首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neutrophil associated lung injury is identified with a variety of local and systemic priming insults. In vitro studies have shown that TNF-alpha mediated suppression of neutrophil apoptosis is due to the secretion of interleukin-8 (IL-8), a human chemokine shown to alter neutrophil chemotaxis. Our initial in vitro antibody neutralization studies with neutrophil chemotactic proteins, keratinocyte-derived chemokine (KC) and macrophage inflammatory protein-2alpha (MIP-2alpha), mouse IL-8 homologues, indicate that MIP-2alpha but not KC appears to mediate TNF-alpha suppression of mouse neutrophil apoptosis. Therefore, we hypothesized that in vivo neutralization of KC or MIP-2alpha during an initial priming insult would produce differential effects on the extent of lung injury by restoring normal neutrophil apoptotic function. To assess this, mice were hemorrhaged followed with septic challenge at 24 h. Antibody against KC or MIP-2alpha or a nonspecific IgG was given during resuscitation immediately following hemorrhage. Anti-MIP-2alpha treatment resulted in a significant reduction in lung tissue IL-6 and myeloperoxidase levels. Percentage of neutrophil apoptosis increased significantly in the anti-KC group. Tissue and plasma KC and MIP-2alpha were reduced in their respective treatment groups. These data suggest that KC and MIP-2alpha differ in their mediation of neutrophil function (apoptosis and chemotaxis) and contribution to the pathogenesis of lung injury following hemorrhage subsequent to sepsis.  相似文献   

2.
The final stage in the migration of leukocytes to sites of inflammation involves movement of leukocytes through the endothelial cell layer and the perivascular basement membrane. Both platelet-endothelial cell adhesion molecule-1 (PECAM-1/CD31) and the integrin alphavbeta3 have been implicated in this process, and in vitro studies have identified alphavbeta3 as a heterotypic ligand for PECAM-1. In the present study we have addressed the roles of these molecules by investigating and comparing the effects of PECAM-1 and alphavbeta3 blockade on leukocyte migration in vivo. For this purpose we have examined the effects of neutralizing Abs directed against PECAM-1 (domain 1-specific, mAb 37) and beta3 integrins (mAbs 7E3 and F11) on leukocyte responses in the mesenteric microcirculation of anesthetized rats using intravital microscopy. The anti-PECAM-1 mAb suppressed leukocyte extravasation, but not leukocyte rolling or firm adhesion, elicited by IL-1beta in a dose-dependent manner (e.g., 67% inhibition at 10 mg/kg 37 Fab), but had no effect on FMLP-induced leukocyte responses. Analysis by electron microscopy suggested that this suppression was due to an inhibition of neutrophil migration through the endothelial cell barrier. By contrast, both anti-beta3 integrin mAbs, 7E3 F(ab')2 (5 mg/kg) and F11 F(ab')2 (5 mg/kg), selectively reduced leukocyte extravasation induced by FMLP (38 and 46%, respectively), but neither mAb had an effect on IL-1beta-induced leukocyte responses. These findings indicate roles for both PECAM-1 and beta3 integrins in leukocyte extravasation, but do not support the concept that these molecules act as counter-receptors in mediating leukocyte transmigration.  相似文献   

3.
Vaso-occlusive events are the major source of morbidity and mortality in sickle cell disease (SCD); however, the pathogenic mechanisms driving these events remain unclear. Using hypoxia to induce pulmonary injury, we investigated mechanisms by which sickle hemoglobin increases susceptibility to lung injury in a murine model of SCD, where mice either exclusively express the human alpha/sickle beta-globin (halphabetaS) transgene (SCD mice) or are heterozygous for the normal murine beta-globin gene and express the halphabetaS transgene (mbeta+/-, halphabetaS+/-; heterozygote SCD mice). Under normoxia, lungs from the SCD mice contained higher levels of xanthine oxidase (XO), nitrotyrosine, and cGMP than controls (C57BL/6 mice). Hypoxia increased XO and nitrotyrosine and decreased cGMP content in the lungs of all mice. After hypoxia, vascular congestion was increased in lungs with a greater content of XO and nitrotyrosine. Under normoxia, the association of heat shock protein 90 (HSP90) with endothelial nitric oxide synthase (eNOS) in lungs of SCD and heterozygote SCD mice was decreased compared with the levels of association in lungs of controls. Hypoxia further decreased association of HSP90 with eNOS in lungs of SCD and heterozygote SCD mice, but not in the control lungs. Pretreatment of rat pulmonary microvascular endothelial cells in vitro with xanthine/XO decreased A-23187-stimulated nitrite + nitrate production and HSP90 interactions with eNOS. These data support the hypotheses that hypoxia increases XO release from ischemic tissues and that the local increase in XO-induced oxidative stress can then inhibit HSP90 interactions with eNOS, decreasing *NO generation and predisposing the lung to vaso-occlusion.  相似文献   

4.
Intercellular adhesion molecule-1 (ICAM-1; CD54) is an adhesion molecule constitutively expressed in abundance on the cell surface of type I alveolar epithelial cells (AEC) in the normal lung and is a critical participant in pulmonary innate immunity. At many sites, ICAM-1 is shed from the cell surface as a soluble molecule (sICAM-1). Limited information is available regarding the presence, source, or significance of sICAM-1 in the alveolar lining fluid of normal or injured lungs. We found sICAM-1 in the bronchoalveolar lavage (BAL) fluid of normal mice (386 +/- 50 ng/ml). Additionally, sICAM-1 was spontaneously released by murine AEC in primary culture as type II cells spread and assumed characteristics of type I cells. Shedding of sICAM-1 increased significantly at later points in culture (5-7 days) compared with earlier time points (3-5 days). In contrast, treatment of AEC with inflammatory cytokines had limited effect on sICAM-1 shedding. BAL sICAM-1 was evaluated in in vivo models of acute lung injury. In hyperoxic lung injury, a reversible process with a major component of leak across the alveolar wall, BAL fluid sICAM-1 only increased in parallel with increased alveolar protein. However, in lung injury due to FITC, there were increased levels of sICAM-1 in BAL that were independent of changes in BAL total protein concentration. We speculate that after lung injury, changes in sICAM-1 in BAL fluid are associated with progressive injury and may be a reflection of type I cell differentiation during reepithelialization of the injured lung.  相似文献   

5.
6.
Hepatic ischemia-reperfusion results in an acute inflammatory response culminating in the recruitment of activated neutrophils that directly injure hepatocytes. Recent evidence suggests that CD4+ lymphocytes may regulate this neutrophil-dependent injury, but the mechanisms by which this occurs remain to be elucidated. In the present study, we sought to determine the type of CD4+ lymphocytes recruited to the liver after ischemia-reperfusion and the manner in which these cells regulated neutrophil recruitment and tissue injury. Wild-type and CD4 knockout (CD4-/-) mice were subjected to hepatic ischemia-reperfusion. CD4+ lymphocytes were recruited in the liver within 1 h of reperfusion and remained for at least 4 h. These cells were comprised of conventional (alphabetaTCR-expressing), unconventional (gammadeltaTCR-expressing), and natural killer T cells. CD4-/- mice were then used to determine the functional role of CD4+ lymphocytes in hepatic ischemia-reperfusion injury. Compared with wild-type mice, CD4-/- mice had significantly greater liver injury, yet far less neutrophil accumulation. Adoptive transfer of CD4+ lymphocytes to CD4-/- mice recapitulated the wild-type response. In wild-type mice, neutralization of interleukin (IL)-17, a cytokine released by activated CD4+ lymphocytes, significantly reduced neutrophil recruitment in association with suppression of MIP-2 expression. Finally, oxidative burst activity of liver-recruited neutrophils was higher in CD4-/- mice compared with those from wild-type mice. These data suggest that CD4+ lymphocytes are rapidly recruited to the liver after ischemia-reperfusion and facilitate subsequent neutrophil recruitment via an IL-17-dependent mechanism. However, these cells also appear to attenuate neutrophil activation. Thus the data suggest that CD4+ lymphocytes have dual, opposing roles in the hepatic inflammatory response to ischemia-reperfusion.  相似文献   

7.
Microglia are the resident immune cells in the central nervous system and key players against pathogens and injury. However, persistent microglial activation often exacerbates pathological damage and has been implicated in many neurological diseases. Despite their pivotal physiological and pathophysiological roles, how the survival and death of activated microglia is regulated remains poorly understood. We report here that microglia activated through Toll-like receptors (TLRs) undergo RIP1/RIP3-dependent programmed necrosis (necroptosis) when exposed to the pan caspase inhibitor zVAD-fmk. Although zVAD-fmk and the caspase-8 inhibitor IETD-fmk had no effect on unstimulated primary microglia, they markedly sensitized microglia to TLR1/2,3,4,7/8 ligands or TNF treatment, triggering programmed necrosis that was completely blocked by R1P1 kinase inhibitor necrostatin-1. Interestingly, necroptosis induced by TLR ligands and zVAD was restricted to microglial cells and was not observed in astrocytes, neurons or oligodendrocytes even though they are known to express certain TLRs. Deletion of genes encoding TNF or TNFR1 failed to prevent lipopolysaccharide- and poly(I:C)-induced microglial necroptosis, unveiling a TNF-independent programmed necrosis pathway in TLR3- and TLR4-activated microglia. Microglia from mice lacking functional TRIF were fully protected against TLR3/4 activation and zVAD-fmk-induced necrosis, and genetic deletion of rip3 also prevented microglia necroptosis. Activation of c-jun N-terminal kinase and generation of specific reactive oxygen species were downstream signaling events required for microglial cell death execution. Taken together, this study reveals a robust RIP3-dependent necroptosis signaling pathway in TLR-activated microglia upon caspase blockade and suggests that TLR signaling and programmed cell death pathways are closely linked in microglia, which could contribute to neuropathology and neuroinflammation when dysregulated.  相似文献   

8.
9.
Receptor-interacting protein (RIP)3 is a critical regulator of necroptosis and has been demonstrated to be associated with various diseases, suggesting that its inhibitors are promising in the clinic. However, there have been few RIP3 inhibitors reported as yet. B-RafV600E inhibitors are an important anticancer drug class for metastatic melanoma therapy. In this study, we found that 6 B-Raf inhibitors could inhibit RIP3 enzymatic activity in vitro. Among them, dabrafenib showed the most potent inhibition on RIP3, which was achieved by its ATP-competitive binding to the enzyme. Dabrafenib displayed highly selective inhibition on RIP3 over RIP1, RIP2 and RIP5. Moreover, only dabrafenib rescued cells from RIP3-mediated necroptosis induced by the necroptosis-induced combinations, that is, tumor necrosis factor (TNF)α, TNF-related apoptosis-inducing ligand or Fas ligand plus Smac mimetic and the caspase inhibitor z-VAD. Dabrafenib decreased the RIP3-mediated Ser358 phosphorylation of mixed lineage kinase domain-like protein (MLKL) and disrupted the interaction between RIP3 and MLKL. Notably, RIP3 inhibition of dabrafenib appeared to be independent of its B-Raf inhibition. Dabrafenib was further revealed to prevent acetaminophen-induced necrosis in normal human hepatocytes, which is considered to be mediated by RIP3. In acetaminophen-overdosed mouse models, dabrafenib was found to apparently ease the acetaminophen-caused liver damage. The results indicate that the anticancer B-RafV600E inhibitor dabrafenib is a RIP3 inhibitor, which could serve as a sharp tool for probing the RIP3 biology and as a potential preventive or therapeutic agent for RIP3-involved necroptosis-related diseases such as acetaminophen-induced liver damage.Necroptosis, also known as programmed necrosis, is a kind of programmed cell death that occurs at conditions that result in blocking the execution of apoptosis.1, 2 The protein kinase receptor-interacting protein (RIP)3 is a serine/threonine protein kinase that has recently been demonstrated to be the critical regulator that switches cells from apoptosis to necroptosis.3, 4, 5, 6 The death receptor ligands, such as tumor necrosis factor (TNF)α, Fas ligand and TNF-related apoptosis-inducing ligand (TRAIL), are classical inducers of apoptosis or necroptosis. By binding to their respective receptors, they lead to activation of functional caspase-8, which results in apoptosis by activating the effector caspases such as caspase-3 but inactivating the necroptic kinases such as RIP3. When caspase-8 is absent or inhibited by caspase inhibitors such as z-VAD, those death receptor ligands cause necroptosis, which can be augmented by Smac mimetic that promotes degradation of inhibitor of apoptosis proteins.3, 4, 5, 6RIP3 is widely involved in physiological processes and pathological states.6 RIP3 deficiency not only rescues the lethality of caspase-8−/− and FADD−/− mice7 and restores normal proliferation of their T cells,6 but also protects hepatocytes from ethanol-induced injury and steatosis,8 rescues caspase-8 or FADD deficiency-induced massive inflammation in epithelium,9 prevents cerulean-induced acute necrotizing pancreatitis,3, 4 inhibits photoreceptor and cone cell death10, 11 and alleviates macrophage necrosis in advanced atherosclerosis lesions.12 Acetaminophen is an extensively used analgesic and antipyretic. When taken in overdose, its most frequent toxicity is hepatotoxicity including fatal centrilobular hepatic necrosis.13, 14 Acetaminophen overdose is the most common cause of acute liver failure in the United States and the United Kingdom.15 It also causes 11.86% of acute liver failure in China.16 Enhanced levels of high-mobility group box-1 and necrosis keratin-18 marked occurrence of hepatic necrosis.14 Necrosis has been considered as the predominant mode of cell death in this case, for which RIP3 has been shown to be responsible.17 In addition, RIP3 might also be associated with carcinogenesis and tumor drug resistance to chemotherapeutics.18, 19 These lines of evidence suggest potential extensive uses of small-molecule RIP3 inhibitors in medical prevention or therapy.However, few RIP3 inhibitors have been reported20 and no small-molecule RIP3 inhibitors have been investigated for the potential medical uses. One possible cause is that there lacks a proper RIP3 kinase assay for screening for its inhibitors at molecular levels, which should be highly sensitive, free of radioisotopes, and high throughput. We thus established a non-radioactive luminescent RIP3 kinase assay in this study. By using this assay, we found that 6 B-Raf inhibitors inhibited the RIP3 enzymatic activity in vitro. But only dabrafenib could rescue cells from RIP3-mediated necroptosis induced by TNFα, TRAIL or Fas ligand plus Smac mimetic and the caspase inhibitor z-VAD. Dabrafenib directly and ATP-competitively bound to RIP3 protein and caused highly selective inhibition on RIP3 over RIP1, RIP2 and RIP5. Dabrafenib was demonstrated to ease acetaminophen-induced necrosis in normal human hepatocytes and to prevent acetaminophen-induced liver injury in mice. Our study raises a possibility that the medical indications of the B-RafV600E inhibitor dabrafenib might be extended from cancers to RIP3-involved diseases.  相似文献   

10.
The present study was undertaken to investigate the effect of the new formyl peptide receptor 2/lipoxin A4 receptor agonist BML-111 on acetaminophen (APAP)-induced liver injury in mice and explore its possible mechanism(s). Male Swiss albino mice were intraperitoneally injected with BML-111 (1 mg/kg) twice daily for five consecutive days prior to a single intraperitoneal injection of APAP (500 mg/kg). Results have shown that APAP injection caused liver damage as indicated by significant increase in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP). Liver histopathological examination revealed marked necrosis and inflammation. Additionally, APAP decreased activities of hepatic glutathione (GSH) and superoxide dismutase (SOD) with significant increase in the hepatic malondialdehyde (MDA) content. Furthermore, APAP increased serum nitrite/nitrate (NO2 ?/NO3 ? ) level and hepatic tumor necrosis factor alpha (TNF-α). Pretreatment with BML-111 significantly reversed all APAP-induced pathological changes. BML-111 prevented the increase of AST, ALT, and ALP. Also, BML-111 markedly attenuated APAP-induced necrosis and inflammation. It decreased MDA with increase in SOD and GSH. Importantly, BML-111 decreased NO2 ?/NO3 ? level and TNF-α. These findings suggest that BML-111 has hepatoprotective effects against APAP-induced liver injury in mice. Its protective effect may be attributed to its ability to counteract the inflammatory ROS generation and regulate cytokine effects.  相似文献   

11.
12.
BackgroundCyclin E1 is the regulatory subunit of cyclin-dependent kinase 2 (Cdk2) and one of the central players in cell cycle progression. We recently showed its crucial role for initiation of liver fibrosis and hepatocarcinogenesis. In the present study, we investigated the role of Cyclin E1 in the development of alcohol-associated liver disease (ALD).MethodsMice with constitutive (E1?/?), hepatocyte-specific (Cyclin E1Δhepa), or intestinal-epithelial-cell-specific (Cyclin E1ΔIEC) inactivation of Cyclin E1 and corresponding wild type littermate controls (WT) were administered either a Lieber-DeCarli ethanol diet (LDE) for 3 weeks or acute ethanol binges (6 g/kg) through oral gavage. Serum parameters of liver functionality were measured; hepatic tissues were collected for biochemical and histological analyses.ResultsThe administration of acute EtOH binge and chronic LDE diet to E1?/? mice enhanced hepatic steatosis, worsened liver damage and triggered body weight loss. Similarly, in the acute EtOH binge model, Cyclin E1Δhepa mice revealed a significantly worsened liver phenotype. In contrast, inactivation of Cyclin E1 only in intestinal epithelial cell (IECs)did not lead to any significant changes in comparison to WT mice after acute EtOH challenge. Remarkably, both acute and chronic EtOH administration in E1?/? animals resulted in increased levels of ADH and decreased expression of ALDH1/2. The additional application of a pan-Cdk inhibitor (S-CR8) further promoted liver damage in EtOH-treated WT mice.ConclusionOur data point to a novel unexpected role of Cyclin E1 in hepatocytes for alcohol metabolism, which seems to be independent of the canonical Cyclin E1/Cdk2 function as a cell cycle regulator.  相似文献   

13.
TGF-β1 contributes to chronic kidney disease, at least in part, via Smad3. TGF-β1 is induced in the kidney following acute ischemia, and there is increasing evidence that TGF-β1 may protect against acute kidney injury. As there is a paucity of information regarding the functional significance of Smad3 in acute kidney injury, the present study explored this issue in a murine model of ischemic acute kidney injury in Smad3(+/+) and Smad3(-/-) mice. We demonstrate that, at 24 h after ischemia, Smad3 is significantly induced in Smad3(+/+) mice, whereas Smad3(-/-) mice fail to express this protein in the kidney in either the sham or postischemic groups. Compared with Smad3(+/+) mice, and 24 h following ischemia, Smad3(-/-) mice exhibited greater preservation of renal function as measured by blood urea nitrogen (BUN) and serum creatinine; less histological injury assessed by both semiquantitative and qualitative analyses; markedly suppressed renal expression of IL-6 and endothelin-1 mRNA (but comparable expression of MCP-1, TNF-α, and heme oxygenase-1 mRNA); and no increase in plasma IL-6 levels, the latter increasing approximately sixfold in postischemic Smad3(+/+) mice. We conclude that genetic deficiency of Smad3 confers structural and functional protection against acute ischemic injury to the kidney. We speculate that these effects may be mediated through suppression of IL-6 production. Finally, we suggest that upregulation of Smad3 after an ischemic insult may contribute to the increased risk for chronic kidney disease that occurs after acute renal ischemia.  相似文献   

14.
综述了受体相互作用蛋白(RIPs)蛋白结构和RIP3调控细胞凋亡与坏死机制的研究进展.受体相互作用蛋白3(receptor-interacting protein 3, RIP3)是丝/苏氨酸蛋白激酶家族成员之一,该蛋白质家族包含一类高度保守的丝/苏氨酸激酶结构域.RIP家族激酶作为细胞应激传感分子,在调控细胞凋亡、细胞坏死和存活通路中发挥重要作用.近年发现,RIP3参与肿瘤坏死因子TNFα诱导的细胞程序化坏死的生物学过程.认识RIP3调控TNFα诱导的细胞凋亡与坏死不同死亡途径转换的分子机制,有助于发现肿瘤治疗的新策略.  相似文献   

15.
16.
Spinal cord injury (SCI) has been a major burden on the society because of the high rate of disability. Receptor-interacting protein 3 (RIP3)-mediated necroptosis is a newly discovered pathway of programmed cell death and is involved in multiple pathologies of various human diseases. Micro RNAs (miRNAs) have been shown to be a potential target for therapeutic interventions after SCI. The aim of the present study is to explore the potential role of miR-223-3p and possible mechanism in SCI. We found that miR-223-3p was significantly downregulated in spinal neurons after H2O 2-induced damage, while RIP3-mediated necroptosis was elevated. Accordingly, RIP3-mediated necroptosis and the inflammatory factor secretion could be significantly inhibited by Nec-1 treatment. In adittion, overexpression of miR-223-3p in spinal neurons protected against H 2O 2-induced necroptosis, and ablation of miR-223-3p exhibited the opposite effect. We found that miR-223-3p bound to the 3′-untranslated region of RIP3 mRNA to negatively regulate the expression of RIP3. Moreover, the activated RIP3 reversed the inhibition of RIP3 and MLKL expression and the levels of TNF-α, IL-1β, and lactate dehydrogenase, which were induced by transfection with miR-223-3p in a H 2O 2-induced model. Finally, these results indicate that miR-223-3p negatively regulates the RIP3 necroptotic signaling cascades and inflammatory factor secretion, which significantly relieves injury of spinal neurons. The miR-223-3p/RIP3 pathway offers a novel therapeutic target for the protection of spinal neurons after SCI.  相似文献   

17.
ObjectivesNecroptosis is widespread in neurodegenerative diseases. Here, we examined necroptosis in the hippocampus and cortex after hydrocephalus and found that a necroptosis pathway inhibitor alleviates necroptosis and provides neuroprotective effects.Materials and methodsHydrocephalus was induced in C57BL/6 mice by kaolin. Haematoxylin and eosin (HE), Nissl, PI and Fluoro‐Jade B (FJB) staining were used for general observations. Phosphorylated receptor‐interacting protein kinase 3 (p‐RIP3) and phosphorylated mixed lineage kinase domain‐like (p‐MLKL) were measured by Western blotting and immunohistochemistry. Scanning electron microscopy (SEM) was used to observe ependymal cilia. Magnetic resonance imaging (MRI) and the Morris water maze (MWM) test were used to assess neurobehavioral changes. Immunofluorescence was used to detect microglial and astrocyte activation. Inflammatory cytokines were measured by Western blotting and RT‐PCR.ResultsObvious pathological changes appeared in the hippocampus and cortex after hydrocephalus, and expression of the necroptosis markers p‐RIP3, p‐MLKL and inflammatory cytokines increased. Necrostatin‐1 (Nec‐1) and GSK872 reduced necrotic cell death, attenuated p‐RIP3 and p‐MLKL levels, slightly improved neurobehaviours and inhibited microglial and astrocyte activation and inflammation.ConclusionsRIP1/RIP3/MLKL mediates necroptosis in the cortex and hippocampus in a hydrocephalus mouse model, and Nec‐1 and GSK872 have some neuroprotective effects.  相似文献   

18.
戚梦  刘城移  李琳  袁源  吴小平  傅俊生 《菌物学报》2019,38(9):1510-1518
本文探究蛹虫草活性成分虫草素对四氯化碳(CCl4)造成的小鼠急性肝损伤的保护作用及其分子机制。首先建立四氯化碳致小鼠急性肝损伤的动物模型,通过检测血清生化指标、肝功指标的变化及HE染色观察组织切片病理的病变情况,评价虫草素的保肝效果,进一步通过Western blot检测虫草素能否通过激活Nrf-2/Keap1信号通路及其下游抗氧化因子(HO-1、NQO-1)的表达来提高机体抗氧化损伤能力以及抑制炎症因子(TNFα、TNFβ、IL-6、IL-10)的表达。对比模型组结果显示,虫草素能极显著降低(P<0.01)小鼠血清中ALT、AST及肝脏中MDA水平,并能极显著提高肝脏中SOD水平(P<0.01);HE染色结果显示虫草素能有效降低改善受损肝组织中的炎细胞浸润及纤维组织增生;Western blot结果表明虫草素能够通过激活Nrf-2信号通路,促进下游抗氧化因子及抗炎因子的表达,从而降低炎症反应。虫草素对CCl4致小鼠急性肝损伤具有一定的保护作用,其机制与Nrf-2信号通路相关,实验结果为后续蛹虫草及虫草素的开发应用奠定基础。  相似文献   

19.
Lu XX  Wang SQ  Zhang Z  Xu HR  Liu B  Huangfu CS 《生理学报》2012,64(3):313-320
The purpose of the present study was to investigate the effect of sodium nitrite (SN) on alcohol-induced acute liver injury in mice. Forty male C57bL/6 mice were randomly divided into 4 groups. Acute alcohol-induced liver injury group were injected intraperitoneal (ip) with alcohol (4.5 g/kg); SN preconditioning group were pretreated with SN (16 mg/kg, ip) for 12 h, and received alcohol (4.5 g/kg, ip) injection; Control and SN groups were treated with saline and SN, respectively. After the treatments, liver index (liver/body weight ratio) was determined. Colorimetric technique was performed to measure the serum alanine transaminase (ALT), aspartate transaminase (AST), liver superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT) activities, as well as malondialdehyde (MDA) content. The pathological index of liver tissue was assayed by HE and TUNEL fluorometric staining. Using Western blot and immunohistochemistry staining, the expression of hypoxia-inducible factor-1α (HIF-1α) protein was detected. The results showed that, compared with acute alcohol-induced liver injury group, pretreatment with low doses of SN decreased liver index and serum levels of ALT and AST, weakened acute alcohol-induced hepatocyte necrosis, improved pathological changes in liver tissue, increased live tissue SOD, GSH-Px and CAT activities, reduced MDA content and apoptosis index of hepatocytes, and up-regulated HIF-1α protein level in liver tissue. These results suggest that the pretreatment of SN can protect hepatocytes against alcohol-induced acute injury, and the protective mechanism involves inhibition of oxidative stress and up-regulation of HIF-1α protein level.  相似文献   

20.
旨在探究聚乙二醇修饰重组细胞珠蛋白(PEG modified recombinant cytoglobin,PEG-rCygb)对小鼠急性肝损伤的保护作用。采用CCl4诱导KM小鼠急性肝损伤模型,尾静脉注射PEG-rCygb,收集血清及肝脏组织检测各项生化指标及组织病理学变化。结果表明,PEG-rCygb治疗组小鼠肝脏系数减小,血清中AST﹑ALT水平降低,肝组织匀浆中MDA含量减少,GSH含量增加,T-SOD、CAT活性升高。肝组织切片HE染色显示PEG-rCygb可以缓解肝细胞脂肪变性,减少炎症因子,减轻肝细胞损伤。体外细胞学实验表明rCygb经PEG修饰后对H2O2造成的肝星状细胞(HSC)氧化损伤发挥的保护作用增强。研究结果显示PEG-rCygb提高了机体对自由基的清除能力,对CCl4引起的小鼠急性肝损伤具有保护作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号