated by RIPK1, with the impact of scaffolding function as compared with kinase function still unclear.1, 4, 5, 6 RIPK1 interacts with and either autophosphorylates or transphosphorylates RIPK3 (for review, see Cho et al.,1 Zhang et al.,2 He et al.,3 and Vanden Berghe et al.7). When RIPK1 is active, RIPK3 phosphorylation and activation occurs within the assembled Necrosome (for review, see Remijsen et al.8) or Ripoptosome.4, 9, 10 RIPK3 then phosphorylates the pseudo kinase mixed-lineage kinase domain-like protein (MLKL).11 MLKL in its active form allows its oligomerization, membrane accumulation, and complex formation within cellular membranes of the mitochondria12 and cell membranes,13 and finally results in necroptosis.14The RIPK1/RIPK3/MLKL signalling network acts as a sensor for genotoxic stress9 and also has a key role in necroptosis regulation in keratinocyte skin cancer (SCC).4 In these epithelial cancers, cellular inhibitors of apoptosis proteins (cIAPs) block both apoptotic and necroptotic cell death.4, 5 Both apoptosis and necroptosis can be increasingly initiated by intrinsic or extrinsic stimuli when IAPs are suppressed by IAP antagonist. Extrinsic apoptosis mediated by activation of death receptors (DRs) such as cluster of differentiation 95 (CD95), TRAILR1/R2 or tumour necrosis factor receptor-1 (TNFR1) through ligation of respective death ligands (DLs) such as CD95L, TNF-related apoptosis-inducing ligand (TRAIL), and TNF initiates apoptosis either by direct activation of the caspase cascade (caspase-8/caspase-3) or via the intrinsic cell death signalling machinery regulated by pro-apoptotic members of the Bcl-2 family followed by caspase-3 activation.15 Inhibition of caspase-8 within the death-inducing signalling complex or complex II, or within the Ripoptosome can trigger CD95L-mediated,5 TRAIL-mediated16 or TNF-induced necroptosis.8, 17 A role for apoptosis resistance, cancer maintenance, and progression is widely assumed (for review, see Obexer et al.18), but the pathophysiological inhibitory or propagating function of necroptosis has not formally been demonstrated in cancer.Metastatic melanoma has an overall poor prognosis but novel therapeutics have revolutionized clinical practice for different subsets of patients. The use of inhibitors of the V600E- or V600K-mutated proto-oncogene serine/threonine protein kinase B-RAF (e.g., Dabrafenib or Vemurafenib) results in suppression of Ras/Raf/mitogen-activated protein kinase pathways and translate into unfortunately transient clinical responses (for review, see Spagnolo et al.19). The high recrudescence of metastatic melanoma following the treatment with BRAF inhibitors will potentially require combination therapies that activate additional tumour-inhibitory pathways. Combinations such as BRAF inhibitors with mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) inhibitors have already yielded impressive results20 and other combination therapies may further improve clinical outcome.21 As BRAF inhibitors target the cell death pathway at best in an indirect manner, we reasoned that necroptosis induction could represent a novel option to improve melanoma therapy. Our investigations demonstrate for the first time that loss of RIPK3 during melanoma development is critical for necroptosis protection. Reactivation of the RIPK1/RIPK3/MLKL signalling machinery by RIPK3 reconstitution allows IAP antagonist/DL-mediated necroptosis in the presence of Vemurafenib, but not Dabrafenib. Here, Dabrafenib blocks necroptosis by interference with RIPK3-mediated MLKL phosphorylation. Therefore, strategies that increase RIPK3 expression in combination with Vemurafenib, but not Dabrafenib, likely represent an attractive strategy to overcome cell death resistance in melanoma.  相似文献   

17.
Caspase-3 is the best known executioner caspase in apoptosis. We generated caspase-3 knockout (C3KO) and knockdown human colorectal cancer cells, and found that they are unexpectedly sensitized to DNA-damaging agents including 5-fluorouracil (5-FU), etoposide, and camptothecin. C3KO xenograft tumors also displayed enhanced therapeutic response and cell death to 5-FU. C3KO cells showed intact apoptosis and activation of caspase-7 and -9, impaired processing of caspase-8, and induction of necrosis in response to DNA-damaging agents. This form of necrosis is associated with HMGB1 release and ROS production, and suppressed by genetic or pharmacological inhibition of RIP1, MLKL1, or caspase-8, but not inhibitors of pan-caspases or RIP3. 5-FU treatment led to the formation of a z-VAD-resistant pro-caspase-8/RIP1/FADD complex, which was strongly stabilized by caspase-3 KO. These data demonstrate a key role of caspase-3 in caspase-8 processing and suppression of DNA damage-induced necrosis, and provide a potentially novel way to chemosensitize cancer cells.Colorectal cancer is a major cancer killer in the United States and worldwide.1 Chemotherapeutic agents such as 5-fluorouracil (5-FU) and irinotecan (Camptosar) are commonly used in treating patients with colon cancer and other solid tumors. However, the 5-year survival of colon cancer patients with advanced diseases is <10% even with aggressive treatments.1 Most conventional chemotherapeutic agents cause DNA damage and trigger apoptosis,2 which is regulated by mitochondria-dependent intrinsic and death receptor-dependent extrinsic apoptotic pathways converging on the activation of executioner caspases-3 and -7.2 During transformation, neoplastic cells frequently become resistant to apoptosis via genetic and epigenetic mechanisms, driving accumulation of additional oncogenic events, and therapeutic resistance.3 Therefore, the exploration of alternative death pathways might provide new therapeutic options.Necrosis has long been viewed as an unregulated form of cell demise that promotes inflammation and tissue damage, whereas emerging evidence indicates that some forms of necrosis are programmed.4, 5 They can be initiated upon activation of the extended TNF-α receptor family at the cell surface, propagated through the receptor-interacting serine–threonine kinases, RIP1 and RIP3, and actively suppressed by apoptosis.6, 7, 8, 9 In mice, loss of caspase-8 leads to RIP3-dependent necrosis and embryonic lethality,10, 11 or intestinal inflammation involving TNF-α production.12, 13 In HT29 colon cancer cells, the addition of pan-caspase inhibitor z-VAD switches TNF-α and SMAC mimetic-induced apoptosis to RIP1/RIP3-dependent necrosis via downstream effector proteins mixed lineage kinase domain-like protein (MLKL) and phosphoglycerate mutase family member 5 (PGAM5).14, 15 Induction of programmed necrosis, or necroptosis, is stimuli- and cell type-dependent, and can also occur independent of either RIP1, RIP3,6, 16, 17 or both.18 The role and regulation of necrosis following DNA damage in relation to therapeutic outcomes has remained largely unexplored.8, 9In the current study, we report an unexpected function of caspase-3 in suppressing necrosis triggered by DNA-damaging agents in colon cancer cells. Caspase-3 knockout (C3KO) or knockdown (KD) colon cancer cells showed normal apoptotic response, but increased sensitivities to DNA-damaging agents in cell culture and in mice, at least in part, via RIP1-, and caspase-8-dependent necrosis. Our findings provide a potentially novel approach to chemosensitize cancer cells.  相似文献   

18.
Tumor necrosis factor α (TNFα) triggers necroptotic cell death through an intracellular signaling complex containing receptor-interacting protein kinase (RIPK) 1 and RIPK3, called the necrosome. RIPK1 phosphorylates RIPK3, which phosphorylates the pseudokinase mixed lineage kinase-domain-like (MLKL)—driving its oligomerization and membrane-disrupting necroptotic activity. Here, we show that TNF receptor-associated factor 2 (TRAF2)—previously implicated in apoptosis suppression—also inhibits necroptotic signaling by TNFα. TRAF2 disruption in mouse fibroblasts augmented TNFα–driven necrosome formation and RIPK3-MLKL association, promoting necroptosis. TRAF2 constitutively associated with MLKL, whereas TNFα reversed this via cylindromatosis-dependent TRAF2 deubiquitination. Ectopic interaction of TRAF2 and MLKL required the C-terminal portion but not the N-terminal, RING, or CIM region of TRAF2. Induced TRAF2 knockout (KO) in adult mice caused rapid lethality, in conjunction with increased hepatic necrosome assembly. By contrast, TRAF2 KO on a RIPK3 KO background caused delayed mortality, in concert with elevated intestinal caspase-8 protein and activity. Combined injection of TNFR1-Fc, Fas-Fc and DR5-Fc decoys prevented death upon TRAF2 KO. However, Fas-Fc and DR5-Fc were ineffective, whereas TNFR1-Fc and interferon α receptor (IFNAR1)-Fc were partially protective against lethality upon combined TRAF2 and RIPK3 KO. These results identify TRAF2 as an important biological suppressor of necroptosis in vitro and in vivo.Apoptotic cell death is mediated by caspases and has distinct morphological features, including membrane blebbing, cell shrinkage and nuclear fragmentation.1, 2, 3, 4 In contrast, necroptotic cell death is caspase-independent and is characterized by loss of membrane integrity, cell swelling and implosion.1, 2, 5 Nevertheless, necroptosis is a highly regulated process, requiring activation of RIPK1 and RIPK3, which form the core necrosome complex.1, 2, 5 Necrosome assembly can be induced via specific death receptors or toll-like receptors, among other modules.6, 7, 8, 9 The activated necrosome engages MLKL by RIPK3-mediated phosphorylation.6, 10, 11 MLKL then oligomerizes and binds to membrane phospholipids, forming pores that cause necroptotic cell death.10, 12, 13, 14, 15 Unchecked necroptosis disrupts embryonic development in mice and contributes to several human diseases.7, 8, 16, 17, 18, 19, 20, 21, 22The apoptotic mediators FADD, caspase-8 and cFLIP suppress necroptosis.19, 20, 21, 23, 24 Elimination of any of these genes in mice causes embryonic lethality, subverted by additional deletion of RIPK3 or MLKL.19, 20, 21, 25 Necroptosis is also regulated at the level of RIPK1. Whereas TNFα engagement of TNFR1 leads to K63-linked ubiquitination of RIPK1 by cellular inhibitor of apoptosis proteins (cIAPs) to promote nuclear factor (NF)-κB activation,26 necroptosis requires suppression or reversal of this modification to allow RIPK1 autophosphorylation and consequent RIPK3 activation.2, 23, 27, 28 CYLD promotes necroptotic signaling by deubiquitinating RIPK1, augmenting its interaction with RIPK3.29 Conversely, caspase-8-mediated CYLD cleavage inhibits necroptosis.24TRAF2 recruits cIAPs to the TNFα-TNFR1 signaling complex, facilitating NF-κB activation.30, 31, 32, 33 TRAF2 also supports K48-linked ubiquitination and proteasomal degradation of death-receptor-activated caspase-8, curbing apoptosis.34 TRAF2 KO mice display embryonic lethality; some survive through birth but have severe developmental and immune deficiencies and die prematurely.35, 36 Conditional TRAF2 KO leads to rapid intestinal inflammation and mortality.37 Furthermore, hepatic TRAF2 depletion augments apoptosis activation via Fas/CD95.34 TRAF2 attenuates necroptosis induction in vitro by the death ligands Apo2L/TRAIL and Fas/CD95L.38 However, it remains unclear whether TRAF2 regulates TNFα-induced necroptosis—and if so—how. Our present findings reveal that TRAF2 inhibits TNFα necroptotic signaling. Furthermore, our results establish TRAF2 as a biologically important necroptosis suppressor in vitro and in vivo and provide initial insight into the mechanisms underlying this function.  相似文献   

19.
A signaling pathway that induces programmed necrotic cell death (necroptosis) was reported to be activated in cells by several cytokines and various pathogen components. The major proteins participating in that pathway are the protein kinases RIPK1 and RIPK3 and the pseudokinase mixed lineage kinase domain-like protein (MLKL). Recent studies have suggested that MLKL, once activated, mediates necroptosis by binding to cellular membranes, thereby triggering ion fluxes. However, our knowledge of both the sequence of molecular events leading to MLKL activation and the subcellular sites of these events is fragmentary. Here we report that the association of MLKL with the cell membrane in necroptotic death is preceded by the translocation of phosphorylated MLKL, along with RIPK1 and RIPK3, to the nucleus.Apart from the apoptotic cell death pathway that ligands of the tumor necrosis factor (TNF) family can activate, these ligands and various other inducers, including the interferons and various pathogen components, have in recent years been found also to trigger a signaling cascade that induces programmed necrotic death (necroptosis). This cascade encompasses sequential activation of the protein kinases RIPK1 and RIPK3 and the pseudokinase mixed lineage kinase domain-like protein (MLKL).1, 2, 3, 4, 5 RIPK3-mediated phosphorylation of MLKL triggers its oligomerization, which is necessary and sufficient for the induction of cell death,6, 7, 8 and can also trigger some non-deadly functions.9 MLKL was recently suggested to trigger cell death by binding to cellular membranes and initiating ion fluxes through them.6, 7, 8, 10 However, its exact molecular target in death induction is contentious.6, 8, 10, 11, 12 Current knowledge of the subcellular sites of MLKL action is based mainly on determination of the location of this protein close to the time of cell death. Here we present a detailed assessment of the cellular location of MLKL at different times following its activation. Our findings indicate that before cell death, MLKL translocates to the nucleus along with RIPK1 and RIPK3.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号