首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
MRE11 is a pivotal protein for ATM activation during double-strand DNA break. ATM kinase activations may act as lung cancer biomarkers. The IL-6/STAT3 pathway plays an important role in tumor metastasis, including lung cancer. However, the mechanism between MRE11 and the IL-6/STAT3 pathway is still unclear. In this study, we discovered that MRE11 can interact with STAT3 under IL-6 treatment and regulate STAT3 Tyr705 phosphorylation. After the knockdown of MRE11 in lung cancer cells, we discovered that IL-6 or the conditional medium of THP-1 cells can induce the mRNA expression of STAT3 downstream genes, including CCL2, in the control cells, but not in MRE11-knockdown lung cancer cells. Moreover, CCL2 secretion was lower in MRE11-knockdown lung cancer cells than in control cells after treatment with the conditional medium of RAW264.7 cells. In addition, MRE11 deficiency in lung cancer cells decreases their ability to recruit RAW 264.7 cells. Furthermore, MRE11 is a potential target for lung cancer therapy.  相似文献   

4.
5.
6.
Tumor-associated macrophages (TAM) are prominent components of tumor microenvironment (TME) and capable of promoting cancer progression. However, the mechanisms for the formation of M2-like TAMs remain enigmatic. Here, we show that lactate is a pivotal oncometabolite in the TME that drives macrophage M2-polarization to promote breast cancer proliferation, migration, and angiogenesis. In addition, we identified that the activation of ERK/STAT3, major signaling molecules in the lactate signaling pathway, deepens our molecular understanding of how lactate educates TAMs. Moreover, suppression of ERK/STAT3 signaling diminished tumor growth and angiogenesis by abolishing lactate-induced M2 macrophage polarization. Finally, research data of the natural compound withanolide D provide evidence for ERK/STAT3 signaling as a potential therapeutic strategy for the prevention and treatment of breast cancer. These findings suggest that the lactate-ERK/STAT3 signaling pathway is a driver of breast cancer progression by stimulating macrophage M2-like polarization and reveal potential new therapeutic targets for breast cancer treatment.  相似文献   

7.
8.
9.
10.
Our previous study found that Ganoderma lucidum polysaccharide (GLP), bioactive ingredients from Ganoderma lucidum, protected fibroblasts from photoaging. However, whether GLP can affect melanogenesis in melanocytes through regulating paracrine mediators that secreted by keratinocytes and fibroblasts is unclear. We aimed to investigate the efficacy and mechanisms of action of GLP in melanogenesis by regulating paracrine effects of keratinocytes and fibroblasts. The effect of GLP on cell viability affected by GLP was measured by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. After an immortal keratinocyte line (HaCaT) and primary fibroblasts (FB) were treated with GLP, the supernatants of HaCaT and FB cells were collected and cocultured with an immortalized melanocyte line (PIG1). The expression levels of melanogenesis-associated genes in PIG1 cells were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis. Furthermore, FRS-2, ERK, JNK, and p38 phosphorylation levels were measured. Then, major melanogenic paracrine mediators in HaCaT and FB cells treated with GLP were evaluated by qRT-PCR and enzyme-linked immunosorbent assay (ELISA). In addition, the expression of IL-6 and STAT3 was examined in HaCaT and FB cells. GLP was not cytotoxic to HaCaT and FB cells. The supernatants of GLP-treated HaCaT and FB cells downregulated the expression levels of MITF, TYR, TYRP1, TYRP2, RAB27A, and FSCN1 genes and inhibited the phosphorylation of FRS-2, ERK, JNK, and p38 in PIG1 cells. GLP also decreased FGF2 secretion in HaCaT and FB cells. Moreover, GLP reduced IL-6 expression and STAT3 phosphorylation in HaCaT and FB cells. GLP reduced melanogenesis in melanocytes by inhibiting the paracrine effects of keratinocytes and fibroblasts via IL-6/STAT3/FGF2 pathway.  相似文献   

11.
12.
Ganoderma lucidum immunomodulatory protein (FIP-glu) is an active ingredient with potential immunoregulatory functions. The study was conducted to explore the immunomodulatory activities of recombinant FIP-glu (rFIP-glu) and its possible mechanism in macrophage RAW264.7 cells. In vitro assays of biological activity indicated that rFIP-glu significantly activated RAW264.7 cells and possessed proinflammatory and anti-inflammatory abilities. RNA sequencing analysis and Western blot analysis showed that macrophage activation involved PI3K/Akt and MAPK pathways. Furthermore, real-time quantitative polymerase chain reaction indicated that the PI3K inhibitor LY294002 blocked the messenger RNA (mRNA) levels of MCP-1 (CCL-2), the MEK1/2 inhibitor U0126 reduced the mRNA levels of TNF-α and MCP-1 (CCL-2), and the JNK1/2/3 inhibitor SP600125 prevented the upregulation of inducible nitric oxide synthase mRNA in rFIP-glu-induced cells. rFIP-glu did not mediate these inflammatory effects through a general pathway but rather through a different pathway for a different inflammatory mediator. These data imply that rFIP-glu possessed immunomodulatory activity in macrophages, which was mediated through PI3K/Akt and MAPK pathways.  相似文献   

13.
Despite the growing recognition of ITGB3BP as an essential feature of various cancers, the relationship between ITGB3BP and glioma remains unclear. The main aim of this study was to determine the prognostic and diagnostic value of ITGB3BP in glioma. RNA‐Seq and microarray data from 2222 glioma patients were included, and we found that the expression level of ITGB3BP in glioma tissues was significantly higher than that in normal brain tissues. Moreover, ITGB3BP can be considered an independent risk factor for poor prognosis and has great predictive value for the prognosis of glioma. Gene Set Enrichment Analysis results showed that ITGB3BP contributes to the poor prognosis of glioma by activating tumour‐related signalling pathways. Some small‐molecule drugs were identified, such as hexestrol, which may specifically inhibit ITGB3BP and be useful in the treatment of glioma. The TIMER database analysis results revealed a correlation between the expression of ITGB3BP and the infiltration of various immune cells in glioma. Our findings provide the first evidence that the up‐regulation of ITGB3BP correlates with poor prognosis in human glioma. Thus, ITGB3BP is a potential new biomarker that can be used for the clinical diagnosis and treatment of glioma.  相似文献   

14.
15.
16.
Toxoplasma gondii penetrates all kinds of nucleated eukaryotic cells but modulates host cells differently for its intracellular survival. In a previous study, we found out that serine protease inhibitors B3 and B4 (SERPIN B3/B4 because of their very high homology) were significantly induced in THP-1-derived macrophages infected with T. gondii through activation of STAT6. In this study, to evaluate the effects of the induced SERPIN B3/B4 on the apoptosis of T. gondii-infected THP-1 cells, we designed and tested various small interfering (si-) RNAs of SERPIN B3 or B4 in staurosporine-induced apoptosis of THP-1 cells. Anti-apoptotic characteristics of THP-1 cells after infection with T. gondii disappeared when SERPIN B3/B4 were knock-downed with gene specific si-RNAs transfected into THP-1 cells as detected by the cleaved caspase 3, poly-ADP ribose polymerase and DNA fragmentation. This anti-apoptotic effect was confirmed in SERPIN B3/B4 overexpressed HeLa cells. We also investigated whether inhibition of STAT6 affects the function of SERPIN B3/B4, and vice versa. Inhibition of SERPIN B3/B4 did not influence STAT6 expression but SERPIN B3/B4 expression was inhibited by STAT6 si-RNA transfection, which confirmed that SERPIN B3/B4 was induced under the control of STAT6 activation. These results suggest that T. gondii induces SERPIN B3/B4 expression via STAT6 activation to inhibit the apoptosis of infected THP-1 cells for longer survival of the intracellular parasites themselves.  相似文献   

17.
A new series of 1,3,4-oxadiazole/chalcone hybrids was designed, synthesized, identified with different spectroscopic techniques and biologically evaluated as inhibitors of EGFR, Src, and IL-6. The synthesized compounds showed promising anticancer activity, particularly against leukemia, with 8v being the most potent. The synthesized compounds exhibited strong to moderate cytotoxic activities against K-562, KG-1a, and Jurkat leukemia cell lines in MTT assays. Compound 8v showed the strongest cytotoxic activity with IC50 of 1.95 µM, 2.36 µM and 3.45 µM against K-562, Jurkat and KG-1a leukemia cell lines, respectively. Moreover; the synthesized compounds inhibited EGFR, Src, and IL-6. Compound 8v was most effective at inhibiting EGFR (IC50 = 0.24 μM), Src (IC50 = 0.96 μM), and IL-6 (% of control = 20%). Additionally, most of the compounds decreased STAT3 activation.  相似文献   

18.
19.
Tanshinone I (Tan I) is a widely used diterpene compound derived from the traditional Chinese herb Danshen. Increasing evidence suggests that it exhibits anti‐cancer activity in various human cancers. However, the in vitro and in vivo effects of Tan I on osteosarcoma (OS) remain inadequately elucidated, especially those against tumour metastasis. Our results showed that Tan I significantly inhibited OS cancer cell proliferation, migration and invasion and induced cell apoptosis in vitro. Moreover, treatment with 10 and 20 mg/kg Tan I effectively suppressed tumour growth in subcutaneous xenografts and orthotopic xenograft mouse models. In addition, Tan I significantly inhibited tumour metastasis in intracardiac inoculation xenograft models. The results also showed that Tan I‐induced increased expression of the proapoptotic gene Bax and decreased expression of the anti‐apoptotic gene Bcl‐2 is the possible mechanism of its anti‐cancer effects. Tan I was also found to abolish the IL‐6‐mediated activation of the JAK/STAT3 signalling pathway. Conclusively, this study is the first to show that Tan I suppresses OS growth and metastasis in vitro and in vivo, suggesting it may be a potential novel and efficient drug candidate for the treatment of OS progression.  相似文献   

20.
目的:采用TNBS (2,4,6-三硝基苯磺酸)复制溃疡性结肠炎大鼠模型,探索马齿苋多糖对溃疡性结肠炎大鼠肠组织IL6/STAT3及NF-κB的影响,明确IL-6/STAT3信号通路与慢性炎症性肠病发病的关系,为慢性溃疡性结肠炎的治疗寻找新靶点。方法:将40只SD大鼠随机分为对照组、模型组、美沙拉嗪组和马齿苋组(n=10)。采用TNBS诱导复制结肠炎模型,造模成功后第3天开始灌胃给药:美沙拉嗪组剂量为每次10 mg/kg,每日1次,连续3周;马齿苋组给予马齿苋多糖,每次10 ml/kg,每日1次,连续3周;模型组和对照组大鼠给予等体积生理盐水灌胃,每日1次,连续3周。收集大鼠结肠内容物称重,干燥后再次称重,取结肠组织作病理切片。采用ELISA试剂盒检测血清IL-6、IL-1β、TNF-α和核转录因子-kappa B (NF-κB)含量;免疫组化染色法测定结肠髓过氧化物酶(MPO);RT-PCR法检测信号转导和转录激活因子(STAT3)、IL-6的mRNA。结果:与模型组、美沙拉嗪组比较,马齿苋组大鼠排便状态明显改善,肠粘膜水肿减轻;血清IL-6、sIL-6Rα、gp130,肠组织MPO、NF-κB含量均降低(P<0.01)。与模型组比较,马齿苋组STAT3、IL-6mRNA的表达水平明显降低(P<0.01)。与对照组比较,上述指标无显著性差异(P>0.05)。结论:马齿苋多糖通过降低大鼠血清IL-6、sIL-6Rα、gp130含量及肠组织MPO、NF-κB水平,减轻sIL-6Rα与IL-6形成复合物所致的炎症反应;经IL-6/STAT3信号通路下调大鼠肠组织STAT3和IL-6的mRNA水平,从而抑制炎症的发生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号